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Abstract

Background: Propensity score adjustment is a popular approach for confounding control

in observational studies. Reliable frameworks are needed to determine relative propen-

sity score performance in large-scale studies, and to establish optimal propensity score

model selection methods.

Methods: We detail a propensity score evaluation framework that includes synthetic and

real-world data experiments. Our synthetic experimental design extends the ‘plasmode’

framework and simulates survival data under known effect sizes, and our real-world

experiments use a set of negative control outcomes with presumed null effect sizes. In

reproductions of two published cohort studies, we compare two propensity score

estimation methods that contrast in their model selection approach: L1-regularized re-

gression that conducts a penalized likelihood regression, and the ‘high-dimensional

propensity score’ (hdPS) that employs a univariate covariate screen. We evaluate meth-

ods on a range of outcome-dependent and outcome-independent metrics.

Results: L1-regularization propensity score methods achieve superior model fit, covariate

balance and negative control bias reduction compared with the hdPS. Simulation results are

mixed and fluctuate with simulation parameters, revealing a limitation of simulation under

the proportional hazards framework. Including regularization with the hdPS reduces com-

monly reported non-convergence issues but has little effect on propensity score performance.

Conclusions: L1-regularization incorporates all covariates simultaneously into the propensity

score model and offers propensity score performance superior to the hdPS marginal screen.
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controls, method evaluation
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Introduction

Retrospective observational studies constitute a resource for

clinical evidence gathering complementary to randomized

controlled trials. However, whereas real-world databases

can offer voluminous information on millions of patients,

observational studies suffer from obstacles that introduce

bias and prevent their more widespread use by the medical

community.1–3 Chief among these is the unknown and non-

random treatment assignment process that precludes the co-

hort balance inherent in randomized studies.

The propensity score (PS), an estimate of treatment as-

signment probability, is a predominant tool for confounding

control in retrospective studies.4,5 Rich literature addresses

best adjustment practices once the PS has already been esti-

mated,6–10 but relatively few studies evaluate methods for

PS estimation.11,12 Propensity scores are estimated with a

classification model, often logistic regression, using pretreat-

ment baseline patient covariates such as demographics and

indicators for medical conditions, procedures and drug

exposures.6 Recent research has questioned the reliability of

expert opinion in the traditional approach of manually

selecting suspected confounders to include as PS model cova-

riates.13 However, the alternative approach, to use all avail-

able covariates in the PS logistic model, requires additional

model fitting strategies to prevent sparse data bias14 or en-

tirely non-convergent estimates.

The ‘high-dimensional propensity score’ (hdPS) is a PS

model selection approach that selects a fixed number of

covariates with highest marginal association with the study

outcome.15 Despite relying on univariate associations in

high-dimensional data with likely nonindependent covari-

ates, the hdPS has gained widespread use in pharmacoepi-

demiology.16 Other PS model fitting methods include

multivariate approaches that incorporate penalties or mod-

ifications to the regression objective function.17–19 In par-

ticular, L1-regularization is a workhorse of statistical

model selection,20 and has been previously applied to PS

estimation.11,21,22

In this paper, we address the comparative performance

of PS estimators in large-scale observational settings in the

order of 100 000 subjects and 100 000 unique covariates.

We detail a comprehensive framework incorporating syn-

thetic and real-world data experiments for evaluating

PS methods, and conduct a comparison of the hdPS with

L1-regularization for PS estimation. We provide this

framework as an open-source R package [https://github.

com/OHDSI/PropensityScoreEvaluation].

Methods

Clinical scenarios

We compare PS methods through reproductions of two previ-

ously published retrospective cohort studies using the

Truven Health MarketScan Medicare Supplemental and

Coordination of Benefits Database. Each study compares two

drugs: one designated as the active treatment and the other as

the reference. See Supplementary material 1–4, available as

Supplementary data at IJE online for full cohort definitions.

The first is a cohort study23 of new users of anticoagu-

lants, i.e. dabigatran and warfarin initiators in patients

with nonvalvular atrial fibrillation. Dabigatran is the ac-

tive treatment; warfarin is the reference; and intracranial

haemorrhage is the outcome of interest. The second is a co-

hort study24 of new-users of COX-2 inhibitors and tradi-

tional nonsteroidal anti-inflammatory drugs (NSAIDs)

initiators. We select celecoxib, a representative COX-2 in-

hibitor, as the active treatment; diclofenac, a representative

traditional NSAID, as the reference; and upper gastrointes-

tinal complications as the outcome of interest.

Synthetic framework

Our synthetic approach simulates survival outcomes while

preserving characteristics of real-world clinical cohorts.

We construct new user cohorts comparing the effect of two

drugs on an outcome of interest,21 and use the exposure

Key Messages

• We detail a comprehensive, open-source evaluation framework for propensity score performance.

• L1 statistical regularization (LASSO) provides improved confounding control as compared with the hdPS for propen-

sity score model selection.

• Using a larger covariate set and including all covariates into the propensity score model produces improved propen-

sity score performance.

• Negative control experiments provide a powerful alternative to simulations in evaluating observational study

methods.

• The hdPS marginal screen suffers from covariate interdependence in high-dimensional data.
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status and baseline covariates from the real data in con-

structing a Cox proportional hazards model to simulate

new survival outcomes. We derive empirical estimates for

necessary model components such as baseline survival and

censoring functions, and covariate hazard ratio coeffi-

cients. Then we perform inverse transform sampling on the

subject-specific survival functions.25 See Supplementary

material 5, available as Supplementary data at IJE online,

for full synthetic framework details. Our approach extends

the ‘plasmode’ framework26,27 by detailing additional dis-

tributional forms for the survival and censoring process,

proposing additional outcome prevalence adjustment

approaches, using an accurate outcome prevalence equa-

tion and, most critically, using a non-informative, covari-

ate-free censoring process consistent with the proportional

hazards model. We modify the model to simulate under

three generative hazard ratios (1:0; 1:5; 2:0) and three

outcome prevalences (1%; 5%; 10%) for nine total simu-

lation settings.

Negative control outcome experiments

In addition to simulations under known hazard ratios, we

perform negative outcome control experiments using sets

of outcomes believed to be unrelated to the compared

treatments, thus having a presumed true hazard ratio of

1.28,29 Negative control outcomes entirely use real-world

data, and when properly specified they provide an estimate

of residual systemic bias in a study after controlling for

measured confounders. For each study, we identify a set of

50 negative control outcomes using a data-rich algo-

rithm,30 and exclude outcomes that have less than 0:02%

prevalence in the combined treatment groups, leaving 49

negative control outcomes for the Anticoagulants study

and 29 for the NSAIDs study. We produce PS-adjusted

treatment effect size estimates for each outcome in the set,

and fit the estimates to an empirical null distribution.29 We

expect successful PS confounding control to reduce resid-

ual bias, and produce a null distribution centred more

closely at the presumed null effect. A list of negative out-

comes used are given in Supplementary material 6 and 7,

available as Supplementary data at IJE online.

Covariates

We use two sets of pretreatment covariates. The first,

‘hdPS Covariates’, is our reproduction of the specific cova-

riates prescribed for the hdPS.15 The second, ‘OHDSI

Covariates’, follows the Observational Medical Outcomes

Partnership Common Data Model Version 5 format31 and

is commonly used in the Observational Health Data

Sciences and Informatics (OHDSI) community.32 Both sets

of covariates include demographic information (sex, age

and treatment initiation index year) and (differently coded)

covariates for conditions, procedures and drugs. However,

the ‘OHDSI Covariates’ include additional covariate cate-

gories and are more expansive than the ‘hdPS Covariates’.

Both covariate sets are used to create the synthetic model

to create a detailed simulated outcome generative process.

See Supplementary material 8, available as Supplementary

data at IJE online, for full covariate details.

Propensity score methods

We compare the hdPS to L1-regularization as PS estimation

methods. We apply the hdPS to only ‘hdPS Covariates’, and

we apply L1-regularization to both covariate sets sepa-

rately, and to them combined. We include two variations of

the hdPS: ‘bias-based hdPS’ that screens covariates based

on their apparent relative risk, a measure of confounding

on the outcome,33 and ‘exposure-based hdPS’ that screens

based on treatment relative risk.12 We use default hdPS set-

tings,15 and fit the resultant logistic regression both without

regularization and with L1-regularization, giving seven to-

tal compared PS methods (Table 1). The unregularized re-

gression can lead to ‘convergence failures’ that occur due to

the PS estimate non-existence.16,34,35 All regularization

penalties are selected through 10-fold cross-validation using

large-scale regression tools.36 Using the CohortMethod R

package,37 we perform many-to-one PS matching and esti-

mate the treatment hazard ratio using a stratified Cox sur-

vival outcome model with treatment as the only covariate.

Details regarding the PS adjustment process are given in

Supplementary material 9, available as Supplementary data

at IJE online.

Metrics

We report standardized difference measures of covariate

balance across the PS matched sets, and the c-statistic of

the PS models that measures treatment predictive

accuracy.38,39 We report the bias and root mean square er-

ror (RMSE) of the estimated hazard ratio from the true

Table 1. PS methods evaluated across two real-world studies

PS method Description

L1-Reg-All L1-regularization on combined covariates

L1-Reg-OHDSI L1-regularization on ‘OHDSI Covariates’ only

L1-Reg-HDPS L1-regularization on ‘hdPS Covariates’ only

bias-hdPS bias-based hdPS, without regularization

bias-hdPS-Reg bias-based hdPS, with regularization

exp-hdPS exposure-based hdPS, without regularization

exp-hdPS-Reg exposure-based hdPS, with regularization
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hazard ratio, that is known in the simulations and pre-

sumed to be 1 in the negative control experiments. We as-

sess negative control experiment results using fitted

Gaussian empirical null distributions that estimate the re-

sidual bias distribution.29

Results

Cohorts

The Anticoagulants study contains 72 489 subjects:

19 768 new dabigatran users and 52 721 new warfarin

users. There are 98; 118 unique baseline covariates

among all subjects, and the outcome prevalence of intra-

cranial haemorrhage is 0:26%. The NSAIDs study contains

121 317 subjects: 78 695 new celecoxib users and 42 622

new diclofenac users. There are 75 425 unique covariates

among all subjects, and the outcome prevalence of upper

gastrointestinal complications is 1:81%. The ‘OHDSI

Covariates’ set is notably larger than the ‘hdPS Covariates’

set in both studies (Table 2). No threshold is used to ex-

clude infrequent covariates.

Propensity score estimate existence

To explore the robustness of the default hdPS that excludes

regularization, we conduct tests for hdPS estimate exis-

tence under varied simulation parameters (Supplementary

material 10, available as Supplementary data at IJE on-

line). We find that simulations with smaller cohorts and

lower outcome prevalence have less likely PS estimate exis-

tence (Supplementary Table 1, available as Supplementary

data at IJE online). To address this problem, L1-regulariza-

tion readily promotes model existence for the hdPS.

PS distributions and covariate balance

Although the two studies differ in absolute c-statistic val-

ues, they demonstrate a similar ordering of PS methods in

order of highest-to-lowest c-statistic: L1-Reg-All, L1-Reg-

OHDSI, L1-Reg-HDPS, bias-based hdPS, exposure-based

hdPS (Table 3). These trends can be visually appreciated in

the PS distributions (Supplementary Figures 1 and 2, avail-

able as Supplementary data at IJE online). L1-Reg-All and

L1-Reg-OHDSI have much higher c-statistic than the other

methods that use only the ‘hdPS Covariates’, suggesting

that the larger ‘OHDSI Covariates’ set allows for improved

treatment prediction accuracy. Expectedly, increased c-

statistic and PS distribution differentiation lead to fewer

suitable subjects being included in the matching process

(Table 3).

In the simulation experiments, only the synthetic model

covariates included in the generative survival model are

true confounders that contribute to estimation bias. All PS

methods greatly reduce the standardized differences for

these covariates for both the Anticoagulants study

(Figure 1) and NSAIDs study (Supplementary Figure 3,

available as Supplementary data at IJE online). In both

studies, the empirical cumulative distribution functions of

the PS-adjusted standardized differences reveal a consistent

order in performance: L1-Reg-All and L1-Reg-OHDSI pro-

vide the best covariate balance, then L1-Reg-HDPS,

then bias-based hdPS, and exposure-based hdPS is

worst (Supplementary Figures 4 and 5, available as

Supplementary data at IJE online). The same relative per-

formance extends to balance among all covariates.

Among only hdPS Covariates, L1-Reg-HDPS performs

best and exposure-based hdPS worst in both studies, and

bias-based hdPS beats L1-Reg-All/L1-Reg-OHDSI in the

Anticoagulants study, and vice versa in the NSAIDs study.

The Anticoagulants study after-matching outlier in

Figure 1 is the ‘OHDSI Covariates’ indicator for ‘Condition

Era Overlapping with Cohort Index: Atrial Fibrillation’.

This covariate identifies patients with presumably active or

chronic atrial fibrillation at the time of treatment initiation,

who may require the stronger anticoagulation control that

warfarin is believed to provide. This complex covariate and

likely confounder is absent from the ‘hdPS Covariates’ that

only includes simple prior condition indicators, and its

Table 2. Number of covariates in each study, by source covar-

iate set. Both sets share same demographics covariates

Covariates

Study All OHDSI hdPS

Anticoagulants Full cohorts 98 118 82 281 15 854

Synthetic model 525 446 83

NSAIDs Full cohorts 75 425 63 004 12 441

Synthetic model 530 478 60

Table 3. c-statistic of PS methods, and the percentage of

cohorts included in the many-to-one matching process

Anticoagulants study NSAIDs study

PS method c-statistic % Matched c-statistic % Matched

L1-Reg-All 0.798 82.5 0.750 91.6

L1-Reg-OHDSI 0.793 83.0 0.750 91.7

L1-Reg-HDPS 0.760 89.2 0.708 95.5

bias-hdPS 0.743 91.3 0.693 96.5

bias-hdPS-Reg 0.742 91.6 0.691 96.7

exp-hdPS 0.737 91.3 N/A N/A

exp-hdPS-Reg 0.735 91.9 0.678 97.5
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imbalance is exacerbated by the PS methods that exclude the

larger ‘OHDSI Covariates’ set.

Simulation-hazard ratio estimation

In both studies, the hdPS with and without regularization

provide similar simulation results. In the Anticoagulants

study (Figure 2), bias-based hdPS and L1-Reg-HDPS pro-

vide the lowest RMSE for the HR ¼ 1:0 simulations,

whereas L1-Reg-All and L1-Reg-OHDSI are generally su-

perior for the HR ¼ 1:5 and HR ¼ 2:0 simulations. L1-

Reg-All and L1-Reg-OHDSI consistently have higher 95%

coverage of the true HR than other methods

(Supplementary Figure 6, available as Supplementary data

at IJE online). In the NSAIDs study (Figure 3), L1-Reg-

HDPS provides the lowest RMSE under a majority of sim-

ulation parameters, although exposure-based hdPS is best

for two of the three HR ¼ 2:0 simulations. All PS methods

have generally high coverage, near or above 90%, and im-

prove substantially on the unadjusted coverage

(Supplementary Figure 7, available as Supplementary data

at IJE online). In both studies, exposure-based hdPS

provides the smallest absolute bias correction relative to

unadjusted, and L1-Reg-All/L1-Reg-OHDSI provide the

largest. Additionally, as true hazard ratio is increased,

there is a strong negative shift in bias that dominates the

differences among PS methods.

Negative control-hazard ratio estimation

In the absence of residual bias, we expect 95% of negative

control estimates to include the presumed hazard ratio of 1

in their 95% confidence intervals. For the Anticoagulants

study, the unadjusted negative control outcomes reveal a

clear negative bias that is reduced by all PS methods

(Figure 4). The unadjusted coverage of 53% is increased to

80–90%, with L1-Reg-All and L1-Reg-OHDSI providing

the highest coverage and exp-hdPS and exp-hdPS-Reg pro-

viding the lowest (Table 4). bias-hdPS and exp-hdPS are

the most efficient methods as measured by RMSE, and the

L1-regularization methods have least biased empirical null

distributions, which estimate the residual bias using both

the negative control point estimates and their uncertainty.

For the NSAIDs study, the unadjusted negative control

Figure 1. Anticoagulants study: before and after PS matching scatterplot of absolute standardized differences for synthetic model covariates. After

matching outlier corresponds to higher frequency of indicator ‘Condition Era Overlapping with Cohort Index: Atrial Fibrillation’ in Warfarin group.
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estimates (Supplementary Figure 8, available as

Supplementary data at IJE online) have a higher coverage

at 83%, and all PS methods provide between 83% and

88% coverage, except for L1-Reg-OHDSI at 97%

(Table 4). L1-Reg-OHDSI provides the most efficient esti-

mates, and L1-Reg-All and bias-hdPS-Reg have least bi-

ased null distributions. Both bias-hdPS and exp-hdPS

demonstrate degrees of PS estimate non-existence and re-

quire regularization for successful model fitting.

Discussion

In this study, we conduct synthetic and negative control

experiments comparing L1-regularization with the bias-

and exposure-based hdPS as PS estimators. We find that

L1-regularization and use of a larger covariate set provides

the best treatment prediction accuracy and covariate bal-

ance, and the exposure-based hdPS provides the worst.

However, these differences do not cleanly translate to re-

duced estimation bias. In simulations, L1-regularization

and bias-based hdPS generally outperform exposure-based

hdPS under varied simulation parameters. In negative

control experiments, PS adjustment provides noticeable

improvement over unadjusted in only one of two studies.

For that study, L1-regularization provides higher coverage

of the null effect size and has least biased empirical null

distribution, but the hdPS provided smaller RMSE esti-

mates at the expense of closer to nominal coverage.

We observe a simulation estimation bias towards the

null which increases with true hazard ratio and dominates

the differences among PS methods. This bias appears in

other proportional hazards simulation studies when there

is unmeasured confounding in a randomized experiment40

and when propensity scores are used for confounding con-

trol.10 In Supplementary material 11, available as

Supplementary data at IJE online, we show empirically

that this bias arises when there are differences in hazard

between matched subjects. Under a proportional hazards

simulation model, covariate differences between matched

subjects will likely contribute to this bias. By using real-

world data, our negative control experiments avoid unnec-

essary proportional hazards assumptions, and avoid simu-

lation design decisions that can be a source of investigator

bias. We believe that negative control experiments can be a

valuable tool in addition to simulations for conducting ob-

servational studies and evaluating methods.

Figure 2. Anticoagulants study: bias in log hazard ratio (HR) with one-standard deviation (1-SD) intervals, and associated root mean squared error

(RMSE), across 100 simulations under different simulation parameters of true HR and outcome prevalence (OP).
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Bias reduction may be the intended goal of PS adjust-

ment, but alone it is insufficient to judge PS method perfor-

mance unless assessed on large and robust outcome sets.

Outcome-dependent metrics are susceptible to the choice

of outcome model and the PS adjustment approach, and

methods that work well for one outcome may not for an-

other. Because in this study we are interested in comparing

PS estimation methods, metrics such as covariate balance

offer an outcome-independent assessment of PS perfor-

mance. In addition, the c-statistic can also be a reliable

outcome-independent indicator of PS performance. We

find that the PS methods that produce higher c-statistic

also substantially improve covariate balance among true

confounders (in the simulation) and among all covariates.

Other studies that have questioned the c-statistic as a PS

diagnostic41–44 relied on making marginal changes to a

very small simulation model. We reach a different conclu-

sion on the utility of the c-statistic in real-world cohorts

that have many thousands of patients and covariates.

A desire to include only ‘true confounders’ in the PS

model has motivated the hdPS and other outcome-

dependent confounding adjustment methods for PS

estimation.18,45 In addition to noting that these methods

violate the unconfoundedness assumption of the potential

outcomes framework,46 we recommend that outcome-

dependent PS estimators be evaluated using control out-

comes and not with simulations, as outcomes synthetically

generated through a known process can favourably bias

outcome-dependent methods in an unrealistic and pro-

phetic fashion. As an extreme example, one could con-

struct the PS model with the exact confounders present in

the synthetic model, and thus produce artificially unbiased

effect estimates.

Another goal of outcome-dependent propensity scores,

and more broadly investigator selected PS models, is to

avoid instrumental variables (IVs) that predict treatment

but contribute no confounding on the outcome. The po-

tential harmful effects of IVs in inflating estimation

bias47 and variance48 have been shown in theoretical

examples and simulation experiments using small mod-

els. However, the prevalence of IVs in real-world data is

debatable and their identification difficult. In our experi-

ments, the bias-based hdPS that should avoid IVs is not

superior to L1-regularized methods that include all

Figure 3. NSAIDs study: bias in log hazard ratio (HR) with one-standard deviation (1-SD) intervals, and associated root mean squared error (RMSE),

across 100 simulations under different simulation parameters of true HR and outcome prevalence (OP).
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available covariates. Comprehensive methods for IV

identification and characterization in real-world observa-

tional data, and knowledge of the consequences on PS es-

timator selection, are still lacking and merit further

investigation.

The hdPS’s univariate screen for PS model selection suf-

fers from covariate interdependence in large-scale data. We

show in Supplementary material 10, available as

Supplementary data at IJE online, that hdPS estimate non-

existence, or ‘non-convergence’, is a problem in smaller

Figure 4. Anticoagulants study: hazard ratio estimates (horizontal axis) and width of 95% confidence interval (via standard error) (vertical axis) for 49

negative control outcomes. Dashed line represents the straight line boundary at where the 95% confidence interval does (above) or does not (below)

contain the assumed true hazard ratio of 1.

Table 4. Results for 49 negative controls in Anticoagulants study and 29 in NSAIDs study

Anticoagulants NSAIDs

PS method Cov RMSE Mean SD Cov RMSE Mean SD

Unadjusted 0.53 0.325 �0.172 0.216 0.83 0.370 �0.061 0.314

L1-Reg-All 0.88 0.303 0.023 0.108 0.83 0.367 �0.023 0.229

L1-Reg-OHDSI 0.90 0.276 �0.020 0.061 0.97 0.319 �0.087 0.161

L1-Reg-HDPS 0.86 0.275 �0.026 0.089 0.83 0.387 �0.115 0.228

bias-hdPSa 0.86 0.258 �0.037 0.065 0.88 0.347 �0.065 0.135

bias-hdPS-Reg 0.82 0.292 �0.036 0.094 0.83 0.372 �0.039 0.244

exp-hdPSb 0.80 0.268 �0.037 0.113 N/A N/A N/A N/A

exp-hdPS-Reg 0.80 0.284 �0.037 0.096 0.86 0.434 �0.154 0.320

Mean and SD are of the empirical null Gaussian distribution fit to the log hazard ratio estimates.

Cov, coverage of the null effect; RMSE, root mean squared error of log hazard ratio estimates from 0; SD, standard deviation.
abias-hdPS fails to converge on 12 of 29 outcomes in NSAIDs study.
bexp-hdPS fails to converge on all 29 outcomes in NSAIDs study.
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sample sizes and with lower outcome prevalences, corrob-

orating published observations.34,35 If there is enough co-

variate interdependence to render the hdPS inoperable in

smaller studies, the problem likely persists in larger studies

as well, despite algorithm convergence. For example, in

our study the explicit selection of marginal treatment

associations by the exposure-based hdPS produces the low-

est c-statistic among compared PS methods. Inclusion of

regularization can promote hdPS convergence but does not

noticeably change PS method performance.

A univariate screen is undeniably fast to compute, but

modern computational machinery increasingly handles

large-scale regressions. For our study with in the order of

100 000 subjects and 100 000 covariates, computing the

hdPS completes in minutes, versus reasonable hours for

L1-regularization with extensive cross-validation using the

Cyclops R package.36 Computer parallelization and future

statistical computing advances can further improve large-

scale observational analyses, reducing computational bur-

den as a barrier to using appropriate methods.

In this study, we evaluate L1-regularization because of

its prior application to PS models and explicit model selec-

tion approach that contrasts with that of the widely used

hdPS. However, multivariate penalized regression techniques

other than L1-regularization exist to address separation and

sparse data bias in logistic regression,19 and there is a wide

machine learning literature on binary classification algo-

rithms.49 Even though we are using L1-regularization for PS

prediction, and not to estimate causal effects, perhaps other

methods that do not drop covariates entirely from the PS

model may produce improved covariate balance. In particu-

lar, log-Fðn;mÞ distribution priors have received positive at-

tention for bias reduction in logistic regression,50 and can be

implemented in standard regression software through data

augmentation. The two distribution parameters are easily in-

terpretable as prior coefficient confidence intervals, perhaps

lending peace of mind to the investigator who chooses to fix

them instead of performing an expensive parameter search.

Our study provides an evaluation framework that can be ap-

plied to study log-F priors and other penalized regression

methods as PS estimators.
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Supplementary data are available at IJE online.
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