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Background Several approaches are available for evaluating heterogeneity in
meta-analysis. Sensitivity analyses are often used, but these are
often implemented in various non-standardized ways.

Methods We developed and implemented sequential and combinatorial
algorithms that evaluate the change in between-study heterogeneity
as one or more studies are excluded from the calculations. The
algorithms exclude studies aiming to achieve either the maximum
or the minimum final I2 below a desired pre-set threshold. We
applied these algorithms in databases of meta-analyses of binary
outcome and 54 studies from Cochrane Database of Systematic
Reviews (Issue 4, 2005, n¼ 1011) and meta-analyses of genetic
associations (n¼ 50). Two I2 thresholds were used (50% and 25%).

Results Both algorithms have succeeded in achieving the pre-specified final I2

thresholds. Differences in the number of excluded studies varied from
0% to 6% depending on the database and the heterogeneity threshold,
while it was common to exclude different specific studies. Among
meta-analyses with initial I2450%, in the large majority [19 (90.5%)
and 208 (85.9%) in genetic and Cochrane meta-analyses, respectively]
exclusion of one or two studies sufficed to decrease I2 < 50%.
Similarly, among meta-analyses with initial I2425%, in most cases
[16 (57.1%) and 382 (81.3%), respectively) exclusion of one or two
studies sufficed to decrease heterogeneity even <25%. The number
of excluded studies correlated modestly with initial estimated I2

(correlation coefficients 0.52–0.68 depending on algorithm used).

Conclusions The proposed algorithms can be routinely applied in meta-analyses
as standardized sensitivity analyses for heterogeneity. Caution is
needed evaluating post hoc which specific studies are responsible for
the heterogeneity.
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Introduction
Assessment of the between-study heterogeneity is an
essential component of meta-analysis.1 Lack of con-
sistency may reflect genuine differences in the design
and conduct of the studies (methodological hetero-
geneity) or in participants, interventions, exposures or
outcomes evaluated (clinical heterogeneity).2,3 Lack of
consistency may also herald errors, biases or pure
chance. Errors and biases may affect single studies
(e.g. quality problems) or research fields at large,
e.g. publication and other selective reporting biases.

Sources of heterogeneity need to be carefully exam-
ined on a case-by-case basis.4 A common approach is
to perform sensitivity analyses, where one study is
excluded at a time and the impact of removing each
of the studies is evaluated on the summary results
and the between-study heterogeneity.5 Such ‘one-out’
sensitivity analyses can tell us whether the summary
effect and heterogeneity are heavily influenced by a
particular study. However, it is possible that not one
but several studies are primarily responsible for the
between-study heterogeneity. One could generalize
into sensitivity analyses where many studies are
removed, according to some order. Identification of
‘outlying’ studies may also offer some post hoc hints
for explaining the reasons of between-study
heterogeneity.

Here, we present algorithms that evaluate the change
in between-study heterogeneity as one or more studies
are excluded sequentially or in combination from the
meta-analysis calculations. Our aim is to show how
these algorithms can be routinely adopted in meta-
analyses as standardized sensitivity analyses for hetero-
geneity. Accordingly, we have empirically examined
their performance in many meta-analyses of clinical
trials and genetic epidemiology. Illustrative examples
are also discussed in detail.

Methods
Several statistical tests are routinely used to assess
overall the extent and statistical significance of
heterogeneity. The most common test that examines
the null hypothesis that all studies are evaluating the
same effect is the Cochran’s chi-squared test
(Cochran’s Q).6 The most common metric for measur-
ing the magnitude of the between-study heterogeneity
is the I2,7 the ratio of Q–df (df: degrees of freedom)
over Q. I2 is easily interpretable and does not depend
on the number of the studies. It ranges between 0%
and 100% and is typically considered low for I2 < 25%,
modest for 25–50%, and large for 450%.8

Previous methods have been proposed that examine
the relative contribution to heterogeneity of each
study in a meta-analysis.9,10 The standard Galbraith
plot is a bivariate radial scatter plot of the inverse of
the standard error of each study vs the ratio of the log
of the effect size over the respective standard error.9

A variant proposed by Baujat et al. plots the
contribution of each study to Q as a function of the
influence on the overall effect estimate.10 Here, we
have developed algorithms that are based on the I2

statistic rather than Q and that allow the removal of
more than one studies, if need be.

Specifically, we implemented iterative algorithms to
calculate the minimum number of studies that should
be omitted to decrease the estimated between-study
heterogeneity below a specific threshold I2

f . The
algorithms are applied to all meta-analyses where
the initial estimate of I2 is above the I2

f . For practical
purposes, we use here the traditional threshold of
large heterogeneity (I2 < 50%, I2

f 50) and of modest
heterogeneity (I2 < 25%, I2

f 25).
The effect size y and respective standard error SE�

are used as input data. Very rarely more than one
study may have the same input data. Then, the
algorithms randomly select one of these similar data
sets to be removed first.

Sequential algorithm
In this approach, for a meta-analysis of n studies, we
perform n new meta-analyses, where one study is
excluded from the calculations each time. The study
that is responsible for the largest decrease in I2 is
dropped and a new set of n�1 studies is created.
When two or more studies cause exactly the same
decrease in I2 by their exclusion, we drop the study
with the largest decrease in Q. We continue by
successively re-analysing reduced sets of studies and
applying the same rule one step before I2 decreases
below the requested I2

f . In the last step there is a
chance more than one omitted studies can result in I2

dropping below the wanted threshold. We implement
two variants of the algorithm: one omits the study
that will result in the maximum I2 below the desired
I2

f , while the other omits the study that will result
in the minimum possible I2 below the desired I2

f . Both
variants exclude eventually the same number
of studies, but the last excluded study may be a
different one.

Combinatorial algorithm
The combinatorial algorithm aims to identify clusters
of studies whose exclusion can reduce the between-
study heterogeneity below the desired threshold.
When the exclusion of any single study does not
suffice to drop the heterogeneity below the desired
threshold, the decrease in the I2 is examined by the
exclusion of all possible pairs of studies. If no pair
exclusion achieves the I2

f , we examine the decrease in
the I2 by the exclusion of all possible triplets of
studies, and so forth. At the last step, there are again
two variants. If there are more than one set with
equal number of excluded studies that decrease I2

below the desired I2
f , one can choose to omit the set

that results in the maximum or minimum I2 below I2
f .
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Sensitivity metrics
The proposed algorithms generate the number
of studies that have to be omitted to decrease I2 below
I2

f (k<50 and k<25, for the 50% and 25% threshold,
respectively). We can also estimate the proportions
of studies that need to be excluded, l<50¼ k<50/n and
l<25¼ k<25/n, respectively. Similarly, one can estimate
the proportions based on the sample sizes of the
omitted studies vs the total sample size of the meta-
analysis aiming for either maximum or minimum I2

below I2
f .

Databases for empirical evaluation
We applied these algorithms and derived the sensi-
tivity metrics in two datasets of meta-analyses. First,
we used a previously described database of 50 meta-
analyses of gene-disease associations that had found
a nominally statistically significant effect (P < 0.05)
by random-effects calculations (DerSimonian and
Laird model).11 Large between-study heterogeneity is
common in genetic epidemiology.12

Second, we used meta-analyses from the Cochrane
Database of Systematic Reviews (Issue 4, 2005). We
used all systematic reviews where at least one meta-
analysis with four or more studies had been con-
ducted and the outcome was binary. Among those, we
kept only one meta-analysis per systematic review,
the one with highest number of studies; in case of
ties, we kept the one with largest sample size.

For all meta-analyses, we recorded the initial number
of studies, sample size, and random effects (Der-
Simonian and Laird) summary effect size [natural log-
arithm of the odds ratio (OR)] and its standard error,

I2 and Q (P-value) as well as the sensitivity metrics
described earlier. We provide descriptive statistics for
the sensitivity metrics for both databases and on
differences between the two algorithms. Furthermore,
we illustrate the concordance between the initial I2 and
number and proportion of studies excluded using
scatter plots and Spearman correlation coefficients.

Modules
Analyses were conducted in Intercooled STATA 8.2
(College Station, TX, USA) using the metan and hetred
modules. The latter module was developed for the
purposes of the study and can be downloaded from
www.dhe.med.uoi.gr/software.htm and Statistical
Software Components (SSC) archive.

Results
Descriptive statistics of meta-analyses for both data-
bases can be found in the Appendix.

Sequential algorithm
In the genetic meta-analyses data set (Table 1), the
median number of studies that had to be omitted
from the meta-analysis to drop I2 below the requested
threshold (50% and 25%) was one and two, respec-
tively. In the majority of meta-analyses, excluding one
or two studies sufficed [19 (90.5%) for the 50%
threshold and 16 (57.1%) for the 25% threshold,
Figure 1]. In the two variants of the algorithm
(aiming for maximum or minimum I2 below I2

f ), the
excluded studies at the last step were different in 13

Table 1 Sensitivity metrics for heterogeneity, median values (IQR) for the genetic meta-analyses’ database

Sequential algorithm Combinatorial algorithm

I2
f threshold: 50% n¼ 21a

I2 before exclusion of studies 61.9% (54.1–70.8)

Number of studies excluded 1 (1–2) 1 (1–2)

Proportion of studies excluded 12.5% (7.7–16.7) 12.5% (7.7–16.7)

Proportion of sample size excluded, target of maximum I2 below I2
f 11.2% (6.4–17.3) 11.2% (6.4–17.3)

Proportion of sample size excluded, target of minimum I2 below I2
f 9.3% (6.4–25.8) 9.3% (6.4–25.8)

I2 after exclusion of studies, target of maximum I2 below I2
f 47% (39.3–49.7) 47.0% (39.3–49.7)

I2 after exclusion of studies, target of minimum I2 below I2
f 38.5% (23.2–47.1) 38.5% (23.2–47.1)

I2
f threshold: 25% n¼ 28b

I2 before exclusion of studies 59.1% (48.9–66.9)

Number of studies excluded 2 (1–4) 2 (1–4)

Proportion of studies excluded 17.7% (10.5–24.0) 17.7% (10.6–24.0)

Proportion of sample size excluded, target of maximum I2 below I2
f 13.8% (7.8–29.2) 15.9% (7.8–32.3)

Proportion of sample size excluded, target of minimum I2 below I2
f 13.2% (7.1–29.2) 11.9% (7.1–21.1)

I2 after exclusion of studies, target of maximum I2 below I2
f 20.6% (4–23.1) 21.5% (4.4–23.2)

I2 after exclusion of studies, target of minimum I2 below I2
f 14.9% (0.7–23.2) 13.7% (0.7–19.6)

aFor two meta-analyses I2 was not able to be dropped <50%.
bFor 2 meta-analyses I2 was not able to be dropped <25%.
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(61.9%) and 11 (39.3%) meta-analyses for the 50%
and 25% thresholds, respectively.

In the Cochrane meta-analyses (Table 2), the
median number of studies had to be omitted from
the meta-analysis to drop I2 < 50% or even 25% was
one. Excluding one or two studies sufficed in the vast
majority of cases [208 (85.9%) for the 50% threshold
and 382 (81.3%) for the 25% threshold, Figure 1].
Different studies were selected for exclusion at the
last step, when targeting for maximum or minimum
I2 below the desired I2

f , in 98 (40.5%) and 185 (39.4%)
meta-analyses for the 50% and 25% threshold,
respectively. Of note, heterogeneity could not be
dropped below I2

f 50 or I2
f 25 in two meta-analyses

regardless of how many studies were excluded.
On average, exclusion of 13% and 17% of the studies in

genetic and Cochrane meta-analyses, respectively,
sufficed to reach below I2

f 50; the respective percentages
were 18% and 20% for reaching below I2

f 25 (Tables 1
and 2). There was however some diversity across meta-
analyses (Tables 1 and 2). The respective percentages

were similar, when based on sample size rather than
number of studies (Tables 1 and 2).

Differences with the combinatorial algorithm
Results were always very similar and often identical
with the use of the combinatorial algorithm (Tables 1
and 2). We will thus focus only on describing the
relatively uncommon differences between the two
algorithms (Table 3). Differences in the number of
studies that had to be excluded occurred in only 0–6%
of the meta-analyses, depending on the dataset and
desired heterogeneity threshold. Differences in the
specific studies to be excluded were somewhat more
common and ranged from 11% to 17% when aiming
for minimum I2 below I2

f , and 0% to 29% when
aiming for the maximum I2 below I2

f in the last step.
The combinatorial algorithm was also time-consum-

ing when several studies had to be excluded. A meta-
analysis with 38 studies of which seven had to be
excluded eventually (requiring almost 16 000 000
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Figure 1 Frequency distribution of excluded studies. (a) Genetic meta-analyses at the 25% level. (b) Genetic meta-analyses
at the 50% level. (c) Cochrane meta-analyses at the 25% level. (d) Cochrane meta-analyses at the 50% level
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meta-analyses), required 86 h in a Intel(R)
Pentium(R) 4 CPU 550 3.40 GHz with 1 GB RAM.

Concordance between initial I2 estimate
and sensitivity metrics
Figure 2 shows the correlation between the estimated
initial I2 of each meta-analysis and the number of
studies that had to be removed to reduce this <50
and 25% (panels A and B, respectively; Cochrane and
genetics meta-analyses are combined in both panels)
using the sequential algorithm (the results with the
combinatorial algorithm are almost identical, as ear-
lier). The Spearman correlation coefficients were 0.65

[(95% confidence interval (CI): 0.58–0.72, n¼ 263)]
and 0.65 (95% CI: 0.60–0.70, n¼ 498), respectively. The
correlation coefficients between the estimated initial I2

and the proportion of studies excluded were 0.52 (95%
CI: 0.42–0.60, n¼ 263) and 0.68 (95% CI: 0.62–0.72,
n¼ 498), respectively (Figures 2C and D for 50% and
25% threshold, respectively). When the proportion of
sample size was considered, the correlation coefficients
were 0.52 (95% CI: 0.42–0.60, n¼ 263) aiming for
minimum and 0.63 (95% CI: 0.55–0.70, n¼ 263) aiming
for maximum I2 below I2

f of 50%. Targeting for I2 below
I2

f of 25%, the correlation coefficient was 0.58 (95% CI:
0.52–0.64, n¼ 498) for both minimum and maximum
variants.

While the average correlation was modestly
high, there was considerable variability in the range
of k<50 and k<25 for a given amount of initial
heterogeneity. For example, for initial I2 of 4 60%
the range of k<50 and k<25 was 1 to 8 and 1 to 11,
respectively. For initial I2 between 50% and 60%, the
range of k<50 and k<25 was 1–2 and 1–9, respectively.

Practical examples
Figure 3A displays a Cochrane meta-analysis with
large heterogeneity where the exclusion of a single
outlying study decreased significantly the estimated
between-study heterogeneity and where a specific
plausible explanation for the heterogeneity could be
raised. The systematic review13 (CD000173) assessed
anti-epileptic drugs for the prevention of seizures
following acute traumatic brain injury. The specific

Table 2 Sensitivity metrics for heterogeneity, median values (IQR) for the Cochrane meta-analyses’ database

Sequential algorithm Combinatorial algorithm

I2
f threshold: 50% n¼ 242a

I2 before exclusion of studies 65.5% (56.7–74.3)

Number of studies excluded 1 (1–2) 1 (1–2)

Proportion of studies excluded 16.7% (12.0–25.0) 16.7% (12.0–25.0)

Proportion of sample size excluded, target of maximum I2 below I2
f 17.5% (8.8–33.7) 17.6% (8.8–37.8)

Proportion of sample size excluded, target of minimum I2 below I2
f 18.4% (10.5–35.1) 18.4% (10.5–35.9)

I2 after exclusion of studies, target of maximum I2 below I2
f 40.9% (15.7–47.8) 42.4% (19.1–47.9)

I2 after exclusion of studies, target of minimum I2 below I2
f 30.7% (4.7–43.2) 30.0% (1.3–43.2)

I2
f threshold: 25% n¼ 470b n¼ 466b, c

I2 before exclusion of studies 51.4% (38.8–65.8) 51.0% (38.6–65.8)

Number of studies excluded 1 (1–2) 1 (1–2)

Proportion of studies excluded 20.0% (11.1–28.6) 20.0% (11.1–28.6)

Proportion of sample size excluded, target of maximum I2 below I2
f 19.2% (9.3–33.9) 19.5% (9.3–35.1)

Proportion of sample size excluded, target of minimum I2 below I2
f 19.5% (9.4–35.0) 19.5% (9.4–35.3)

I2 after exclusion of studies, target of maximum I2 below I2
f 12.3% (0.0–21.8) 12.7% (0.0–22.4)

I2 after exclusion of studies, target of minimum I2 below I2
f 1.4% (0.0–15.1) 1.0% (0.0–14.7)

aFor two meta-analyses I2 was not able to be dropped <50%.
bFor two meta-analyses I2 was not able to be dropped <25%.
cFour meta-analyses required excess amount of computational resources and were excluded from analysis.

Table 3 Differences between sequential and combinatorial
algorithm (meta-analyses with two or more excluded studies)

Different
number

of studies
excluded

(%)

Different
studies

excluded,
aiming for
maximum
I2 belowI2

f

(%)

Different
studies

excluded,
aiming for
minimum
I2 belowI2

f

(%)

Genetic meta-analyses

50% threshold (n¼ 8) 0 (0) 0 (0) 1 (11.1)

25% threshold (n¼ 18) 1 (5.6) 5 (27.8) 2 (11.1)

Cochrane meta-analyses

50% threshold (n¼ 91) 5 (5.6) 26 (28.6) 15 (16.5)

25% threshold (n¼ 215) 10 (4.7) 52 (24.2) 33 (15.3)
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meta-analysis used in our dataset had six studies and
compared anti-epileptic drugs vs standard care for late
seizures (Comparison: 02, Outcome: 02 in the specific
Cochrane review). The review authors had found
significant heterogeneity and stated they should not
synthesize the data, nevertheless a figure with an
overall estimate was provided. Using OR as the metric
of risk, I2 was originally 63% (95% CI: 0–83%).
Application of our algorithms resulted in omission of
one study, resulting in an I2 of 19% (95% CI: 0–64%).
This study (Pechadre 1991) demonstrated a very large
effect of the anti-epileptic treatment (OR 0.09, 95%
CI, 0.02–0.39), while the remaining studies showed
no benefit, either each one in isolation, or all of them
combined (summary OR 1.14, 95% CI, 0.80–1.62). The
excluded study was the only one that was not
blinded. Lack of blinding could have affected the
outcome ascertainment or could have been a marker
for other quality deficiencies.14

Figure 3B shows an example of a Cochrane meta-
analysis with very large initial I2, where the exclusion
of a single study could also reduce the I2 estimate

<25%, but where it was more difficult to tell what
exactly was different or wrong with the excluded
study. The systematic review15 (CD002208) was about
methadone maintenance at different dosages for
opioid dependence. The specific meta-analysis used
in our dataset had five studies and compared high
(60–109 mg/day) vs low (1–39 mg/day) methadone
maintenance doses for 17–26 weeks and the outcome
was retention rate (Comparison: 01, Outcome: 01,
Subgroup: 01 in the specific Cochrane review). In the
OR scale, the initial I2 was 81% (95% CI: 40–90%).
The omission of one study (Johnson 2000) dropped
the estimated heterogeneity to 8% (95% CI: 0–70%).
This study had shown a very large and statistically
significant difference in retention rate (10-fold larger
odds with the high vs low dose), while the other four
studies had shown no significant difference. The
outlier study was the newest one and was the only
one that used methadone doses 480 mg/day.
However, the review authors also noted that ‘missing
samples were considered positive for purposes of
analysis’, while this was not mentioned for any of the
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Figure 2 Scatter plots of the number and proportion of excluded studies vs the initial I2 The (a) and (b) represent analyses
for number of excluded studies using the target threshold of 50 and 25%, respectively. The (c) and (d) represent analyses
for proportion of excluded studies using the target threshold of 50 and 25%, respectively
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  Odds ratio

 0.1  0.5  1  5  10  20

 Study

 Odds ratio
 (95% CI)  % Weight

 Schottenfeld 1997   2.06 (0.72, 5.91)  18.5 

 Kosten−Oliveto 1993   0.72 (0.27, 1.92)  19.1 

 Johnson 1992   1.84 (0.77, 4.41)  20.1 

 Ling 1996   1.00 (0.52, 1.91)  22.1 

 Johnson 2000   9.75 (4.04, 23.52)  20.1 

 Overall (random effects)   1.92 (0.79, 4.65)  100.0 

 Odds ratio

Odds ratio

 0.1  0.5  1  5  10  20

 Study
Odds ratio
 (95% CI)  % Weight

 303 Study Group   1.83 (1.17, 2.87)   7.1 
 304 Study Group   3.18 (1.86, 5.45)   6.6 
 306 Study Group   1.68 (1.15, 2.46)   7.5 
 ANZ TITG   0.75 (0.42, 1.34)   6.3 
 Bontenbal   2.38 (1.38, 4.11)   6.5 
 Dieras   3.26 (0.62, 17.21)   2.0 
 ECOG E1193 (A)   1.59 (1.01, 2.50)   7.1 
 ECOG E1193 (B)   0.95 (0.60, 1.51)   7.0 
 EORTC 10923   0.50 (0.31, 0.79)   7.0 
 EORTC 10961   1.17 (0.73, 1.89)   6.9 
 Jassem   1.57 (0.96, 2.57)   6.8 
 Nabholtz   1.57 (1.09, 2.24)   7.7 
 Sjostrom   2.82 (1.67, 4.78)   6.6 
 TOG   0.53 (0.28, 1.01)   5.9 
 TXT Group   1.19 (0.65, 2.17)   6.1 
 Talbot   0.58 (0.15, 2.21)   2.8 
 Overall (random effects)   1.35 (1.04, 1.77)  100.0 

 
 0.05  0.1  0.5  1  5  10  20

 Study

Odds ratio
 (95% CI)  % Weight

 Temkin 1990   1.37 (0.79, 2.37)  22.9 

 McQueen 1983   1.10 (0.38, 3.18)  15.1 

 Young 1983   1.32 (0.53, 3.31)  17.1 

 Pechadre 1991   0.09 (0.02, 0.39)  10.1 

 Manaka 1992   1.43 (0.51, 4.01)  15.5 

 Glotzner 1983   0.64 (0.30, 1.39)  19.3 

 Overall (random effects)   0.87 (0.47, 1.59)  100.0 

 

 Odds ratio

(b)

(a)

(c)

(d)

 
 0.1  0.5  1  5  10  20

 Study
Odds ratio
 (95% CI)  % Weight

 Valenzuela 1989   2.74 (0.95, 7.89)   6.1 
 Sung 1995   0.65 (0.10, 4.09)   2.9 
 Avgerinos 1997   0.44 (0.25, 0.77)  10.0 
 Moreto 1994   0.33 (0.12, 0.92)   6.3 
 Villanueva 2001   0.50 (0.12, 2.14)   4.1 
 Gotzsche 1995   2.16 (0.91, 5.14)   7.4 
 Burroughs 1996   0.92 (0.56, 1.50)  10.6 
 Farooqi 2000   0.23 (0.06, 0.86)   4.6 
 Burroughs 1990   0.39 (0.19, 0.81)   8.5 
 Shah 1996   0.45 (0.14, 1.41)   5.5 
 Zuberi 2000   0.36 (0.07, 2.02)   3.2 
 Freitas 2000   0.34 (0.13, 0.93)   6.5 
 Besson 1995   0.18 (0.05, 0.65)   4.9 
 Pauwels 1994   0.38 (0.08, 1.77)   3.8 
 Signorelli 1997   0.47 (0.17, 1.35)   6.1 
 Cales 2001   0.43 (0.23, 0.77)   9.7 
 Overall   0.53 (0.38, 0.76)  100.0 

*

* Figure 3 Examples of meta-analyses with very large
initial estimate of between-study heterogeneity that
required omission of one or several studies for the
heterogeneity estimate to decrease <25%. Open boxes
represent excluded studies. (a) Cochrane Database ID:
CD000173 (one study omitted). (b) Cochrane Database
ID: CD002208 (one study omitted). (c) Cochrane
Database ID: CD003366 (five studies omitted).
(d) Cochrane Database ID: CD000193 (two studies
omitted); open boxes represent studies excluded using
the sequential algorithm, whereas asterisks denote
studies excluded using the combinatorial one



four other studies. It is difficult to decide whether any
of these reasons, or others still not captured and/or
not reported by the reviewers, may explain the results
of this outlier study vs the others.

Figure 3C shows an example of a meta-analysis with
equally large I2 that could not be reduced to <25% unless
many studies were removed. This Cochrane review16

(CD003366) compared taxane containing regimens for
metastatic breast cancer. The comparison used in this
specific dataset was overall effect of taxanes and the
outcome overall response among randomized patients
(Comparison: 01 Outcome: 03 in the specific Cochrane
review). The meta-analysis had 16 studies and I2

estimated at 75% (95% CI: 57–84%). The omission of
five studies (open boxes in the graph) decreased I2 to
17% (95% CI: 0–52%). The same studies were selected for
removal in all variants of the sequential or combinatorial
algorithm. The reviewers had separated the dataset in
subgroups based on the comparison regimen used. This
was thought to explain some of the statistical hetero-
geneity, but actually the largest subgroup (10 studies,
single agent taxane vs another agent) had an even larger
point estimate of between-study heterogeneity
(I2
¼ 83%) than the overall analysis. All five excluded

studies were from this subgroup. The reviewers com-
mented also about the low reporting quality of all studies
and the differences in the definition of response across
trials. Poor reporting may be associated with other flaws
and biases that may have affected the estimates of the
treatment effect, introducing substantial heterogeneity,
but these additional flaws or biases are probably occult
and difficult to decipher.

Figure 3D shows an example of a meta-analysis
with large I2 that both algorithms exclude the same
number of studies but different ones. The systematic
review (CD000193)17 assessed somatostatin analogues
for acute bleeding oesophageal varices. The compar-
ison we have included in our analysis was ‘somatos-
tatin analogues vs placebo or no treatment’ and the
respective outcome ‘number of failing initial haemos-
tasis’ (01/04). This outcome included 16 studies with
an I2 of 53% (95% CI: 1–72%, using OR as effect
estimate). The reviewers stratified the studies as high
quality (those with allocation concealment and
double-blinding) vs others trial. The high quality
trials had less impressive treatment effects for other
outcomes such as units of blood transfused and
re-bleeding risk and showed no improvement in
mortality. The sequential algorithm excluded two
studies (first Gøtzshe 1995 and then Burroughs
1996), one of which was a study of high quality.
The combinatorial algorithm excluded also two
studies (Burroughs 1996 and Valenzuela 1989)
neither of which was considered to be of high quality.

Discussion
We have developed and implemented algorithms for
sensitivity analyses of between-study heterogeneity in

meta-analyses. The different algorithms almost
always excluded the same number of studies to
reach below a desired heterogeneity threshold. The
proposed sensitivity metrics add another useful
dimension to the routine examination of between-
study heterogeneity, besides the testing of statistical
significance and the estimation of the amount of
heterogeneity beyond chance (I2). While the number
of studies that need to be excluded correlates with the
I2, the correlation is only modest, thus there is some
independent insight to be gained.

Several methods have already been described for
exploration of heterogeneity in meta-analysis, as
previously reviewed.18 Some of these methods, such
as the traditional Galbraith plot and variants thereof,
use graphic presentations to indicate the influence of
individual studies.9,10,19 When only one study causes
the extreme heterogeneity, our algorithms pinpoint to
the same study as these other methods suggest.
However, in situations where the heterogeneity is
attributed to several studies, the above methods are
either impractical or may yield considerably different
inferences. Our algorithms complement the existing
methods, given the differences in the analytical
approach and objectives. In general, the contribution
of a study in the overall heterogeneity is analogous to
the squared difference of the study’s effect from the
overall effect. The exclusion of the first study results
in a new overall effect and a new set of outlier studies
is created. This is not necessarily the same as before,
especially if the exclusion of the first study modifies
also substantially the summary effect. Our proposed
algorithms overcome this problem: each time a study
is omitted, the influence of the remaining studies in
overall heterogeneity is automatically reappraised.

Although the different variants of our algorithms
exclude almost always the same number of studies to
reach below a specific desired heterogeneity threshold,
discrepancies in which are the specific studies to be
excluded are common. Inferences on which are the
specific studies that cause the between-study hetero-
geneity should be cautious and there is a considerable
risk of over interpretation. In one extreme situation,
two studies may have identical effects and uncertainty
thereof, in which case our algorithms randomly select
one of them to be excluded first. In the far more
common situation, studies may have minor differences
in their contribution to heterogeneity, and the key to
understanding heterogeneity may not lie in the one that
has the largest estimated contribution based on the
observed data. Random noise may change the order of
outliers. Moreover, when heterogeneity is explained by
patient-level rather than study-level characteristics20–22

any algorithm that excludes whole studies may not
reveal the true reasons for the heterogeneity. Overall,
in-depth examination of the characteristics of the
excluded studies may be useful in some circumstances.
However, this should be seen as an exploratory post hoc
evaluation of the sources of heterogeneity.
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We should acknowledge that in general exploration of
the reasons of heterogeneity is a difficult task in meta-
analysis. Sensitivity analyses where studies are sub-
grouped based on various characteristics are often
performed.23 Subgroups may be selected based on
clinical expertise, prior knowledge on the scientific
field, or other factors.4 Meta-regression for one or
multiple factors may serve similar purposes.24 All of
these exploratory analyses may suffer from both lack of
power and high false-positive rate.20–22 Post hoc selection
of the covariates based on subjective interpretation of
the already available data can be misleading. The
proposed algorithms offer at least an objective approach
that is ‘agnostic’, i.e. is not influenced initially by
consideration of known specific study characteristics.
The important characteristics that contribute to the
heterogeneity may be unknown or unrecorded in the
examined studies. Meta-analysis of individual-level
information may offer a better handle for examining
some characteristics, especially patient-level covari-
ates.25 However, such analyses are more difficult,
more uncommonly conducted, and often there is
insufficient information on covariates of interest.25

We should also acknowledge that heterogeneity in
a meta-analysis may vary depending to the effect
estimate used, especially for binary outcomes.26 One
should have this in mind before investigating any
source of inconsistency. Selection of a different metric
of effect may result in different studies being excluded.

Another limitation stems from the unavoidable
uncertainty in the estimates of I2. This metric has
some advantages over the Q statistic, in that it can
be compared across different meta-analyses with
different metrics and different number of studies.
However, in the typical meta-analysis where there are
only a few studies, poor power may cause substantial
uncertainty in the inferences that are based on either Q
or I2.27 Reducing the amount of heterogeneity below a
specific level or even aiming for residual I2

¼ 0% is not
reassuring that the remaining studies will be homo-
geneous. CIs for I2 are generally wide, unless many
studies exist.28 Our practical examples also demon-
strate this uncertainty. Apparent lack of heterogeneity
based on the point estimates of I2 is not proof of
homogeneity. We have recently proposed that presen-
tation of confidence intervals around I2 would be useful
to promote in the reporting of meta-analyses.28 In this
regard, also the selection of the 25% and 50% thresholds
should only be seen as a standardized convenience.

Overall, we suggest that our algorithms can be
routinely used in meta-analyses with large or moder-
ate estimated heterogeneity to complement existing
heterogeneity metrics. Compared with existing meth-
ods, the proposed algorithms cater routinely to the
possibility of excluding more than one study. The
excluded studies offer a starting point for exploring
heterogeneity and their selection is made based on
purely statistical criteria, potentially avoiding post hoc
subjective interpretation of the data. Either the

sequential or the combinatorial algorithm can be
used. The latter is computationally more demanding
when many studies have to be excluded, but in
general both algorithms almost always agree on how
many studies should be removed. Conversely, great
caution is needed in avoiding over-interpreting the
data on which specific studies cause heterogeneity
and why. The algorithms make this obvious when the
two versions exclude different studies, but caution
should be applied even when both algorithm versions
exclude the same studies.
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Appendix
Descriptive of meta-analyses
I2 was estimated to be above 25% in 28 of the
50 (56.0%) genetic meta-analyses and in 472 of
the 1011 (46.7%) Cochrane meta-analyses, while
values of 50% or higher were seen in 21 (42.0%)
and 244 (24.1%), respectively. Appendix Table 1
shows baseline characteristics of the two analysed
sets of meta-analyses. Genetic meta-analyses were
more heterogeneous, had more studies and larger
sample sizes.

Appendix Table 1 Characteristics of meta-analyses

Characteristic Genetics (n¼ 50) Cochrane (n¼ 1011)

Number of studies, median (IQR) 13 (8–20) 7 (5–11)

Sample size, median (IQR) 4670 (2823–8761) 1112 (512–2691)

Effect size, median (IQR)a 0.360 (0.257–0.499) 0.371 (0.161–0.827)

Variance, median (IQR) 0.0127 (0.0070–0.0281) 0.0516 (0.0228–0.1246)

I2, median (IQR) 37.6% (4.6–59.5) 21.1% (0.0–49.7)

0–25%: n (%) 22 (44.0) 539 (53.3)

25–50%: n (%) 7 (14.0) 228 (22.6)

50–75%: n (%) 19 (38.0) 187 (18.5)

75–100%: n (%) 2 (4.0) 57 (5.6)

Q P < 0.10: n (%) 27 (54.0) 350 (34.6)

aAll effect sizes (presented as natural logarithm of OR) have been coined to be 50.
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