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Abstract

Developmental biology is among the many sub-disciplines of the life sciences being transformed 

by our increasing awareness of the role of coevolved microbial symbionts in health and disease. 

Most symbioses are horizontally acquired, i.e., begin anew each generation. In such associations, 

the embryonic period prepares the animal to engage with the coevolved partner(s) with fidelity 

following birth or hatching into the environment. Once interactions are underway, the microbial 

partners drive maturation of tissues that are either directly associated with or distant from the 

symbiont populations. Animal alliances often involve complex microbial communities, such as 

those in the vertebrate gastrointestinal tract. A series of simpler model systems is providing insight 

into the basic ‘rules’ and principles that govern the establishment and maintenance of stable 

animal-microbe partnerships. This review focuses upon what biologists have learned about the 

developmental trajectory of horizontally acquired symbioses through the study of the binary squid-

vibrio model.
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INTRODUCTION – IT’S A NEW DAY FOR DEVELOPMENTAL BIOLOGY

Through recent technological advances, biologists have come to recognize the extent to 

which animals and plants rely on microbes for the success of their developmental programs 

(25; 26; 52). For example, fascinating new molecular data demonstrate that many, perhaps 

most, marine invertebrates require transient microbe-derived chemical cues, often associated 

with biofilms, to progress from one developmental stage to the next (30; 82). In such cases, 

it is likely that, while the animal experiences selection pressure to recognize a particular 

microbial cue, the fitness of the microbe may not be specifically affected. In contrast, 

selection pressure on the specificity of both partners is a characteristic of mutualistic 
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symbioses. However, unlike the monospecific legume-rhizobia associations (for reviews see 

(36; 68)), the molecular details of such recognition are generally not well understood in 

animals, where microbes occur primarily as complex consortia. Only with advances in 

nucleic-acid technology over the last decade could biologists determine the microbial 

composition of such communities and study the development-inducing activities of its 

members (6; 26). Relevant here is the recognition that often the ‘organism’ undergoing 

development is not only the host, but rather a set of interdependent organisms, in persistent 

symbiosis, whose developmental programs have coevolved. These new findings add exciting 

dimensions to the field of animal developmental biology, and promise to bring an 

unprecedented integration of microbiology into this discipline.

As the field of host-microbe interactions grows at a fierce rate, considerable controversy 

about, variation in, and misuse of, terminology has understandably crept into the field of 

symbiosis. For clarity, I define here how I apply the key terms. I use the simple, classical 

definition of symbiosis, established by deBary in 1879 (14), i.e., organisms living together. 

The primary types of symbioses, i.e., mutualism, commensalism, and parasitism (or 

pathogenesis), refer to a state or outcome. In mutualistic symbioses, the fitness of both 

partners, i.e., their ability to contribute to the next generation, is enhanced; in commensal 

relationships, one partner benefits while the other is unaffected; and in parasitic associations, 

one partner’s fitness is positively affected while the other’s is harmed. Because these states 

are context specific, the terms do not refer to an organism itself, but rather the state of the 

interaction; whether the symbiosis is one type or another is all about outcome (72). When 

the effects of fitness on the partners is difficult to define, as is often true in complex systems, 

the most accurate usage to describe the association is as a ‘symbiosis’, a higher-level term 

with no designation of fitness.

Developmental biologists studying symbiosis seek to define how the holobiont, i.e., the 

coevolved partners in a symbiosis (99), persists through generations as a unit of selection. 

Microbial symbionts are either vertically transmitted, that is, passed maternally in or on the 

egg (e.g., insect-bacteriocyte symbionts), or horizontally transmitted, that is, acquired anew 

from the environment (e.g., gut consortia) (9). Terrestrial animals, such as social insects (22) 

and mammals (34), often have a facilitated horizontal transmission, in which symbionts are 

acquired through interactions with more mature conspecifics (19). No matter the mode of 

transmission, all symbiotic associations must alter developmental programs to accommodate 

the partnership, although several salient differences between vertical and horizontal 

transmission are noteworthy. For example, vertical transmission, by definition, ensures 

maintenance of the coevolved symbiont(s) with fidelity. Thus, no need exists for 

mechanisms that promote specificity during the initiation of symbiosis each successive 

generation. In contrast, during horizontal transmission, the naïve juvenile host is exposed not 

just to the appropriate symbiont(s), but also to an array of other environmental microbes. 

Thus, mechanisms must be present in the host, the symbionts, or both to facilitate the 

establishment of the ‘right’ partnerships to the exclusion of interlopers, and such 

mechanisms must be integrated into the developmental programs of all members.

In addition to mode of transmission, the patterns of development are also influenced, for one 

or more partners, by where along the spectrum of obligate to facultative a particular 
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symbiosis lies. At one end of the spectrum, strong selection over evolutionary time has 

resulted in unequivocally obligate mutualisms. For example, in the insect-bacteriocyte 

associations, both partners have a strict requirement for the relationship and rarely occur 

independent of each other, even under laboratory conditions (18). Conversely, in obligate 

parasitic symbioses, such as between many insects and wolbachia, it is only the microbial 

partner that cannot survive without the host. Some situations, however, are more context 

dependent. For example, only under conditions of low nitrogen in the soil do leguminous 

plants entertain the development of a symbiosis with nitrogen-fixing rhizobia, a process that 

is tightly controlled through gene regulation in the plant and bacterium (73). In all cases 

examined, diverse strategies have evolved that incorporate into the host’s developmental 

program an accommodation to the form and function of the specific symbiosis.

In this review, through the lens of the squid-vibrio light-organ association, I discuss the 

developmental trajectory of a horizontally acquired symbiosis. Recent reviews(63; 83) on 

the biology of symbiont, Vibrio fischeri, provide a detailed up-to-date summary of what is 

known about V. fischeri as a species, both in symbiosis as well as in other ecological niches. 

Here, I will focus my efforts on a review of what is known about the development of the 

symbiosis, the interplay between partners that mediates this developmental program, and the 

near and far horizons of the system.

THE BASIC NATURE OF THE SQUID-VIBRIO SYMBIOSIS AND THE 

ENDPOINT OF DEVELOPMENT, THE MATURE ASSOCIATION

The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio 
fischeri appears to be obligate for the host in nature, but not for the microbial partner (see 

Supplemental Materials and Fig. S1 for a discussion of the phylogenetic position of the 

partners and the world-wide patterns of squid-vibrio symbioses). The juvenile animals are 

colonized shortly after hatching, and all animals examined from wild populations harbor the 

symbiont in their light organ. V. fischeri, however, has distinct plankton phase independent 

of the animal. The light produced by the symbiont population is thought to be used by the 

host animal as an antipredatory camouflage (35; 54), called counterillumination. In this 

behavioral strategy (98), the animal emits ventral luminescence to mimic down-welling 

moonlight and starlight. The importance of bioluminescence to the host’s biology is 

reflected the developmental program, which has a ‘built-in’ requirement for symbiont 

luminescence. This incorporation of symbiont light production into development 

underscores the host’s imperative to obtain and maintain a luminous microbial partner.

By beginning our discussion with the mature symbiosis, we can best understand the goal of 

the association’s program of development. Horizontally acquired symbioses typically 

undergo postembryonic differentiation in which the host tissues mature and the bacterial 

symbionts become stable partners (56). For example, the immune system and microbiota of 

humans undergo changes over the first few years of life that lead to a mature immune system 

and stable, resilient set of symbiont communities in various body sites (33; 50; 70). Studies 

of mouse development have demonstrated that the adult state results from a complex 

reciprocal interaction among the partners (74; 78; 88). The maturation of such symbioses 
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can result in either morphologically elaborate regions of host-microbe interaction, such as 

the rumen, or more subtle yet critical relationships, such as in the human integument (29).

The developmental program of the squid light organ produces a dedicated, complex bilobed 

structure in the center of the mantle cavity (Figure 1a). These organs show strong 

convergence in form and function with the eye (Figure 1b; (54; 86)). Instead of the 

photoreceptive tissue of the retina, the interior epithelial layers of the light organ are 

rendered photogenic by an extracellular symbiont population that resides in crypts lined by 

complex microvilli (Figure 1c). To modify the incident light, each lobe of the organ has: (i) a 

reflective layer (or tapetum), with imbricated layers of the protein reflectin (12), which serve 

to direct light; (ii) a choroid/iris-like pigmented layer that controls the direction and amount 

of light emitted (54); and, (iii) a muscle-derived lens that achieves transparency by high 

concentrations of the enzyme aldehyde dehydrogenase, one of two enzyme-crystallins of the 

squid eye (59). (For further discussion of convergence between the light organ and eye, see 

Supplemental Material.) Between the lens and the photogenic tissues, just inside each lobe’s 

single pore, are two yellow ‘filters’. While not yet demonstrated in the squid light organ, in 

other bioluminescent animals, such yellow filters will red-shift the luminescence, 

presumably to match the color of down-welling light more effectively (16). Although 

features of the crypt epithelium itself are influenced by V. fischeri, studies of late 

postembryonic development have shown much of the maturation of the light organ is ‘hard 

wired’, i.e., both the organ’s adult shape and the elaboration of its light-controlling tissues 

are achieved, either in the presence or absence of the symbiont.

In addition to colonizing the surface of the crypt epithelium, V. fischeri cells also interact 

with a small number of host blood cells found within the crypt spaces. These hemocytes are 

macrophage-like cells that are the only blood-cell type of squids. How the hemocytes enter 

the crypts is not understood, nor is their function(s) at this site. Nevertheless, histological 

analysis suggests that the hemocytes migrate between the cells of the epithelium (pers. obs.), 

much like the diapedesis of vertebrate blood cells through capillary walls (77). While it is 

unclear how long these migrating hemocytes remain in the crypt spaces, at most their 

residence time is limited by the expulsion every morning that discharges them along with 

most of the symbionts (28; 65) in a protein-rich matrix (79).

The vast majority of the hemocytes are found circulating in the blood stream (i.e., 

hemolymph), and analysis of this population has revealed significant behavioral and 

molecular differences depending on whether they are obtained from symbiotic or non-

symbiotic adult animals (67). These differences suggest the presence of a symbiont-driven 

maturation process in the cellular component of the host immune system. For instance, 

hemocytes extracted from the hemolymph of symbiotic animals bind V. fischeri cells less 

well than hemocytes from non-colonized animals, while these two hemocyte populations 

bind other bacterial species equivalently. Interestingly, this gain of resistance is not seen in a 

V. fischeri mutant defective in OmpU (67), the major outer membrane protein that also 

mediates pathogenesis in other Vibrio spp. (20; 51). Hemocytes from symbiotic and 

nonsymbiotic animals also show differential gene expression, notably of genes encoding 

portions of the innate immune system (79). While the basis of this apparent ‘education’ of 

the hemocytes by its specific symbionts is unknown, determining where and how it occurs 
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may provide clues. Because of their large numbers, as well as the daily expulsion process, it 

seems unlikely that each circulating hemocyte must be educated by passing through the 

crypt spaces and directly interacting with the symbionts. While some crypt hemocytes might 

reenter the blood stream, carrying information to the circulating population, a more likely 

mode of education would result from the uptake and transport of bacterial products into the 

hemolymph. Such metabolomic cues could act at a distance on the circulating hemocytes in 

a manner analogous to the education of T-cells in the thymus by the colonic microbiota of 

mammals (45). Clearly, further study of the host hemocytes, as well as other aspects of the 

relationship between the innate immune system and the symbiont population, offer exciting 

subjects for future exploration.

DAILY OSCILLATIONS IN THE ASSOCIATION

“Everything in the universe has a rhythm. Everything dances.”

This quote from Maya Angelou touches upon a feature well documented in the biological 

world, but poorly understood as a force governing bacterial symbioses. The members of all 

phylogenetic domains of the biosphere have rhythms that are entrained by natural cycles, 

most often those that are circadian. Circadian rhythms are synchronized in two major ways: 

through transcriptional and metabolic activities (4). In the former, the clock genes and their 

relatives regulate transcription associated with different day-to-night activities; in the later, a 

metabolic oscillator linked to an organism’s rhythm of nutrient utilization is driven by the 

cyclic oxidation and reduction of peroxiredoxin enzymes. Whereas genes controlling 

transcriptional oscillation are not well conserved (69), the peroxiredoxins are homologous 

and play a role in the metabolic rhythms of all organisms (21; 84). As biologists gain 

evidence of the profound influences of the microbiota on mammalian metabolism, and 

integrate that information with well documented daily metabolic rhythms of the host, it 

would not be surprising to find that host-symbiont interactions are under circadian control. 

Clock-gene oscillations have been documented in both the mucosal immune system and 

epithelium of the gut (10). Whether transcriptional activities of the associated microbiota are 

affected by these rhythms remains to be determined, but recent data have demonstrated that 

microbe-associated molecular pattern (MAMP)/toll-like receptor (TLR) interactions that 

maintain homeostasis of the gut epithelium require normal circadian oscillations (62).

The squid-vibrio system is the only animal-bacterial symbiosis whose daily rhythms have 

been studied extensively. Early on, it was discovered that the per-cell luminescence of 

symbiotic V. fischeri colonizing juveniles varies over the day-night cycle (5). The highest 

luminescence levels occur in the early evening as the animal emerges to forage in the water 

column, while the lowest levels are in the hours before dawn. Subsequently, the daily 

expulsion of most of the crypts’ contents into the surrounding seawater was observed (28).

In response to these findings, a study of the transcriptome of the adult crypt epithelium and 

its associated symbiont population was conducted at 6-h intervals over the 24-h day-night 

cycle. The data revealed a complex, daily dialogue between the partners (94). In the hours 

just before the dawn venting of symbionts, nearly all of the dozens of host cytoskeletal genes 

were up-regulated, a change that was correlated with the effacement of the epithelial 
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microvilli into the crypt spaces; the ultrastructure of the host’s tissues at this point looks 

remarkably like the effacement of epithelia by enteric pathogens (80). After six hours, i.e., 

when most of the symbionts have been vented and the remaining population has begun to 

grow exponentially, the bacterial symbionts have up-regulated genes associated with the 

metabolism of host-membrane constituents. Specifically, the genes associated with 

anaerobic respiration of glycerol-phosphate are induced, and an analysis of the lipid 

composition of the bacterial membranes indicates that the symbionts also incorporate host-

specific membrane fatty acids into their own membranes. Over this same time interval, the 

host down-regulates the cytoskeletal genes and begins to reconstitute a new microvillous 

layer on the existing crypt epithelial cells. By around noon, the symbionts have once again 

filled the crypt spaces and their growth is curtailed. Then, in the late afternoon and evening, 

the symbionts shift their metabolism to the fermentation of the polysaccharide chitin. Taken 

together, the data demonstrate a day-night oscillation of the symbiont’s metabolic pathways 

from anaerobic respiration to fermentation (94). This rhythmic switch in catabolic pathways 

also suggests that the crypt environment varies from a neutral to an acidic pH over the day-

night cycle. Although these data provide evidence for a daily reciprocal dialogue between 

the partners, numerous questions about this process remain to be addressed, including: do 

the symbionts or their products induce effacement, and how? Do rhythmic ultrastructural 

and molecular changes occur in other symbioses, such as in the vertebrate gut?

In addition to exploration of the rhythms themselves, the squid-vibrio system offers an 

opportunity to characterize how these rhythms are controlled. The first reported evidence for 

the occurrence of a bacteria-driven circadian rhythm in animals was provided by a recent 

study in E. scolopes (32). The transcription of genes encoding cryptochromes, proteins that 

are conserved regulators of animal circadian rhythms, has a daily oscillation in the host light 

organ. Two cryptochrome genes, escry1 and −2, have been identified in the host squid. One 

of these, escry2 is dominant in the eye, and cycles with environmental light, which is typical 

of cry genes in other animals. However, the transcriptional cycling of escry1 is offset 12 h, 

and corresponds to the daily rhythm of the symbiont luminescence (Figure 2a). Studies with 

juvenile animals demonstrated that the symbionts are required for the entrainment escry1 
cycling. Further, analyses with a mutant of V. fischeri defective in light production (Δlux) 

demonstrated that symbiont luminescence is also required (32). While the defect in these 

mutants could be complemented with provision of exogenous blue light, in the absence of 

symbionts, illumination alone could not entrain the rhythms (Figure 2b). These data show 

that V. fischeri must be present to enable the host animal to respond to the daily cycle of its 

partner’s luminescence.

Much remains to be learned about the role and mechanisms of rhythms in this association, 

and about how the early development of these rhythms influences maturation of the 

symbiosis. Analysis of a newly available RNAseq database has revealed that other key 

biochemical regulators of rhythms, including per and timeless, are expressed in the host light 

organ. Whether the cycling of these genes occurs and, if so, is similar in the eye and the light 

organ, remains to be determined. We also have evidence that the ‘universal’ metabolic clock 

proteins, peroxiredoxins, are expressed in adult E. scolopes light organs (94). These redox 

proteins have many functions, but may sense the day-night change in symbiont metabolism. 

Taken together, the data have provided enough information to construct a model of 

McFall-Ngai Page 6

Annu Rev Microbiol. Author manuscript; available in PMC 2018 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



symbiosis rhythms in this system that provides testable hypotheses for future research. For 

instance, preliminary data suggest that the cycle between anaerobic respiration and 

fermentation may not be active in the juvenile symbiosis, indicating that a peroxiredoxin-

based rhythm may not appear until the organ has fully developed (Figure 2c).

COLONIZATION OF THE HOST LIGHT ORGAN

The embryonic period prepares the animal to interact with environmental V. fischeri (See 

Supplementary Materials and Fig. S2). At the end of embryogenesis, a complex set of 

differentiated cell types has developed that will promote harvesting of the symbiont (Fig. 3). 

The superficial ciliated epithelium consists of an anterior and posterior appendage, which 

covers a blood sinus, and a set of cells surrounding the pores (Figure 3a). The cells across 

this field vary in size, length and ciliary activity (40), but the functional significance of these 

variations is not well understood. By hatching, what began as invaginations of the embryonic 

hindgut-ink sac complex has become an elaborate set of blind-ended crypts (60; 85). In the 

most mature of these (crypt 1), moving lateral to medial, the pore leads to a ciliated duct, 

which opens into a broader ‘antechamber’. At the medial end of the antechamber is a 

constriction of the tissues, or bottleneck, which opens more medially into a labyrinthine 

crypt lined by a microvillous epithelium. Although this distance is a total of only ~100 

microns, it covers a series of distinct environments to which the future symbionts must adapt 

during the colonization process.

To the author’s knowledge, the only horizontally transmitted symbioses in which the 

initiation of the partnership has been extensively studied are the legume-rhizobia and squid-

vibrio associations. Establishment of a specific partnership during initiation of symbiosis 

(i.e., engagement of the coevolved partner to the exclusion of other environmental bacteria) 

is resolved in both systems over the first minutes to hours. In contrast, whereas nitrogenase 

activity characteristic of a functional root nodule takes days to weeks to develop (89), the 

juvenile squid has a fully colonized, bioluminescent organ within hours of hatching (76). 

Nevertheless, in both these and many other horizontally transmitted symbioses, the initiation 

of an association represents a dramatic niche change for the symbionts, from a diverse, 

diffuse microbial community, to a densely packed, monospecific population.

How does this niche transition progress? The initiation process proceeds through a series of 

stages that includes host-symbiont interactions both at the ciliated surfaces and deep within 

the tissues (Figure 3b). Within seconds of hatching, the animal begins to ventilate 

environmental seawater through its body cavity. The host accomplishes two interrelated 

processes during the subsequent 3- to 4-h period: it harvests its V. fischeri inoculum from the 

seawater, and excludes all other bacterial species from successful engagement. This 

harvesting is an impressive feat considering that, in near-shore Hawaiian seawater, V. 
fischeri typically occurs at no more than a few hundreds to thousands within communities of 

millions of other bacteria per ml (36; 46). The initiation events, which begin along the 

ciliated epithelia, can be observed directly by confocal microscopy. The V. fischeri cells first 

attach to the cilia on the epithelial surface and then form small aggregations of 5–10 cells, 

when the bacteria are present at a typical seawater concentration (2). While, under 

experimental conditions of the laboratory, aggregates of hundreds of cells can be obtained 
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with large inocula (66), changing the inoculum size does not influence the timing of 

colonization. After 3–4 h, the aggregated cells undergo a tortuous migration into deep 

tissues (Fig. 3b) (85). On the last leg of this journey, the symbionts proceed single file 

through bottlenecks just outside of the crypts. Even with a large inoculum, apparently only a 

few inoculating V. fischeri cells will proliferate to fill any given crypt (96). Remarkably, 

even in the absence of V. fischeri, while other species initially associate with the epithelial 

surface, none will colonize the crypts.

Several studies have investigated the biochemical underpinnings of this process. The few 

hours of residence as an aggregate on the organ surface not only select for the specific 

symbiont, but also prepare them for the journey. Shortly after hatching, in response to the 

peptidoglycan present in natural seawater, the epithelial fields shed copious mucus (Figure 

3b), which may serve both biophysical and biochemical functions during initiation. As 

mentioned above, the mucus contains antimicrobial molecules, including nitric oxide (NO) 

that is produced by host NO synthases (NOS) in the ciliated epithelia and transported into 

the mucus in vesicles (13). While this NO could discourage aggregation by some bacterial 

species, its main role appears to be in priming V. fischeri cells to resist their subsequent 

encounter with more intense stresses (92). Specifically, while NO first appears in the mucus, 

it is in the duct and antechambers that NOS/NO are most abundant (13; 85). Genetic studies 

of V. fischeri have determined that induction of NO resistance during the attachment and/or 

aggregation stages is essential for completion of colonization (93).

Association of V. fischeri cells with the cilia (Figure 3b) induces hemocyte trafficking into 

the blood sinuses of the organ. Although the precise function of this cell migration is not 

known, these data demonstrate that the host detects the presence of as few as 4–5 cells and 

respond with a robust cellular phenotype (43). Host hemocyte trafficking results from the 

sensing of symbiont peptidoglycan (PGN) monomer, or tracheal cytotoxin (TCT), which is 

constitutively exported by V. fischeri cells (41). The response to so few cells attests to the 

high specific activity of the TCT molecule. Sensitivity to the few attaching V. fischeri cells, 

against a background of other, non-specific bacterial cells in the ambient seawater, also 

results in a robust change in host gene expression. Genes up-regulated include several 

antimicrobial proteins, peptidases and a chitotriosidase. From the symbiont’s side, the 

bacterium-bacterium aggregation that follows ciliary attachment requires the release of a 

constitutively produced exopolysaccharide (EPS) (49; 97). The genetic control of the 

pathway responsible for EPS release has been extensively studied (61; 90). Nevertheless, the 

function of EPS-mediated aggregation has not been determined, although it may be essential 

for critical cell-cell communication, detachment from the cilia, or protection from the harsh 

environment of host tissues. Interestingly symbionts defective in the production of a secreted 

aminopeptidase-N aggregated poorly and colonized slowly (23), perhaps because the 

peptidase activity is critical for interaction with either the cilia (attachment or detachment) 

or adjacent V. fischeri cells prior to migration.

Aggregated V. fischeri cells are poised to enter the nascent light organ (Figure 3b), but 

require a number of additional traits to complete colonization, including flagellar motility 

and chemotaxis (8; 15; 27). Remarkably, the up-regulation of the host chitotriosidase 

mentioned above (43) plays a critical role in this migration. Chitotriosidase is endochitolytic, 
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cleaving chitin polymers into dimeric chitobiose, and V. fischeri chemotaxes into the pores 

on the light organ surface in response to a chitobiose gradient (48). Culture studies of V. 
fischeri demonstrated that they require priming by chitobiose prior to migrating toward this 

molecule. Because the host chitotriosidase is secreted into the host’s mucus, which contains 

chitin, it catalyzes the production of chitobiose that primes the aggregated V. fischeri cells 

(43). A more concentrated chitotriosidase activity in the ducts apparently produces the 

gradient to which V. fischeri responds as it enters the light-organ pores (43; 48).

As with the legume-rhizobium symbiosis, initial interactions between E. scolopes and V. 
fischeri require a complex host-symbiont dialogue. Clearly, many questions remain 

unanswered, including some that must await further tool development. Application of 

bacterial molecular genetics has been a powerful approach revealing critical symbiont 

features (75); however, genome-wide transcriptomic analyses of the small number of 

aggregating V. fischeri cells have yet not been possible. Future development of single 

bacterial-cell transcriptomics will provide a window into the genetic regulation involved in a 

symbiont’s physiological transition from the planktonic to the symbiotic state. Conversely, 

while transcriptomic approaches are possible in the host (11; 43), development of methods 

for genetic knock-down of host genes, while ongoing, have not yet been achieved. Together, 

these advances should provide insight into why V. fischeri is the only bacterium that can 

leave its seawater habitat and colonize the E. scolopes light organ.

SYMBIONT TRIGGERING OF LIGHT ORGAN MORPHOGENESIS: 

LOCATION, LOCATION, LOCATION!

All major light-organ regions through which V. fischeri cells pass during colonization 

(Figure 3b) undergo symbiont-induced developmental changes. These modifications in 

morphology and function appear to transform the organ from a form that promotes 

colonization to one that fosters a life-long relationship with the symbiont. Once V. fischeri 
cells have populated the crypt spaces, their presence induces alterations in the tissues, only 

some of which can be reversed by antibiotic treatments that eliminate the symbionts (17). 

The most dramatic of the changes is the loss of the superficial ciliated epithelium (Figure 

4a). This process, which results from an apoptosis of the host cells, takes ~4–5 d, but has 

already been irreversibly triggered by ~12 h post inoculation (17), at which time the 

symbiont population has colonized the crypts (76). Although some symbiont activities that 

trigger this process have been defined, how they signal the apoptotic events from the crypts, 

located several cell layers away, is not known. As such, this process is reminiscent of the 

triggering of cortical cell division in the roots of legumes in response to rhizobia interacting 

with the root hairs (68). In the juvenile squid, apoptosis of the superficial epithelial layer is 

accompanied by breakdown of the supporting basement membrane through the activity of 

matrix metalloproteinases (40). Cells detach from the basement membrane into the mantle 

cavity, and the cytoskeleton of the surrounding cells coordinately mobilizes to ‘zip’ closed 

the space created by the leaving cell. In addition, within 24–48 h of colonization, the 

symbionts shut down mucus shedding from the surface epithelium (64). Unlike the apoptotic 

morphogenesis, this developmental change is reversible; if the crypts are cured of the 
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symbionts, the surface cells once again initiate mucus shedding, and symbionts will again 

begin to aggregate, although at lower numbers than previously (64).

The interior tissues undergo more subtle changes, which are most often reversible. Although 

V. fischeri cells migrate through the ducts and antechambers of the organ, they do not reside 

there, i.e., they interact with these tissues only during the initial colonization event and as 

they are released during the daily expulsions (85). The timing of developmental changes in 

these tissues in response to colonization suggests that the effects of V. fischeri are also not 

the result of direct host cell/bacterial cell interactions. By 12 h, the ducts have constricted 

~50%, (i.e., from ~30 down to 15 μm) due to a decrease in the number of cells surrounding 

the duct lumen (37). This reversible change is correlated with an increase in actin synthesis 

and abundance of filamentous actin in the terminal web of the duct cells. By ~7 d, the three 

pores on either side of the organ (Figure 3a) begin to coalesce into a single orifice, 

characteristic of the adult condition (Figure 1b). Similarly, the bottleneck narrows by 48 h 

from ~9 to ~2 μm (85), slightly wider than a single V. fischeri cell. The underlying 

mechanisms of bottleneck constriction, and whether this event is reversible, have not been 

explored. In contrast, direct interaction with V. fischeri cells induces modifications of the 

crypt epithelia with which the symbionts associate, and these changes can also be reversed 

by curing. Specifically, by 48 h following colonization, the symbiont population has induced 

a ~2-fold increase in cytoplasmic volume (58; 85; 91) and a ~4-fold increase in the density 

of the microvilli (44) of the crypt epithelial cells (Figure 4b,c). These modifications of result 

in a greater intimacy between host cells and symbionts.

Numerous studies have investigated symbiont features that induce these morphological and 

ultrastructural changes, and are the subject of recent reviews (53; 55); thus, this topic will 

not be covered in detail here. However, the surprising finding was that conserved MAMPs, a 

term that was first used in a publication on development of squid-vibrio symbiosis (41), are 

key inducers of symbiont-mediated host development. Specifically, lipopolysaccharide 

(LPS) and PGN derivatives are potent morphogens, and work synergistically to induce much 

of the regression of the superficial epithelium (1; 41; 87). Their likely involvement in other 

developmental events occurring within internal host tissues is the subject of ongoing studies. 

Interestingly, these MAMPs, similar to their role in pathogenesis, appear to modulate 

immune responses. For example, beyond triggering apoptosis, they induce hemocyte 

trafficking into the light organ (41). In addition, LPS and PGN derivatives work 

synergistically to attenuate NOS activity and NO production (3), which is the opposite of 

how these molecules function in pathogenesis, where MAMPs typically increase 

nitrosylative stress (see, e.g., (24; 38)).

Evidence is accumulating that light production by the symbiont synergizes with these 

chemical MAMPs, and together drive much, if not all, of the developmental program (53). 

Although the basis of light perception by host tissues are not well understood, two possible 

mechanisms have been discovered. The above-mentioned cryptochromes, which are blue 

light receptors, may perceive and respond to the blue luminescence of the symbiont. 

Cryptochromes have also been recently implicated in induction of plant development (47). 

The second possible receptor is rhodopsin. In addition to having much the same structure as 

the eye (86), the light organ produces all of the protein components of the eye’s visual 
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transduction cascade, including the visual pigment rhodopsin, and exhibits physiological 

sensitivity to light much like the eye (86). Whatever the receptor, the mechanism of action is 

still unknown. V. fischeri mutants in light production are also defective in normal 

transcription of the light organ’s eye-specification genes, which may be involved in 

developmental induction by luminescence (71). Further, a microarray study demonstrated 

that bacteria defective in luminescence are not capable of inducing normal transcriptional 

levels of conserved host pattern-recognition receptors (PRRs) (11), which may be the 

receptors for the MAMPs that are critical for inducing normal development. Finally, 

transcription of key genes of the NF-kB pathway occurs in the light organ. As the principal 

response mechanism to MAMPs, this pathway presents a likely link between symbiont 

signals and host responses. Obviously these various jigsaw-puzzle pieces, while suggesting 

an underlying image, do not yet provide a coherent picture. Much research will be required 

to fully understand how light and MAMPs function together to drive developmental 

processes.

FRONTIERS

New horizons in the E. scolopes-V. fischeri symbiosis are strongly linked to the ongoing 

development of tools for dissecting and revealing the events underlying the initiation and 

maintenance of the system. Three emerging technologies deserve mention here. For much of 

the first 25 years that the squid-vibrio symbiosis has been studied, research has focused on 

the association’s first few days. While this period of onset and early development offers a 

rich landscape for experimentation, it had been delimited by the technical difficulty in 

raising the juvenile host beyond about one week (31). With intensive efforts over the last few 

years, robust methods for raising the animal to maturity have been developed. Our initial 

experiments with this new capability indicate that the association is surprisingly sensitive to 

the presence of nonluminous V. fischeri, and over the course of 4 weeks is able to essentially 

clear a population of such ‘cheaters’, even when co-colonized with a normal luminous 

symbiont (39). While uncolonized animals continue to be susceptible to symbiotic infection 

for at least several weeks after hatching, colonization triggers a critical change in the 

symbiosis’ subsequent receptivity and resilience (39). Specifically, animals colonized for 3 

days can be cured and successfully recolonized; however, after 5 days they cannot. The 

capability to experimentally manipulate the host through all stages of ontogeny opens a 

whole new arena for research into the squid-vibrio symbiosis.

The continuing development of new molecular genetic technology has opened exciting 

directions for both host and symbiont. For example, sequencing of the genomes of dozens of 

V. fischeri strains, both symbiotic and strictly environmental, is underway. Comparative 

analysis of the resulting data has begun to provide insight into that portion of the flexible 

genome of V. fischeri that is required for the establishment and maintenance of a 

horizontally transmitted animal symbiosis (81; 95). The sequencing of the host genome is 

nearly complete, and will pave the way for the study of such exciting questions as the nature 

of gene regulation during the developmental trajectory of the association. In addition, 

attempts at genetic manipulation of the host are continuing, and refinement of the methods 

for the transcriptomic, proteomic, and metabolomic analyses of small amounts of tissue will 

provide an opportunity to unravel the temporal and spatial details of symbiosis development. 
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The ultimate goal is to understand the complex dialogue between symbiotic partners from a 

biochemical to an ecological level.

Finally, the squid-vibrio association also offers rare opportunities for merging the fields of 

biophysics and mathematics into the investigation of symbiosis, an exciting new synergy that 

is currently under development. For example, the initial interaction between E. scolopes and 

V. fischeri offers the rare chance to visualize and model the capture and selection of bacterial 

cells along ciliated surfaces in an intact animal. The vision is that a thorough understanding 

of this process will inform many areas of biomedical research about how animals establish 

healthy interactions along their ciliated epithelial surfaces, while dissuading pathogenic 

ones.

In conclusion, the squid-vibrio system is just one of a number of genetic models of animal-

bacterial symbiosis that have been pioneered over the last few years (7; 42; 57; 75). 

Evolution has done remarkable ‘experiments’ with this phenomenon, providing biologists 

with a rich palette for research. Just as models have been invaluable for deciphering how 

animal development programs themselves are executed, together these symbiosis models, 

and those to be generated in the future, promise to provide a coherent picture of both 

evolutionarily conserved features and the mechanisms driving diversification that underlie 

the development of host-microbe interactions.
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Figure 1. 
The mature symbiosis. (a) A ventral dissection of the adult animal reveals the bilobed light 

organ in the center of the mantle (body) cavity. (b) A frontal section through one lobe of the 

organ illustrates the relationship of the three crypts, which house the symbionts, to the 

surrounding light-modulating tissues; ref, reflector; black box, region of tissue in 

histological section (c), upper right. (c) Upper, a low magnification view of the tissues shows 

each V. fischeri (Vf) cell of the symbiont population either in direct contact with host 

epithelial cells or only a few cell-lengths away; white box, region of the transmission 

electron micrograph (TEM), lower right. (d) Lower, a high magnification view shows V. 
fischeri cells (false color, purple) in intimate association with complex, lobate microvilli of 

the host cell surface.
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Figure 2. 
Candidate mechanisms underlying molecular and biochemical control of host-symbiont 

rhythms. (a) escry1 gene regulation. Analyses of the regulation of one of the two host 

cryptochrome genes over the day/night cycle (environmental light) revealed that the escry1 
gene expression peaks during peak luminescence (symbiont light). (b) A mutants defective 

in light production (Δlux) was unable to induce these symbiosis levels of escry1 expression. 

This defect could be complemented by exposing symbiotic animals to external blue light 

(Δlux + light), but not by exposing uncolonized animals (uncolonized + light) (32). (c) 
(modified from (4)). The host cryptochrome is one of a family of genetic oscillators; it 

begins to cycle immediately upon colonization by the symbiont. We hypothesize that daily 

oscillations in the mature organ are governed by both escry1, the genetic oscillator, and 

peroxiredoxin (PRX), the metabolic oscillator. Whereas in central clocks (the brain), the 

PRX genes do not cycle, in the peripheral clock (the light organ), expression of these genes 

does oscillate over the day/night cycle. In addition to the study of gene transcription and 

protein production, one can characterize these behaviors by analyzing metabolic and 

ultrastructural features.
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Figure 3: 
The symbiont’s journey. (a) The anatomy of the host organ - The light organ (dashed circle) 

as seen through the ventral surface of an anesthetized hatchling animal. A diagram of the 

external (left) and internal (right) features of this organ; aa, anterior appendage; pa, posterior 

appendage. (b) Colonization events – Upper, early host (Es, Euprymna scolopes) 

engagement of the symbiont (Vf, Vibrio fischeri) showing events, critical partner 

interactions, and biomolecules involved, where known. Left, Confocal image of the organ’s 

ciliated field, which is shedding abundant mucus in the regions around the pores in response 

to the MAMPs in environmental seawater; PGN, peptidoglycan (64). Middle, High-

magnification confocal image of a living specimen, showing symbiont cells attaching to the 

cilia (2). Experimental manipulations provide evidence that the host’s perception of 

symbiont MAMPs, induces both cellular (41) and transcriptomic (43) changes in the host 

tissues. Right, Colonization in response to a host-generated chitobiose gradient. Following 

attachment, the symbionts aggregate using an exopolysaccharide (EPS) matrix on their 
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surfaces (90). The observed priming to NO (92) and chitobiose (43) likely occurs in these 

aggregated cells. Once primed, the V. fischeri cells perceive the host gradient, and chemotax 

into the organ. Lower, with large numbers of GFP-labeled V. fischeri cells, their transit 

through tissues can be visualized by confocal microscopy (85); host tissues (red). After 

entering the pores (Step 1), V. fischeri cells move through ducts (Step 2) lined by outward-

beating cilia (bottom TEM), which requires that the symbionts move counter-current. The 

symbionts then proceed across the antechamber to a bottleneck (Step 3). Once in the crypts, 

symbiont cells proliferate to fill each crypt by ~12 h post-inoculation (Step 4) (96).
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Figure 4. 
Symbiont-induced light-organ morphogenesis that follows crypt colonization. (a) The 4-d 

program of regression of the ciliated epithelial fields on the organ surface occurs through 

apoptosis, which is induced by symbiont populations deep within the crypts. Left, the 

process begins with the loss of the ridge of ciliated cells just medial to the pores (Step 1), 

followed by shortening and loss of the posterior (Step 2) and anterior (Step 3) appendages. 

(b,c) Changes of the crypt epithelia that result from direct interactions between host and 

symbiont cells; swelling of crypt epithelial cells (b), and increase in the density of the 

microvilli on the their surfaces (c). Eliminating V. fischeri cells at 1 or 2 days with antibiotic 

treatment (dashed lines in graph, (c)) causes a return to the aposymbiotic morphological 

state of this tissue.
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