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Spatial analysis of the geographical 
distribution of thyroid cancer 
cases from the first-round thyroid 
ultrasound examination in 
Fukushima Prefecture
Tomoki Nakaya   1, Kunihiko Takahashi   2, Hideto Takahashi3, Seiji Yasumura4,5, 
Tetsuya Ohira4,6, Hitoshi Ohto4, Akira Ohtsuru4,7, Sanae Midorikawa4,7, Shinichi Suzuki8, 
Hiroki Shimura4,9, Shunichi Yamashita4,10, Koichi Tanigawa4 & Kenji Kamiya4,11

Following the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on 11 March 2011, there have 
been concerns regarding the health impacts of the ensuing radioactive environmental contamination, 
which was spatially heterogeneous. This study aimed to assess the geographical variability of thyroid 
cancer prevalence among children and adolescents in Fukushima Prefecture. We computed the sex- 
and age-standardised prevalence ratio using 115 diagnosed or suspected thyroid cancer cases among 
approximately 300,000 examinees at the first-round ultrasound examination during 2011–2015 from 59 
municipalities in the prefecture, under the Fukushima Health Management Survey. We applied flexibly 
shaped spatial scan statistics and the maximised excess events test on the dataset to detect locally 
anomalous high-prevalence regions. We also conducted Poisson regression with selected regional 
indicators. Furthermore, approximately 200 examinees showed positive ultrasound examination 
results but did not undergo confirmatory testing; thus, we employed simulation-based sensitivity tests 
to evaluate the possible effect of such undiagnosed cases in the statistical analysis. In conclusion, this 
study found no significant spatial anomalies/clusters or geographic trends of thyroid cancer prevalence 
among the ultrasound examinees, indicating that the thyroid cancer cases detected are unlikely to be 
attributable to regional factors, including radiation exposure resulting from the FNPP accident.

The accident on 11 March 2011 at the Fukushima Daiichi Nuclear Power Plant (FNPP), triggered by the tsunami 
waves following the Great East Japan Earthquake, raised serious concerns about the health impact of radioactive 
materials released into the atmosphere from the FNPP. Possible risks of radiation-induced thyroid cancer among 
children in the radioactively contaminated areas have gained attention, due to the finding of a marked excess of 
this cancer type among European children who lived in areas affected by radioactive iodine released during the 
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Chernobyl Nuclear Power Plant (CNPP) accident on 26 April 19861. However, studies conducted in Japan just 
after the FNPP accident to estimate thyroid exposure from radioactive iodine released from the FNPP2–4 reported 
much lower thyroid doses among the evacuees, compared to the CNPP accident. Thus, radiation-induced excess 
health risks were not expected to be observable with exposure to such low doses5.

In October 2011, the Fukushima Prefectural government started an ultrasound-based examination pro-
gramme for thyroid cancer (thyroid ultrasound examination: TUE) for all residents aged 18 years or younger 
who were living in Fukushima Prefecture at the time of the FNPP accident; this initiative was part of a larger 
programme to investigate the potential health impact of the Fukushima accident6,7. The period of the first round 
of TUE, from 2011 to 2014, was decided based on the finding that cases of cancer among children after the CNPP 
accident were detected four or five years later. Since radiation-related thyroid cancer would not be expected to 
develop during this period, the first round of TUE would give a measure of the baseline thyroid cancer prevalence 
for evaluation in subsequent rounds of examination in the same target population.

In the first round of TUE from 2011 to 2015 (including one extended year), 116 thyroid cancer cases with 
malignancy or strong suspicion of malignancy based on fine needle aspiration cytology were detected from 
approximately 300,000 children and adolescents. This larger-than-expected number of cases incited the suspicion 
of an ‘epidemic’ of early radiation-induced thyroid cancer8. However, since such a large-scale ultrasound exami-
nation targeting children and adolescents had never been performed in Japan, the number of detected cases from 
the TUE is not comparable to the expectation based on conventional statistics, such as cancer registry data, due 
to the different systems of case examination9,10.

Several studies have sought to statistically ascertain if a higher risk of thyroid cancer existed in 
radiation-contaminated areas within the prefecture. Tsuda et al.8 aggregated 59 municipalities in Fukushima 
Prefecture into 9 districts and compared the regional prevalence rates among them. They reported excesses of 
thyroid cancer cases in the central middle district (odds ratio to the reference region, 2.6; 95% confidence interval 
[CI], 0.99–7.0) suggesting that the geographical excess was induced by exposure of the residents to radioactive 
contamination within the environment. However, several studies pointed out that the identified regional differ-
ence in prevalence was inconsistent with the distribution of radioactive contamination and that there was no 
statistical support to the difference in prevalence between areas with different levels of radioactive contamina-
tion10–12. Ohira et al.13 constructed five areas from 59 municipalities according to the estimated degrees of external 
exposure to radiation among the TUE participants and found no significant differences in prevalence among 
them; compared to the area with the lowest dose, the highest age-sex adjusted odds ratio was in the area with the 
second highest dose (odds ratio, 1.44; 95% CI, 0.75–2.75) while the area with the highest dose had an odds ratio 
of 0.95 (95% CI, 0.48–1.88). It is noteworthy that the areas with the higher estimated level of external exposure to 
radiation were not those located around the FNPP but were in the northern middle region of the prefecture13; this 
could be possibly due to the movements of evacuees and radioactive plumes after the FNPP accident. However, 
due to the high degree of uncertainty in the estimation of internal dose from radioactive iodine-131, which has 
a short half-life of 8 days1,4, the distribution of internal exposure dose could differ from that of the external dose.

We identified three problems that needed to be overcome in these previous studies. Firstly, the results of the 
regional prevalence comparisons were dependent on the nature of the areal aggregation of municipalities. Thus, 
there remained the possibility of another way of areal aggregation to identify areas with significantly elevated 
risks. Such dependency of any spatial analysis on the geographic units used is known as the modifiable areal unit 
problem14. It is important to recognise that there are many possibilities in constructing regional units even if the 
basic unit of the municipality is given. It is also important to note that repeating comparisons of regional preva-
lence rates with a reference value increases the number of false positive risks. Hence, some significant difference 
would be detected at a certain alpha level of testing even if the null hypothesis is true. This is known as the multi-
ple testing problem and requires proper adjustments of the significance level of the test15.

Secondly, there is potential bias caused by the fact that the ultrasound examination programme comprised 
two phases: primary evaluation using ultrasound and confirmatory testing16. Previously, during the primary 
examinations, the prevalence was evaluated as the number of diagnosed cases among examinees. This approach 
could be justified if it is assumed that no difference in thyroid cancer prevalence exists between examinees and 
non-examinees. However, not all positive examinees at the primary examination accepted confirmatory testing. 
Since the acceptance rate of the confirmatory testing among positive examinees varied geographically8, it is desir-
able to assess the possible impacts of undiagnosed cases in the statistical analysis.

Thirdly, although other risk factors could influence the prevalence of thyroid cancer, no analysis assessed geo-
graphic associations with other regional indicators besides radiation dose in Fukushima Prefecture1,7. Apart from 
ionising radiation exposure (including radioactive fallout, and natural background radiation), several geographic 
risk factors of thyroid cancer are recognised. The most well-known is the “inland mountain”, measured by altitude 
or rurality indices. Several parts of Europe, like the Alpine regions of Italy and the mountainous part of Wales in 
the UK, were characterised by iodine deficiency disorders and goitre endemicity17,18. These regions correspond to 
areas with high thyroid cancer morbidity and mortality. Other factors include areal indicators of socio-economic 
status (SES), including average income or racial components19,20. However, most ecological studies on the asso-
ciation between thyroid cancer and geographic factors, other than radiation, have not focused on thyroid cancer 
among children and adolescents.

To overcome these problems, this study aimed to assess the geographical variability in thyroid cancer prev-
alence obtained from the final results of the first round of TUE in Fukushima Prefecture among children and 
adolescents. By using spatial epidemiological methods, a basis is provided for evaluating the data that will be 
obtained from further rounds of TUE. More specifically, we employed spatial cluster detection methods and 
ecological regression models to identify: (1) whether any areas have excess risk/prevalence of thyroid cancer, 
and (2) whether any geographic indicator is associated with the distribution of thyroid cancer prevalence, with 
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(3) sensitivity analysis to consider the possible impact of undiagnosed positive examinees on the results of the 
statistical analysis, at the primary ultrasound examination.

Results
Detecting regions with locally elevated risk.  Fukushima Prefecture, the third largest Japanese prefec-
ture, is located in northern Japan, and has an east to west length of about 165 km and a north to south length of 
132 km (Fig. 1). The eastern part, Hamadōri, has its coastal plain facing the Pacific Ocean where the FNPP is 
located, approximately centrally on the coast of the prefecture. The middle part, Nakadōri, is the most densely 
populated area. The western part, Aizu, is mostly mountainous and the least inhabited. The prefecture comprises 
59 municipalities that are the spatial units used in this study.

As there were 115 diagnosed as thyroid cancer cases among 295,032 examinees at the primary examination 
for the study (See Methods for the details), the standardised municipality-level prevalence ratios in the 59 munic-
ipalities in Fukushima Prefecture showed quite high variability, mainly due to the small number of cases in each 
municipality (Fig. 2). We applied flexibly shaped scan statistics (Flexscan)21 to the dataset, resulting in the most 
likely clusters around the middle part of the prefecture to the west of the FNPP. However, the high p-value (0.758) 
associated with the cluster meant that even if the risk of the disease was geographically homogeneous, such a 
degree of regional excess of prevalence is likely to have occurred by chance.

Detecting general clustering tendency.  We also employed Tango’s maximised excess events test 
(MEET)22, a general test of spatial clustering. No clustering tendency was detected in regional thyroid cancer 
prevalence at all spatial scales tested. Figure 3 provides the profile of C-index at different spatial scales, indicating 
that 45 km attained the lowest p-value. This indicates that municipal prevalence rates tend to be similar between 
regions closer than 45 km. The scale is similar to the maximum distance of 49.20 km that exists between town hall 
locations within the most likely cluster detected by Flexscan. However, the multiple-testing adjusted p-value of 
MEET was 0.279, which does not support spatial clustering tendency.

Poisson regression for ecological association with regional indicators.  With univariate Poisson 
regression, no significant relationship was detected between thyroid cancer prevalence and selected regional 
indicators, including distance from the FNPP, the estimated external radiation dose, altitude, and several 
census-based indicators (Table 1). The lowest p-value was 0.177 for unemployment. According to the Akaike 
Information Criterion (AIC), each model using a regional explanatory variable shown in Table 1 did not show 
any improvement in model fitting against the null model, assuming homogeneous regional risk. Table 2 shows 
the results of models using the quartile categories of each explanatory variable, considering the possibility of 
non-linear relationships between the response and explanatory variables. The models using quartile categories 
did not show any improvement in model fitting against either the corresponding model with a continuous explan-
atory variable or the null model. No significant trend was identified in the coefficients of the quartile categories 
for all explanatory variables. The lowest p-value of trend tests for coefficients of the quartile categories was 0.370 
for distance from the FNPP.

Figure 1.  Study area, Fukushima Prefecture, Japan. Circles representing municipal census population as of 
2010 were drawn at municipal town hall locations. The map in this figure was created with ArcGIS version 10.5 
(http://desktop.arcgis.com/).

http://desktop.arcgis.com/
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Sensitivity analysis of the undiagnosed positive cases on the spatial analysis.  The simulation 
generated additional hypothetical thyroid cancer cases among 195 undiagnosed positive examinees at the ultra-
sound examination; its median was 11 and inter-quartile range was 4. For all statistical analyses employed, the 
median of the simulated p-values using the simulated data largely remained unchanged (Fig. 4). Although there 

Figure 2.  Standardised prevalence ratio and the most likely cluster of childhood and adolescent thyroid cancer 
cases derived from flexibly shaped spatial scan statistics in Fukushima Prefecture, Japan. The numbers near 
municipal town hall points show the municipal number of thyroid cancer cases. The most likely cluster, which 
is shown with the hatch diagonal stroke in the map, contains 8 municipalities. The numbers of observed and 
expected cases are 42 and 29.76. The relative risk is 1.411 and the statistical testing p-value against the null 
hypothesis of geographically homogeneous risk is 0.75. The map in this figure was created with ArcGIS version 
10.5 (http://desktop.arcgis.com/).

Figure 3.  Scale profile of Tango’s spatial clustering test index (C-index) and adjusted p-value of maximised 
excess events test (MEET).

http://desktop.arcgis.com/
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is no strict rule about the decision of the alpha level used for the sensitivity analysis, the smallest p-values for 
each simulation were larger than 0.05 and the simulated distribution of p-values indicated that the judgement of 
the significance testing employed was unlikely to be changed due to the increase in unreported cases among the 
undiagnosed cases.

Discussion
This study showed no substantial geographical clustering in thyroid cancer prevalence among children and ado-
lescent examinees in the first-round of TUE in Fukushima Prefecture. The number of thyroid cancer cases from 
the programme has often been reported by stressing the unexpectedly large number, suggesting radiation-induced 
excess cases. The total number of diagnosed cases, however, has been also suspected as a product of over-diagnosis 
by the mass screening with cutting-edge examination techniques23 as in the case of screening-induced “epidemic” 
of thyroid cancer in South Korea24,25. While assessing the validity of the over-diagnosis hypothesis is beyond 
the scope of our analytical study, assessing the geographical variation in thyroid cancer prevalence provides an 
alternative approach to determining if the ‘epidemic’ is real. A measurable and notable geographical variation in 
radiation dose is expected in the environment within Fukushima Prefecture; therefore, the detection of excess 
risks in radiation contamination areas has gained attention.

It is important to note that the cluster detection techniques (the spatial scan statistics and MEET) used in this 
study, are both categorised as ‘general tests’26, which do not assume predefined focus on clusters, such as around 
the nuclear plant, and provide conservative testing results, by considering the multiple testing procedures about 
positions and scales, of possible clusters. This choice of analysis is justified because of the difficulty in estimating 
the distribution of internal and external radiation exposure in the target population, due to the short half-life 
of radioactive iodine-131 (approximately 8 days). Due to the no-clustering tendency from the two general test 
results, it is hard to believe that there are unknown spatial clusters showing increases in thyroid cancer incidence 
by unknown radiation exposure distribution at the municipality level.

If we had a suspicious source of contamination, ‘focused tests’26 evaluating distance trends in prevalence from 
the source location would be another form of cluster detection with higher power. The Poisson regression model 
using the distance from the FNPP and the proportion of external radiation exposure of more than 1 mSv for the 
first four months after the FNPP accident, can be considered as a class of simple focused tests. It should be noted 
that the distribution of thyroid doses from radioactive iodine-131 could differ from that from external doses, and 
the uncertainty of the distributional information about thyroid doses from radioactive iodine is one of the limita-
tions of this study. While the distribution of external exposure shows a clear north-western directional trend from 
the FNPP, the contaminated areas with radioactive iodine is estimated to be relatively circular since a plume with 
radioactive iodine flew in a southern direction from the FNPP in an earlier phase of the accident4. The distance 
from the FNPP was thus also worth assessing. Similar to previous studies10–13, we found no association between 
the standardised prevalence ratio and both of the regional indicators focusing on the FNPP location.

To estimate the background risk distribution of childhood and adolescent thyroid cancer (apart from 
exposures to the radiation from the FNPP accident), we tested the association between altitude and regional 
socio-economic indicators. Our finding in Fukushima Prefecture does not correspond to the increase in thy-
roid cancer incidence with higher altitude as previously shown in Italy18. Although altitude was considered a 
surrogate indicator of iodine deficient dietary habits, this relationship would not hold because Japan is generally 
an iodine-rich area and the Japanese diet is high in seafood. Tsubokura et al.27 surveyed the variation in iodine 
deficiency among children in Fukushima Prefecture after the disaster in 2011. They showed a relatively higher 
risk of iodine deficiency in coastal areas, which was possibly due to the restriction of inshore fishing in the region; 

Variable name unit

Exp (coefficient of explanatory 
variable) p-value of 

Wald test
Residual 
Deviance AICEstimate 95% CI

(Null model) NA NA NA 46.852 126.92

Proportion of estimated external 
radiation dose ≥1 mSv

proportion among 
surveyed people 1.041 (0.616, 1.758) 0.882 46.830 128.89

Distance from the FNPP 1 km 0.997 (0.988, 1.006) 0.503 46.399 128.46

Altitude 100 m 1.078 (0.944, 1.231) 0.269 45.649 127.71

Population density 1000 persons per square 
kilometre 1.243 (0.274, 5.647) 0.778 46.773 128.84

Proportion of workers in agriculture, 
forestry and fisheries industries

proportion among 
workers 0.979 (0.939, 1.021) 0.317 45.800 127.86

Unemployment proportion among 
labour force 9.823 × 104 (0.006, 1.749 × 1012) 0.177 45.025 127.09

Proportion of professional and technical 
workers

proportion among 
workers 3.091 (0.001, 7.773 × 103) 0.778 46.772 128.84

Table 1.  Poisson regression results using untransformed explanatory variables. Each row represents a univariate 
Poisson regression model using one explanatory variable shown in the 1st column (only the null model does not 
have any explanatory variable). Estimates of intercept terms were omitted. n = 59 (municipalities) for all of the 
models. If the p-value of Wald test is small, it indicates that the coefficient is considerably different from zero. 
AIC, Akaike information criterion; FNPP, Fukushima Daiichi Nuclear Power Plant; N/A, not applicable; CI, 
confidence interval.
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however, no extreme iodine deficiency occurred in the entire area of the prefecture. We suspect that the rate of 
iodine deficiency among children was low even in the mountainous parts of the region.

We also found no association between the standardised prevalence of thyroid cancer and urban-rural indices 
and socio-economic indicators of municipalities. An increase in thyroid cancer incidence with higher areal SES 
was reported in previous studies19,20. A plausible explanation for this was higher areal SES reflecting better access 
to healthcare, leading to higher detection rates of the disease. However, this previous finding was not supported 
in the present study, possibly because of the overall high coverage rate of ultrasound examination.

The results of a series of spatial statistics-based analyses employed here indicated neither substantial spatial 
clusters nor clustering tendency of the sex- and age-standardised prevalence rate of thyroid cancer at the munic-
ipality level. According to our simulation-based sensitivity test, the possible increase in thyroid cancer cases 
among positive ultrasound examinees without confirmation testing did not alter the findings of spatial analysis.

Our study has several limitations. Firstly, approximately 18.3% of the target population (about 6.71 thousand), 
mostly adolescents, did not undergo the primary examination28. The rate of non-participation at the primary 
examination was highest (about 32.5%) in the Aizu region of the prefecture, which is the most western part of 
the prefecture and estimated as the least radiation-contaminated zone, while the lowest (about 12.5%) in the 13 
municipalities with evacuation zone. Due to the geographical tendency of non-participation, a cluster of high 
prevalence rates could be more likely to be detected in more contaminated areas8, but we did not observe this dur-
ing our study period. Although we adjusted for sex and age effects of the examinees at the primary examination, 
there remains the possibility that this situation reduced the size and caused unknown biases in the distributional 
characteristics of diagnosed cases. However, we did not conduct a sensitivity test on this mainly due to the lack 
of adequate information about the non-examinees, in particular regarding whether they resided in the registered 
municipality when the disaster occurred in March 2011.

Variable name unit

Exp (coefficient of 
explanatory variable) P-value of Wald 

test (P-value for 
trend)

Residual 
Deviance AICestimate 95% CI

Proportion of estimated external 
radiation does ≥ 1 mSv

proportion among 
surveyed people

Q1 Reference (0.757) 46.554 132.62

Q2 1.169 (0.584, 2.340) 0.659

Q3 1.059 (0.508, 2.211) 0.878

Q4 1.149 (0.602, 2.196) 0.673

Distance from the FNPP 1 km

Q1 Reference (0.370) 45.924 131.99

Q2 0.958 (0.631, 1.454) 0.840

Q3 0.945 (0.537, 1.664) 0.845

Q4 0.622 (0.221, 1.747) 0.368

Altitude 100 m

Q1 Reference (0.623) 43.624 129.69

Q2 1.439 (0.964, 2.149) 0.075

Q3 1.183 (0.612, 2.286) 0.618

Q4 1.299 (0.612, 2.756) 0.495

Population density 1000 persons per 
square kilometre

Q1 Reference (0.560) 45.536 131.60

Q2 1.159 (0.257, 5.227) 0.848

Q3 1.653 (0.390, 7.011) 0.495

Q4 1.357 (0.333, 5.520) 0.670

Proportion of workers in 
agriculture, forestry, and 
fisheries industry

proportion among 
workers

Q1 Reference (0.970) 44.080 130.14

Q2 0.889 (0.546, 1.448) 0.638

Q3 0.547 (0.239, 1.252) 0.153

Q4 1.198 (0.486, 2.953) 0.695

Unemployment proportion among 
labour force

Q1 Reference (0.371) 43.628 129.69

Q2 0.944 (0.328, 2.722) 0.916

Q3 1.351 (0.488, 3.745) 0.562

Q4 1.428 (0.510, 4.001) 0.498

Proportion of professional and 
technical workers

proportion among 
workers

Q1 Reference (0.995) 45.785 131.85

Q2 1.239 (0.346, 4.441) 0.742

Q3 0.880 (0.256, 3.021) 0.839

Q4 1.125 (0.356, 3.559) 0.841

Table 2.  Poisson regression results using quartile categories of explanatory variables. Each estimation result of 
Poisson regression model using quartile categories (Q1, Q2, Q3, and Q4) of one explanatory variable (shown in 
the 1st column) consists of four rows to report the estimated coefficients of the four quartile categories. For each 
model, the lowest quartile (Q1) is set as the reference category. Estimates of intercept terms were omitted. n = 59 
(municipalities) for all of the models. A small Wald test p-value indicates that the coefficient is considerably 
different from that of the reference category. AIC, Akaike information criterion; FNPP, Fukushima Daiichi 
Nuclear Power Plant; N/A, not applicable; CI, confidence interval.
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Secondly, even if the guidelines for testing were unchanged during the study period, the actual practices of 
testing may have differed at different time periods after the disaster, depending on differences in the residents’ 
anxiety about radiation exposure in different regions. Among approximately 2,000 persons who underwent con-
firmatory testing, the biopsy rate to obtain cytological diagnosis was the highest (47.7%) in the 13 municipalities 
with evacuation zone, possibly reflecting patients’ high anxiety about radiation contamination; this rate was the 
lowest (16.7%) in the Aizu region28. Similar to the argument concerning rates of non-participation, although 
there is a possibility that the difference in biopsy rates could induce overestimation of diagnosed thyroid cancer in 
the most contaminated region, we did not observe excess prevalence rates in that region during our study period. 
However, further careful consideration is needed to determine possible causes of biases regarding regional prev-
alence rates of thyroid cancer.

Thirdly, since there were numerous possibilities when constructing regional indicators, there is the possi-
bility of identifying a meaningful regional predictor of thyroid cancer prevalence in future. Furthermore, since 
we could not manipulate the definition of the basic spatial units, our analysis was dependent on the current 
municipalities. We might have failed to detect smaller clusters of the disease within a municipality, although such 
small-scale analysis could suffer from the small number of cases more seriously compared to the analysis at the 
municipality level.

Fourthly, our study design is ecological, and individual factors, apart from age and sex, were not assessed for 
standardisation of prevalence. Further studies are needed that include more individual factors such as family 
history concerning the disease and lifestyle (including dietary habits, obesity and overweight, and radiation expo-
sure including medical use)29 as well as exposure to radioactive iodine. Finally, we did not consider the temporal 
difference in the primary examination. It has been pointed out that the age-at-exposure distribution of cases in 
the first round TUE shows increasing risk at older ages (i.e., exposed as adolescents) while the distribution for 
those cases occurring after the CNPP accident shows the opposite pattern, a sharp increase in youngest ages at 
exposure. This difference indicates that the age distribution of cases in the first round TUE follows the normal 
increase in incidence of the disease with age30. Ohira et al. found no contribution of the primary examination date 
to being diagnosed with thyroid cancer at the individual level in the first round of TUE12.

While our results indicate that the thyroid cancer cases detected through ultrasound examination in the first 
four years after the FNPP accident are unlikely to be attributable to regional factors, including radiation exposure 
resulting from the FNPP accident, further studies are needed to consider longer-term health outcomes of the 
accident in future rounds of TUE31.

Methods
Study subjects.  A total of 367,649 children and adolescents (<19 years of age at the time of the accident) 
were registered as the target population in the first round of TUE according to the latest summary report of the 
program28. The 59 municipalities at the primary examination were allocated by fiscal year: 2011 for the evacuation 
zone comprising 13 municipalities near the FNPP, 2012 for 12 municipalities in the middle part of the prefecture, 
and 2013 for the remaining regions including the most inland part, Aizu, and coastal regions except the evac-
uation zone (34 municipalities). Since there were late examinees, the first-round examination included 300,473 
persons who underwent primary examination from October 2011 to April 2015. When the primary examination 
using ultrasonography found nodules (size 5.1 mm or more) or cysts (size 20.1 mm or more) or identified the 
urgent need for confirmatory testing due to clinical reasons, confirmatory examinations were recommended. 

Figure 4.  Result of sensitivity analysis of the effects of undiagnosed positive examinees at primary examination 
on p-values of the spatial analysis. Box-plots were drawn by 100 Monte Carlo simulation runs for p-value of the 
most likely cluster computed by flexibly shaped spatial scan statistics, the adjusted p-value of maximised excess 
events test (MEET), and Wald tests of univariate Poisson regression about the coefficient of the explanatory 
variable. The white circles represent the p-values obtained from the analysis not considering the effects of 
undiagnosed positive examinees (the same numbers reported in Figs 2 and 3 and Table 1).
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Confirmatory testing included a detailed ultrasound, blood testing, urine analysis, and fine-needle aspiration 
cytology (FNAC) if needed. Details of the survey protocol are provided elsewhere16.

The Fukushima Medical University carried out the ultrasound examination programme and compiled the sur-
veillance database which was the data source for this study. The dataset as of 27 February 2017 included 299,908 
persons who underwent the primary examination. We excluded 1,523 persons who did not live in Fukushima 
Prefecture when the earthquake occurred on 11 March 2011. It should be noted that the excluded population 
included one thyroid cancer case. We further excluded 3,353 persons who did not provide information on res-
idential municipality on the day of the earthquake. Consequently, data on the 295,032 subjects who underwent 
primary examination were analysed in this study. Among 2,246 examinees who tested positive in the primary 
examination, 2,051 (91.4%) underwent confirmatory testing. There were 115 cases that were classified as malig-
nant or highly suspicious of malignancy based on FNAC at confirmatory testing. We regarded these cases as diag-
nosed thyroid cancer cases for this study. These cases were aggregated by municipality for this analysis. According 
to the summary report of TUE28, the malignancy rate after surgery for the FNAC-based diagnosed thyroid cancer 
cases was 99.0% for the first round TUE (102 FNAC-based diagnosed cases received surgery, and of those, 101 
cases were post-surgically confirmed with thyroid carcinoma).

This study was approved by the Ethics Committee of the Fukushima Medical University (approval no. 1318). 
Written informed consent for the study was obtained from the parents of every participant. All methods were 
carried out in accordance with the applicable guidelines and regulations for the use and analysis of the Fukushima 
Health Management Survey data, managed by the Radiation Medical Science Center, Fukushima Medical 
University.

Spatial statistical analysis.  Since age and sex are the most established determinants of thyroid cancer32, we 
used the sex and age-standardised prevalence ratio at the municipality level as follows:

=spr o e/ ,i i i

where i is the index of the municipality, oi is the number of observed cases of thyroid cancer and ei is the sex- and 
age-adjusted expected number of cases, also defined as:

∑=e pop pr ,i
k

ik k

where k is the index of sex (male and female) and 5-year age group (0–4, 5–9, 10–14, 15–19, and 20 or older), 
popik is the number of primary ultrasound examinees of the kth group in the ith municipality, and prk is the pre-
fectural marginal prevalence rate of the kth group. The age groups were based on the age of the examinees when 
they underwent the primary examination. We assume that the geographic distributions of observed cases, {oi}, 
were independently and randomly generated by the Poisson distribution with the expected number of cases, {ei}:

~o Poisson r e[ ],i i i

where ri is the relative risk of thyroid cancer in the ith municipality. The null hypothesis of our spatial analysis is 
the situation of geographically homogeneous risk (ri = 1 for all i). In other words, the hypothesis means that the 
prevalence rates of thyroid cancer are only determined by the age and sex distribution of examinees.

Method 1: detecting locally elevated risk regions.  An alternative hypothesis based on the above null 
hypothesis is that there were regions with higher risks compared to the others. Kulldorff15 proposed an algorithm 
using a circular scan window which exhaustively searches for elevated risk regions among the set of all possible 
centre locations and sizes of circle window. The method uses likelihood ratio statistics by comparing risks inside 
and outside a circular window region. The window region with the highest likelihood ratio is called the ‘most 
likely cluster’. A Monte Carlo simulation under the assumption of homogeneous risk provides the null distri-
bution of the statistics by which we may test the significance of the most likely cluster. Since the test statistic is 
defined by only one value in the entire study region, this method avoids the problem of multiple testing.

Tango and Takahashi21 proposed Flexscan to search for irregularly-shaped clusters with elevated risk. In this 
method, scanning windows are defined as a set of topologically connected spatial units (sharing a border point 
or line). If the true cluster is non-circular (e.g. linear), the modified spatial scan statistic is likely to have stronger 
power compared to the traditional circular scanning. Radiation dose is distributed in a non-circular form because 
radioactive plumes from the FNPP were carried by the wind; areas with high doses stretched from the FNPP in a 
north-westerly direction and then moved southward in the most northern part of the prefecture. Thus, if the dis-
tribution of standardised prevalence ratio is associated with radiation exposure, we expect that the flexibly shaped 
scan statistic is more likely to detect the elevated risk regions compared to the traditional circular scanning. The 
results may highlight specific regions with high risk on the map. For the computation, we used Flexscan version 
3.1.2. For the technical details on this method, see Supplementary Note.

Method 2: detecting general clustering tendency.  A tendency of clustering of prevalence can be con-
sidered as a positive spatial autocorrelation of risks. Detection of such a tendency may indicate that the risk of 
thyroid cancer has a spatial structure reflecting the distributions of some geographic factors. Tango’s MEET22 is 
considered the method with the highest power for detecting general tendency of spatial clustering33.

The test has two phases. Firstly, it measures the C-index of clustering tendency which requires a scale param-
eter, which determines “closeness” in geographic space in advance. Although the C-index can be used for statis-
tical testing, the result depends on the choice of scale parameter. Searching for the optimal (most probable) scale 
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of spatial clustering by testing different scale parameter series results in the multiple comparisons/testing. The 
second phase of MEET involves computing the adjusted p-value of clustering tendency with a predefined set of 
possible scale parameters and Monte Carlo simulation evaluation, by considering the statistical uncertainty of 
optimal scale selection. For the technical details, see Supplementary Note. We ran the R script of MEET26 in the R 
version 3.4 environment (The R Core Development Team, Vienna, Austria).

Method 3: Poisson regression.  Ecological regression is another approach to assessing whether regional 
relative risks are geographically structured, particularly for those which have geographical indicators of suspi-
cious factors of diseases under investigation. Poisson regression is a common choice based on the same assump-
tion of Poisson process for disease clustering tests. A univariate Poisson regression using the log link function is:

∼o Poisson r e[ ],i i i

β β= +r xln( ) ,i i0 1

where xi is the explanatory variable in the ith municipality. We considered seven municipal indicators as explan-
atory variables: distance from the FNPP, the estimated external radiation dose, altitude, and several census-based 
socio-economic indicators.

Using focused tests which are designed to evaluate clustering around a pre-fixed geographic object, we 
selected the distance from the FNPP and the proportion of estimated external radiation doses of equal to or more 
than 1 mSv during the first four months after the accident at the FNPP. The distance variable was measured as the 
Euclidean distance from the FNPP to the town hall of each municipality. The information on estimated effective 
exposure to radiation from the FNPP was based on individual behavioural data that were collected as part of the 
Fukushima Health Management Survey. Following the methods of Ohira et al.12,13 who used the same informa-
tion for defining regions with different radiation dose levels, we defined the variable, external radiation exposure, 
as a surrogate collective indicator of thyroid equivalent dose.

Related to iodine deficiency is altitude, which is a known geographic risk indicator for thyroid cancer, as it is 
an indicator of low access to iodine-rich food, such as fish and seaweed18. We employed the altitude of the town 
hall locations as the representative value for each municipality.

Furthermore, we included 2010 census-based indicators. In several previous studies, rural-urban indices and 
areal SES indicators were prepared to capture the general characteristics of thyroid cancer geographic distribu-
tion19,20,34,35. Since there were no established rural-urban indicators in Japan, we included population density as 
a simple surrogate of urbanicity36, and the proportion of agriculture, forestry, and fisheries industries workers as 
a rurality indicator. Regarding areal SES, the rate of unemployment in the entire labour force was included as the 
most influential component of areal deprivation36. Finally, the proportion of professional workers was used as an 
index of affluence.

For every explanatory variable, we applied the untransformed values as well as the quartile categories for 
examining possible non-linear relationships. For the computation of Poisson regression, we used the “glm” func-
tion in the R version 3.4 environment. To measure the distance and the cartographic mapping, we used ArcMap 
10.5 (Environmental Systems Research Institute, Redlands, CA, USA). Euclidean distances were measured on the 
basis of map coordinates under rectangular plane (zone 9) projection with the Japanese Geodetic Datum 2011.

Sensitivity analysis of the undiagnosed positive cases on the spatial analysis.  To evaluate the 
uncertainty caused by the 195 undiagnosed positive examinees, we conducted a simulation-based sensitivity 
analysis for each method as follows:

Step 1: From those who accepted to undergo confirmatory testing, we computed the rates of diagnosed thy-
roid cancer cases among the positive examinees at primary examination by sex and 5-year age groups for the 
entire study region. We assumed that the rate was determined by sex and age, with no regional differences in the 
rates between positive examinees of the primary examination who accepted or declined to undergo confirmatory 
testing.

Step 2: Applying the binomial probability of being diagnosed cases with the rate computed above for each 
group of undiagnosed examinees by sex and age groups, we simulated the number of diagnosed cases among 
undiagnosed examinees for each municipality using random number generation. By adding them to the observed 
number of cases, we created a hypothetical dataset if every positive examinee underwent confirmatory testing.

Step 3: Using the simulated number of cases, we conducted the same analyses for cluster detection and Poisson 
regression.

Step 4: We repeated steps 2 and 3 for T times to obtain the distribution of statistical testing results, such as 
p-values.

We implemented this sensitivity analysis for flexibly shaped scan statistics, MEET, and Poisson regression 
using R scripts with T = 100.

Data Availability
The Radiation Medical Science Centre (RMSC) of Fukushima Medical University authorised us to analyse the 
current data of thyroid examinations from the Fukushima Health Management Survey (FHMS) in this study. The 
centre currently restricts usage of FHMS data to members or observers of special committees of the FHMS. T.N., 
K.T. and H.T. are observers in such special committees. The data are confidential and are not publicly available.
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