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Synopsis Despite their economic, ecological, and experimental importance, genomic resources remain scarce for crus-

taceans. In lieu of genomes, many researchers have taken advantage of technological advancements to instead sequence

and assemble crustacean transcriptomes de novo. However, there is little consensus on what standard operating proce-

dures are, or should be, for the field. Here, we systematically reviewed 53 studies published during 2014–2015 that

utilized transcriptomic resources from this taxonomic group in an effort to identify commonalities as well as potential

weaknesses that have applicability beyond just crustaceans. In general, these studies utilized RNA-Seq data, both novel

and publicly available, to characterize transcriptomes and/or identify differentially expressed genes (DEGs) between

treatments. Although the software suite Trinity was popular in assembly pipelines and other programs were also com-

monly employed, many studies failed to report crucial details regarding bioinformatic methodologies, including read

mappers and the utilized parameters in identifying and characterizing DEGs. Annotation percentages for assembled

transcriptomic contigs were low, averaging 32% overall. While other metrics, such as numbers of contigs and DEGs

reported, correlated with the number of sequence reads utilized per sample, these did reach apparent saturation with

increasing sequencing depth. Most disturbingly, a number of studies (55%) reported DEGs based on non-replicated

experimental designs and single biological replicates for each treatment. Given this, we suggest future RNA-Seq exper-

iments targeting transcriptome characterization conduct deeper (i.e., 50–100 M reads) sequencing while those examining

differential expression instead focus more on increased biological replicates at shallower (i.e., �10–20 M reads/sample)

sequencing depths. Moreover, the community must avoid submitting for review, or accepting for publication, non-

replicated differential expression studies. Finally, mining the ever growing publicly available transcriptomic data from

crustaceans will allow future studies to focus on hypothesis-driven research instead of continuing to simply characterize

transcriptomes. As an example of this, we utilized neurotoxin sequences from the recently described remipede venom

gland transcriptome in conjunction with publicly available crustacean transcriptomic data to derive preliminary results

and hypotheses regarding the evolution of venom in crustaceans.

Introduction

Crustaceans are one of the most taxonomically, eco-

logically, and physiologically diverse groups of ani-

mals on our planet, with470,000 described species

occupying nearly all marine and freshwater habitats

(Hobbs and Hart 1982), as well as semi- and fully-

terrestrial habitats (Bliss 1968), and even pools of

water found in bromeliads (Anger 1995). They are

also economically important, totaling 30% of the

total harvest of US commercial fisheries, representing

a value of $4 billion, in 2007 (Cooley and Doney

2009). Ecologically, crustaceans have invaded most

major niches, ranging from the basis of marine

food webs to apex predators of, or parasitic and
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mutualistic partners to, a wide variety of other or-

ganisms, and venom has evolved independently in at

least one crustacean (von Reumont et al. 2014).

Given this biological breadth, it should not be sur-

prising that crustaceans are also physiologically di-

verse, having been utilized in studies elucidating

effects of changing salinities, temperatures, acidifica-

tion, oxygen concentrations, toxic metals, and emer-

sion, just to name a few (Henry 1994; Morris 2002;

Henry et al. 2012; McNamara and Faria 2012; Lewis

et al. 2013; Harms et al. 2014; Spicer 2014).

Despite their importance, crustaceans still lack ap-

preciable genomic resources compared with other

widely-studied groups such as insects and vertebrates.

As identified during the ‘‘Pancrustacean’’ symposium

at the 2015 Annual Meeting of the Society for

Integrative and Comparative Biology (SICB), there is

a need for developing a model crustacean system,

similar to Drosophila in insects, with one of its pri-

mary characteristics being a well-annotated genome

(Mykles and Hui 2015). However, only one compre-

hensively assembled and annotated crustacean genome

is available, that of the water flea Daphnia (Colbourne

et al. 2011). While useful, the Daphnia genome does

have shortcomings. Mainly, the genus is not closely

related to any economically, ecologically, or physio-

logically important decapod crustacean species exam-

ined to date. While draft genomes are available for a

few species, such as the cherry shrimp Neocaridina

denticulata (Kenny et al. 2014; Sin et al. 2015), crus-

tacean genomes are diverse, and can be large and

structurally complex (Rees et al. 2007; Stillman et al.

2008), making them difficult to assemble.

Furthermore, annotation of the Daphnia genome re-

vealed that 30% of its genes lacked homologs in other

animal genomes (Colbourne et al. 2011), suggesting

that crustacean genomics at the functional level may

not be practical for the foreseeable future.

On the other hand, transcriptomics provides a

viable alternative to characterizing complete ge-

nomes. For most transcriptomic approaches, the

transcribed RNA population in a cell, tissue, whole

organism, or pool of organisms is first sequenced

using massively-parallel strategies and then compu-

tationally assembled into a series of overlapping but

discrete DNA sequences (i.e., contigs). This process,

termed RNA-Seq, is robust to experimental, bioin-

formatic, and genomic heterogeneity (Wang et al.

2009; Vijay et al. 2013). Furthermore, RNA-Seq is a

powerful approach for: (1) the characterization of a

transcriptome and novel transcript discovery from

organisms with no available genomic resources; (2)

analyses of differential gene expression that are su-

perior to microarrays; (3) identification of

alternatively spliced genes (Wang et al. 2009;

Nookaew et al. 2012; Sims et al. 2014); and (4) the

generation of hundreds to thousands of orthologous

genetic markers for population genomic and phylo-

genomic studies (Meusemann et al. 2010; Regier et

al. 2010; Rehm et al. 2011; Carmichael et al. 2013).

With the advent of cost-affordable technologies like

Illumina’s Sequencing by Synthesis chemistry, it is

not surprising that transcriptomic resources are be-

coming widely available for a range of crustacean

species, in spite of a lack of corresponding genomes.

As an example, a search utilizing the term ‘‘crusta-

cean’’ to the National Center for Biotechnology

Information (NCBI)’s Sequence Read Archive (SRA),

where many RNA-Seq datasets are deposited upon

publication, reveals an exponential increase in the

number of entries during the last �5 years (Fig. 1).

Testimony to the rise of transcriptomics and RNA-

Seq as formidable tools in crustacean comparative bi-

ology comes from the symposium ‘‘Tapping the

Power of Crustacean Transcriptomes to Address

Grand Challenges in Comparative Biology’’, held in

conjunction with the 2016 Annual Meeting of the

SICB. However, it is unclear whether current RNA-

Seq experiments of crustaceans conform to standard

operating protocols (SOPs) used in model systems or

even what should be considered SOPs for crustacean

transcriptomic studies. We therefore surveyed 53 pub-

lished studies from 2014–2015 to provide a qualitative

and quantitative systematic review on the current

state of crustacean transcriptomics as well as offer

suggestions on ways to improve such studies in the

future that we feel have applicability beyond just this

taxonomic group. Our objectives were to: (1) identify

the goals of current studies utilizing transcriptomic

data from crustaceans, (2) describe broad trends on

the methodologies being applied in analyses of crus-

tacean transcriptomic data, and (3) suggest future

Fig. 1 Number of entries added each year to the NCBI’s SRA

database for crustaceans in general and the subset of those having

a ‘‘RNA-seq’’ descriptor in particular (as of December 31, 2015).
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directions for the field as a whole based on transcrip-

tomic studies from more well-developed systems.

Notably, we did not attempt a comprehensive review

of methodologies associated with RNA-Seq in general

since such reviews are published on at least a yearly

basis (e.g., Fonseca et al. 2014; Hunt et al. 2014; Saliba

et al. 2014; Seyednasrollah et al. 2015; Todd et al. 2016).

Methods

Data acquisition and selection of publications

Literature queries were performed against the NCBI

PubMed and Thomson Reuters Web of Science data-

bases to identify published studies meeting the follow-

ing criteria: (1) describing some attribute relevant to

transcriptomics (e.g., number of contigs, transcript ex-

pression levels, or identification of novel transcripts)

without restriction to the level of biological organization

(i.e., tissue(s), whole organism, etc.) being examined;

(2) the targeted taxa must have been a crustacean;

and (3) the work was published between January 1,

2014 and September 10, 2015. Notably, these criteria

were selected to provide a snapshot of the methods

and results of relatively recent crustacean transcriptomic

studies rather than a comprehensive review of the field

since its inception, as earlier work may have used dras-

tically different methodologies due to continuing and

rapid advancements in DNA sequencing technology

and software for analyses. For example, many studies

prior to 2014 relied on Roche 454 pyrosequencing.

However, the relatively high-cost per sequenced base

as well as the 2013 announcement of its close down

by mid-2016 has largely led many projects to adopt and

employ Illumina sequencing instead. Also of note, we

did not query sequence databases such as the SRA of

NCBI since we sought to examine the goals and meth-

odologies of published transcriptomic studies, not

survey projects simply generating sequence reads.

Initial search terms used were combinations of the fol-

lowing: ‘‘Crustacea’’, ‘‘transcriptome’’, ‘‘RNA-Seq’’,

‘‘crab’’, ‘‘shrimp’’, and ‘‘genome’’. References of the lit-

erature identified in initial queries were also searched in

order to locate other potentially relevant work (i.e., ‘‘in

press’’ manuscripts available from publishers but not

yet in either of the two databases).

Quantitative review and re-analyses of collective

datasets

Along with qualitatively reviewing the studies iden-

tified from the literature queries and noting the

goals of, and methodologies utilized, for each, several

quantitative metrics were also summarized (Table 1;

Supplementary Table S1). These included: (1) number

of reads sequenced per transcriptomic sample; (2)

number of sequenced samples; (3) number of contigs

assembled per transcriptome; (4) percentage contigs

annotated; and (5) number of differentially expressed

genes (DEGs) recovered, as well as level of biological

sample replication per treatment, especially when

studies explicitly stated that DEGs were being identi-

fied and characterized between tissues, developmental

stages, or environmental treatments. Unfortunately,

given their nature, patterns and correlations drawn

from the data were not amenable to examination in

a formal meta-analysis statistical framework

(ArchMiller et al. 2015). Specifically, much of the

data we gathered lack the appropriate metrics for

meta-analyses (Borenstein 2009) since they represent

single counts per study without any measure of sta-

tistical deviation (e.g., number of reads sequenced).

However, we feel generalized conclusions drawn

from this systematic review have utility in designing

future crustacean RNA-Seq experiments, even if P

values were not calculated.

Results and Discussion

The current state of crustacean transcriptomics

Based on the search criteria, 53 studies, examining the

transcriptomics of 37 crustacean species, were identified

for inclusion in this review (Supplementary Table S1).

In general, these studies either: (1) sequenced and char-

acterized the transcriptome of a particular tissue or

species; (2) utilized RNA-Seq to examine differential

gene expression between particular tissues, treatments,

or developmental stages; (3) screened transcriptomic

contigs (either publicly available or ones assembled de

novo) to identify novel crustacean-specific transcripts;

or (4) some combination of the above. While this pro-

vides a general summary of goals associated with RNA-

Seq experiments in crustaceans (additional details for

each study are given in Supplementary Table S1), it

likely does not represent a comprehensive list.

Table 1 Average� SEM for common quantitative metrics re-

ported from the 53 crustacean transcriptomic studies reviewed

here

Metric Average �SEM

No. of Reads per sample 63.0 � 11.5 million

No. of Samples 6.7 � 1.2

No. of Samples per treatment 1.7 � 0.2

No. of Treatments 3.8 � 0.4

% Contigs annotated 31.8 � 2.4

No. of Contigs 103,739 � 13,782

No. of DEGs 4154 � 1058

Note: DEGs¼ differentially expressed genes.
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Notably, no studies encompassing phylogenomics are

included in this review, possibly due to the search cri-

teria or terms utilized, despite the utilization of tran-

scriptomic data in such studies (Rehm et al. 2011).

Therefore, our conclusions on read depth, assembly

programs, and other commonalities in crustacean tran-

scriptomic studies may not generally apply to phyloge-

nomic studies for the group.

Among the 53 transcriptomic studies, the most fre-

quently examined species was the red swamp crayfish

Procambarus clarkii (used in six publications), with sev-

eral others, such as the Chinese mitten crab Eriocheir

sinensis and the whiteleg shrimp Litopenaeus vannamei,

also represented in multiple studies. The majority em-

ployed Illumina’s Sequencing by Synthesis chemistry in

generating RNA-Seq data (82% of applicable studies),

with Roche 454 pyrosequencing (16%), microarrays

(4%), and/or expressed sequence tags libraries (2%)

also being utilized less commonly. The vast majority

of studies (90%) employed some form of quality fil-

tering of reads prior to contig assembly, with pro-

grams such as Trimmomatic (Bolger et al. 2014),

SeqPrep (https://github.com/jstjohn/SeqPrep), FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastq

c/), and the FASTX-Toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/) being popular for such preprocessing

steps. It should be noted that overzealous trimming

and filtering of sequence reads can negatively impact

transcriptome assembly (MacManes 2014), and we

seldom perform preprocessing of reads prior to contig

assembly in our own projects if overall read quality is

high (e.g., Havird and Santos 2016). Contig assembly

from sequence reads was most commonly (64%) ac-

complished with the Trinity software suite (Grabherr

et al. 2011), with CLC Genomics Workbench (14%;

http://www.clcbio.com), Newbler (10%; Margulies et al.

2005), SOAP (5%; Luo et al. 2012), CAP3 (2%; Huang

and Madan 1999), Trans-ABySS (2%; Simpson et al.

2009), or assemblies performed at sequencing centers

(2%) employed to a lesser extent. Notably, Trinity

tended to generate transcriptomes with higher numbers

of contigs than studies using other assembly programs,

even when Roche 454 pyrosequencing data (most often

assembled via Newbler) were excluded (Fig. 2(A)). This

likely stems from Trinity explicitly and efficiently as-

sembling splice variants and alternative isoforms of

genes, which will necessarily produce a higher number

of contigs per gene as a result. To annotate resulting

contigs, the use of the Basic Local Alignment Search

Tool (BLAST; Altschul et al. 1997) suite was overwhel-

mingly popular (95%), typically coupled with queries to

Gene Ontology (GO) subject databases such as NCBI’s

nr, SwissProt (Apweiler et al. 2012), or Kyoto

Encyclopedia of Genes and Genomes (KEGG;

Kanehisa et al. 2016). Although the number of entries

in a database could potentially influence annotation suc-

cess rates, most studies queried multiple databases, thus

preventing identification of direct correlations between

the two. A majority of studies (60%) employed a

BLAST Expect (E) value criterion of 1e�5
, but values

ranged from 1e�10 to 1e�3, when conducting annota-

tion, which also likely influenced success rates. A minor-

ity of studies (18%) utilized Trinity’s companion

annotation suite Trinotate (https://trinotate.github.io/),

which simultaneously queries the UniProt, EggNOG,

and GO Pathways databases (The Gene Ontology

Consortium 2000; Apweiler et al. 2012; Powell et al.

2012) using BLAST and HMMER (Mistry et al. 2013).

While there was a trend for studies using Trinotate to

have lower annotation rates than alternative methods,

this difference was relatively minor (Fig. 2(B)).

In the 22 studies reporting differential gene ex-

pression, Bowtie (Langmead 2010; Langmead and

Salzberg 2012) was most frequently used for initial

read mapping to contigs (25%), with CLC Genomics

Workbench (15%) also being somewhat common.

Surprisingly, the specific read mapping software em-

ployed was not explicitly stated, or readily apparent,

in 35% of studies. Moreover, although the percent-

age of reads mapping to contigs were often provided,

Fig. 2 Impact of (A) assembly and (B) annotation software on number of contigs and percentage annotated, respectively, from the 53

crustacean transcriptomic studies reviewed here. Roche 454 data have been removed from (A). Error bars show� SEM.
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the mapping parameters employed (e.g., how reads

mapping to multiple contigs were handled) were not

stated in 79% of the studies. Similarly, the software

utilized in identifying DEGs was not clearly provided

in 35% of the 22 studies, despite reporting P (i.e.,

statistical significance cutoff) and FDR (i.e., false dis-

covery rate) values as well as interpreting biological

significance. When information on software was

given, edgeR (Robinson et al. 2010) and DESeq

(Anders and Huber 2010) were used most frequently

to identify DEGs (35% and 25%, respectively).

Quantitative values that could be summarized

from the 53 transcriptomic studies are presented in

Table 1. When taken together with the most com-

monly utilized software (see above), this serves as a

description for an ‘‘average’’ crustacean transcrip-

tomic study during the 2014–2015 time period,

which is consistent with RNA-Seq work in other

non-model systems (Willette et al. 2014). Assembly,

annotation, and differential expression analyses via

Trinity were particularly widespread among the crus-

tacean transcriptomics studies, likely due to the com-

putational performance and speed of this software

suite in assembling transcriptomes de novo

(Grabherr et al. 2011) along with published, easy-

to-follow protocols being available (Haas et al.

2013). Furthermore, studies using Trinity have re-

ported transcriptome assemblies of apparently high-

quality as measured by parameters such as transcript

lengths (Manfrin et al. 2015) or the fraction of genes

recovered in expected categories (Lenz et al. 2014).

However, the percentage of contigs annotated was

only 32% on average, suggesting that a significant

fraction of a typical crustacean transcriptome is com-

posed of novel or highly divergent transcripts, which

is supported by a similarly low annotation rate for

the Daphnia genome (Colbourne et al. 2011). Use of

hidden Markov models (Yoon 2009) and/or struc-

ture-based annotation (Brylinski and Skolnick

2010) could increase annotation rates for crustacean

transcriptomes or specific genes of interest in the

future (see Das et al., 2016). Importantly, the bioin-

formatic pipelines described here and the metrics in

Table 1 should not be considered the ‘‘ideal’’ for

crustacean transcriptomic studies, as there cannot

be a one-size-fits-all recommendation for RNA-Seq

experiments. Rather, different sequencing depths and

bioinformatic pipelines should be explored depend-

ing on the particular goal(s) of the specific study

(Tarazona et al. 2011). In any case, we feel this sum-

mary provides a synopsis of the field in general as

well as a useful benchmark for crustacean researchers

interested in beginning to integrate RNA-Seq into

their own work.

Effectsof sequencingdepthonRNA-Seqexperiments

Since deciding on sequencing depth is an important

consideration when designing RNA-Seq experiments

(Francis et al. 2013), we examined the influence of

read numbers on the resulting number of contigs in a

transcriptome assembly (Fig. 3(A)) as well as the

number of identified DEGs (when applicable to a

study; Fig. 3(B)). Although there was a correlation be-

tween increasing read numbers and greater number of

contigs and/or DEGs per sample, there were several

examples where this did not turn out to be the case.

This corresponds well with previous works document-

ing similar diminishing returns with increasing sequenc-

ing depth, both in crustaceans (Lenz et al. 2014) and

other non-model systems (Francis et al. 2013; Zhang et

al. 2013). Similarly, we have also observed the same

trend in saturation of identified DEGs with increasing

read numbers when examining salinity-induced differ-

ential expression in the gills of the blue crab Callinectes

sapidus (Havird et al., unpublished data).

Given this, how does one go about determining an

optimum balance between sequencing depth and

sample numbers to be investigated? For example,

when directly compared with a dataset possessing

Fig. 3 Effect of sequencing depth, measured as the number of

reported reads per study, on the number of (A) contigs assem-

bled and (B) DEGs identified from the 53 transcriptomic studies

reviewed here.
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�6X more reads, results from human stem cells

found that ‘‘just’’ �36 M reads per sample allowed

for accurate transcript abundance estimates (Encode

Project Consortium 2004; Trapnell et al. 2009), while

�20–30 M reads have been suggested as a bench-

mark to describe a ‘‘complete’’ transcriptome

(Francis et al. 2013). Along with this, if ‘‘complete-

ness’’ is a priority, the generation of transcriptomes

from different developmental stages, tissues, sexes,

and/or under variable environmental conditions

should also be considered in order to maximize

gene and transcript recovery. Although sequencing

depth will depend on the objectives of the study

(e.g., whether identifying and estimating abundance

for rare transcripts is of importance) and should be

determined in the context of the question(s) being

addressed (Sims et al. 2014), we can offer a few gen-

eralized recommendations based on current sequenc-

ing technologies and studies.

Future crustacean transcriptome studies should

plan on sequencing �50–100 M reads to more-

or-less adequately describe a transcriptome.

Specifically, when a linear function is fitted to the

Illumina data presented in Fig. 3(A), sequencing 10

M reads yields on average �86,000 contigs, while 50

M and 100 M reads yields 98,000 and 113,000 con-

tigs, respectively. Given that the Daphnia genome

only contains �31,000 genes, it is clear that many

of the contigs reported from transcriptomic assem-

blies in Fig. 3(A) are either alternatively spliced var-

iants or assembly artifacts, which generally are not of

interest to many investigators and subsequently in-

flate the perceived number of reads needed. In other

words, the higher number of contigs yielded from

deep sequencing is likely a many-fold inaccurate es-

timate rather than a biological plausible one. When

estimating differential expression, �10–20 M reads

per sample is likely acceptable for identifying most

DEGs. We arrive at this suggestion by utilizing a

similar linear function on Fig. 3(B), where sequenc-

ing 10 M or 20 M reads per sample yields 1400 and

2500 DEGs, respectively. This syncs well with rarefi-

cation analyses in the blue crab C. sapidus, which

suggested diminished returns in numbers of recov-

ered DEGs when410 M reads are included in anal-

yses (Havird et al., unpublished data). Similarly to

the transcriptome assembly example above, a result

of �20,000 DEGs is likely not biologically plausible,

implying again that deep sequencing can produce

inaccurate estimates. While these recommendations

correspond well with current practices used to char-

acterize transcriptomes (Table 1), the current se-

quencing depth to identify DEGs (i.e., 44� 8 M

reads/sample in differential expression studies)

could easily be considered overkill. Moreover, this

excessive level of sequencing likely prevents many

differential expression analyses from incorporating

sufficient, and sorely needed, biological replication

(see below). In summary, sequencing more reads is

not always better.

Replication and software choice in differential

expression studies

We found no significant difference in the number of

identified DEGs when single or multiple biological rep-

licates were utilized in differential expression analyses

(Fig. 4(A)). However, the reported numbers of DEGs

from 12 of the 22 (�55%) studies came from exami-

nation of only a single biological replicate per treat-

ment. In some cases, multiple sequencing or technical

replicates were generated (Supplementary Table S1),

but such schemes fail to quantify any variance between

independent biological replicates due to practices like

pooling all biological samples from a treatment before

sequencing (i.e., without barcoding).

While early RNA-Seq studies commonly estimated

differential expression using a non-replicated experi-

mental design (Marioni et al. 2008), it is deeply trou-

bling to report this is an ongoing practice. Specifically,

Fisher noted the seriousness of non-replication 80

years ago (Fisher 1935) and simulations of RNA-Seq

data have demonstrated the impossibility of extrapo-

lating such non-replicated results to populations

(Auer and Doerge 2010). Unfortunately, empirical

studies corroborating differences in the number and

identity of DEGs between replicated vs. non-replicated

designs have been lacking to date. To address this, we

estimated DEGs between developmental stages of the

anchialine atyid shrimp Halocaridina rubra utilizing

the single, non-replicated samples from transcriptome

assemblies, which was done by 12 of the studies ex-

amined here, as well as from a multi-replicated design

Fig. 4 Effect of (A) biological replication and (B) software utilized

on the number of DEGs identified from 22 studies reviewed here

reporting numbers of DEGs. Error bars show� SEM.
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(Havird and Santos 2016). Notably, we found large

differences among DEGs between non-replicated vs.

replicated RNA-Seq experimental designs investigating

the same developmental stages, implying results from

non-replicated experiments should, at most, be used

only for generating hypotheses (Havird and Santos

2016). Moreover, recent analytical tools such as

Scotty allow the design of RNA-Seq experiments, in-

cluding estimating the number of biological replicates

needed per sample, based on such preliminary data

(Busby et al. 2013).

The pitfalls of non-replicated RNA-Seq experimen-

tal designs are likely compounded by the fact that the

most commonly utilized software for differential ex-

pression analyses (e.g., edgeR and DESeq) rely on

Poisson models, which are inherently sensitive to bi-

ological replication (Robinson and Smyth 2007;

Langmead et al. 2010). Given this, alternative statisti-

cal methods, such as those implemented in GFold

(Feng et al. 2012), may be better suited for non-

replicated experiments where biological replication is

either extremely difficult or impossible. Until such

alternative statistical methods have been thoroughly-

vetted, however, we strongly recommend that the

crustacean transcriptomics community, as well as

those doing similar work on other taxonomic

groups, avoid submitting for review, or accepting

for publication, non-replicated differential expression

studies (unfortunately, many will continue to be pub-

lished in 2016 and potentially beyond), and only con-

sider replicated experimental designs in the future.

The requirement for replication has practical im-

plications for crustacean transcriptomic studies, as

such experiments can quickly become costly when

analyzing many samples, which likely limited replica-

tion in the first place for many of the studies surveyed

here. In light of decreasing sequencing costs though,

we hope this will lead to non-replicated differential

expression studies gradually fading from the literature.

But as mentioned previously, pilot studies based on a

non-replicated experimental design could be con-

ducted in order to generate initial hypotheses. Such

hypotheses could then be tested at a future time by a

replicated experimental design, with the benefit of al-

ready having transcriptome assemblies in hand, which

can be leveraged towards using more cost-efficient

differential expression techniques. For example, by al-

ready having a composite (i.e., combined adult

and larval developmental stages) transcriptome for

H. rubra, we were able to take advantage of a

30-based RNA-Seq technique to sequence 24 samples

simultaneously in a single Illumina HiSeq 2000 lane

(Havird and Santos 2016). Additional benefits from

such an approach include: (1) eliminating length

biases; (2) generating effectively deeper sequencing

coverage per gene from the same number of sequence

reads; (3) requiring relatively little starting RNA; and

(4) correlating well with results from quantitative po-

lymerase chain reaction (qPCR; Meyer et al. 2011).

Because the other studies examined here all employed

‘‘shotgun’’ RNA-Seq (i.e., sequencing whole RNA

populations), we could not directly compare tag-

based vs. transcriptome-wide RNA-Seq methods.

Lastly, possessing transcriptomic resources also

allows for targeted gene expression studies by facili-

tating the design of qPCR primers for a smaller

number of interesting genes that can be further inves-

tigated across many treatments and biological repli-

cates (e.g., Havird et al. 2014).

As discussed above, the software utilized in differ-

ential expression analyses can have a profound effect

on results and, potentially, downstream biological in-

terpretations. For example, studies using edgeR for

differential expression analyses identified �8X

more DEGs, on average, than those utilizing DESeq

(Fig. 4(B)). We have observed a similar pattern in our

own RNA-Seq experiments of salinity transfer (Havird

et al., unpublished data) and developmental stages

(Havird and Santos 2016) in crustaceans. In this

case, DESeq uses more stringent statistical parameters

by default than edgeR, with manual adjustment of

these parameters often reconciling results from the

two software packages (Love et al. 2014). Moreover,

it should be noted that different versions of these

software packages differ in their default settings,

with DESeq2 (Love et al. 2014), the prior iteration’s

successor, potentially yielding estimates of DEGs more

consistent with edgeR based on its utilization in one

study included in this review. In any case, inferences

based on the original DESeq, particularly under de-

fault parameters, should be considered conservative

estimates of differential gene expression. Finally, like

other aspects of the RNA-Seq methodologies exam-

ined here, many researchers failed to report important

details of their analyses, including P and log-fold

change (C) statistics employed in statistical testing

of differential expression. Interestingly, 69% of differ-

ential expression studies that did report C utilized a

value of 1.0, meaning DEGs had to only show a two-

fold change in expression between treatments, which

may not be biologically meaningful in many contexts

(especially in non-replicated experiments).

The fruits of mining publicly available data: evolu-

tion of neurotoxins in crustaceans

Lastly, 7 of 53 studies reviewed here (13%) solely

utilized publicly available transcriptomic data from
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crustaceans in order to address their hypotheses. For

example, Christie and colleagues mined crustacean

transcriptomes from several species to identify

novel peptide-encoding transcripts as well as examine

comparative peptidomes across Crustacea (Christie

et al. 2013; Christie 2014a; 2014b). As such resources

will continue to become available given the current

pace of transcriptomics research (Fig. 1), data

mining will naturally become more commonplace.

This, in turn, should allow resources to be allocated

to experiments targeting interesting biological ques-

tions rather than just describing transcriptomes from

various crustacean species in general. In other words,

generating additional transcriptomes for well-studied

species such as the red swamp crayfish (P. clarkii)

will likely be less fruitful than hypothesis-driven

RNA-Seq experiments, such as examining differential

expression of P. clarkii genes due to novel stressors.

As a further demonstration of the utility of mining

publicly available transcriptomes for hypothesis

driven-research, we followed on the work of von

Reumont et al. (2014) and attempt to generate pre-

liminary hypotheses for the evolution of a neuro-

toxin in crustaceans. As part of the description of

the first venomous crustacean, the remipede

Speleonectes tulumensis (von Reumont et al. 2014),

a putative neurotoxin, related to those from spider

venom, was identified from this remipede’s venom

gland. Furthermore, von Reumont et al. (2014) iden-

tified related sequences in the Daphnia genome, im-

plying non-toxic precursors may be widespread in

crustaceans. Here, we utilized this neurotoxin se-

quence as a query to search for potential homologs

among other crustacean transcriptomes using

tBLASTx version 2.2.29 (Altschul et al. 1997). We

retained all hits with a BLAST E value of 1e� 5 or

less from: (1) all publicly available crustacean tran-

scriptomes on NCBI’s Transcriptome Shotgun

Assembly (TSA) database; (2) the ‘‘adultþ larvae’’

composite transcriptome of H. rubra detailed in

Havird and Santos (2016); and (3) transcriptomes

generated solely from gill tissues of either

C. sapidus (Havird et al., unpublished data) or pub-

licly available sequences on the SRA from the crabs

Portunus trituberculatus (Lv et al. 2013), Hyas ara-

neus (Harms et al. 2013; Harms et al. 2014), and

Carcinus aestuarii (Romiguier et al. 2014), and the

giant river prawn Macrobrachium rosenbergii (Mohd-

Shamsudin et al. 2013). All recovered and potentially

related sequences were then aligned and analyzed via

Maximum Likelihood (ML) approaches in

FastTreeMP version 2.1.7 (Price et al. 2010) as well

as RAxML version 8.0.23 (Stamatakis 2014;

Supplementary File S4).

Several interesting hypotheses on the evolution of

this neurotoxin in crustaceans can be generated from

our inferred, but preliminary, phylogeny (Fig. 5(A)).

For example, it is clear that precursor proteins for this

neurotoxin exist across crustaceans, and are expressed

at appreciable enough levels to be detected in obvi-

ously non-venomous tissues such as gills. Moreover,

all these novel sequences possessed the multiple con-

served cysteine residues which form disulfide bonds

characteristic of �/� agatoxins (Fig. 5(B)). Other no-

table features of the phylogeny include neurotoxin

homologs from the copepods Tigriopus and Calanus

forming a monophyletic clade with recognized neuro-

toxins from remipedes and spiders as well as the

known functional neurotoxin from the venom gland

of the centipede Scolopendra falling outside of this

clade (Fig. 5(A)). When coupled with a relatively

long branch leading to the copepod homologs,

which was used to infer functional evolution in the

original remipede neurotoxin (von Reumont et al.

2014), this suggests a functional neurotoxin may

also be expressed in at least some copepods.

Obviously, the preliminary nature of these results

must be stressed and additional, more directed studies

need to be undertaken to further elaborate on neuro-

toxin and venom evolution in crustaceans. However,

the primary point of this exercise was to demonstrate

how publicly available transcriptomic data can be uti-

lized in a relatively short time frame (i.e., �hours) to

generate preliminary hypotheses on crustacean biology

that are of potential interest to the field or funding

agencies.

Conclusions

Here, we systematically reviewed 53 studies develop-

ing or utilizing transcriptomic resources in crusta-

ceans and published in the last �2 years to provide

a current snapshot of the field. Importantly, crusta-

ceans were targeted due to their roles as models in

ecological and physiological studies as well as the

likelihood that functional genomic tools for the

group will be lacking through the near future.

However, we postulate that the trends and recom-

mendations identified here for crustaceans easily

extend to transcriptomic studies in other non-

model organisms. Based on this review, it is clear

that RNA-Seq has become a popular tool in further-

ing understanding of crustacean biology, with a

handful of fairly standard methodologies and soft-

ware, common to similar work in other non-model

systems, dominating such studies. However, some

identified trends were worrisome, including the

omission of critical methodological details from
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Fig. 5 (A) Phylogenetic hypothesis of the evolution of the �/� agatoxin-like domain from putative neurotoxins in crustaceans, based on

the approximate ML methods implemented in FastTreeMP (a qualitatively similar tree was generated using RAxML —see Supplementary

File S4). Crustacean taxa names are in red; other sequences are in black; new crustacean sequences from the TSA database of NCBI or

from unpublished transcriptomic assemblies are indicated with an asterisk (e.g., Hyas and Portunus sequences are from gill tissue). The

clade forming known nuerotoxins from spiders is outlined in red, the described neurotoxin from the remipede venom gland is outlined in

orange and highlighted with a yellow star, while the ‘‘nontoxin’’ paralog expressed in other remipede tissues is outlined in orange only (no

star). The copepod sequences closely related to known neurotoxins are outlined in yellow. Scale bar indicates amino acid replacements

per site. Numbers at nodes indicate ‘‘SH-like local support values’’ based on 1000 resamples (Price et al. 2010), with those50.8 removed

and those40.9 indicated with an asterisk. The alignment used in generating this phylogeny and the resulting tree in Newick format are

available as Supplementary Files S2 and S3. (B) Representative alignment of the �/� agatoxin-like domain from putative neurotoxin-like

proteins in crustaceans, with functionally important and conserved cysteines highlighted in red. Numbering and other details follow von

Reumont et al. (2014).
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many analyses of DEGs. Particularly, over half of the

examined studies describing DEGs from RNA-Seq

data were based on non-replicated experimental de-

signs. Coupled with diminishing returns due to sat-

uration as more sequence reads are generated, this

suggests future RNA-Seq experiments examining dif-

ferential expression should focus more on increasing

the number of biological replicates and experimental

treatments rather than sequencing a smaller number

of samples to greater depths. Finally, the relatively

unexplored aspects of small, regulatory RNAs as

well as alternative splicing in crustaceans represent

areas of study that could benefit from further utili-

zation of RNA-Seq experiments.
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