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Chromatin interactions and expression quantitative
trait loci reveal genetic drivers of multimorbidities
Tayaza Fadason 1,2, William Schierding1,2, Thomas Lumley3 & Justin M. O’Sullivan 1,2

Clinical studies of non-communicable diseases identify multimorbidities that suggest a

common set of predisposing factors. Despite the fact that humans have ~24,000 genes, we

do not understand the genetic pathways that contribute to the development of multimorbid

non-communicable disease. Here we create a multimorbidity atlas of traits based on pleio-

tropy of spatially regulated genes. Using chromatin interaction and expression Quantitative

Trait Loci (eQTL) data, we analyse 20,782 variants (p < 5 × 10−6) associated with 1351

phenotypes to identify 16,248 putative spatial eQTL-eGene pairs that are involved in

76,013 short- and long-range regulatory interactions (FDR < 0.05) in different human tissues.

Convex biclustering of spatial eGenes that are shared among phenotypes identifies complex

interrelationships between nominally different phenotype-associated SNPs. Our approach

enables the simultaneous elucidation of variant interactions with target genes that are drivers

of multimorbidity, and those that contribute to unique phenotype associated characteristics.
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The rising incidences of complex diseases and their
accompanying cost burdens1,2 are driving a shift in disease
research and management from the single-disease to a

broader paradigm that accommodates a patient’s overall health2,3.
At the same time, there is great expectation that personalised
medicine will aid in delivering medical care that is more suitable
to the individual. Completing this paradigm shift requires many
advances including a greater understanding of the genetic
aetiology of the observed multimorbidities, which remain largely
unknown4. The importance of understanding the genetic aetiol-
ogy of multimorbidity is further compounded by the fact that
almost 90% of single-nucleotide polymorphisms (SNPs)—a major
source of shared heritability of polygenic disorders—do not fall
within coding regions of the genome5.

Cross-phenotype genetic studies have been conducted on a
small number of complex traits (the largest one studied 42 traits6)
with known associations using methods that included systematic
reviews7, LD score regression8,9, polygenic risk scores10, Prob-
abilistic Identification of Causal SNPs11 and Bayesian colocali-
sation tests6 on Genome Wide Association Study (GWAS)
summary or molecular data. These studies6–8,10,11 typically use
SNPs, or the genes that are nearest to—or in LD with—the SNPs
as the putative genetic drivers of cross-phenotype associations.
These approaches are limiting as evidence increasingly shows that
gene regulatory elements (e.g. enhancers) can impact distant
genes more strongly than the genes harbouring, or closest to,
them as a result of physical interactions with distal chromatin
regions within the 3D organisation of the genome12–18.

In this study, we undertake a discovery-based approach to
identify spatial eQTL-eGene pairs (i.e. phenotype-associated SNP-
gene pairs that are supported by both interaction and eQTL data)
for all human traits within the GWAS Catalog. Our approach
identifies SNP-gene regulatory relationships, ~75% of which are
missed by proximity in the GWAS Catalog associations. The
integration of spatial data allows for the identification of trans-
eQTL associations. Using a convex biclustering algorithm, we
identify clusters of multimorbidities according to shared target
eGenes of traits. The loci at the centre of the resulting phenotype
clusters are subject to complex tissue and disease specific reg-
ulatory effects. The largest cluster, 40 phenotypes that are related
to fat and lipid metabolism, inflammatory disorders, and cancers,
is centred on the FADS1-FADS3 locus (chromosome 11). Lastly,
we show that eQTLs marked by common variants also have a
regulatory role in rare Mendelian disorders. Our results demon-
strate the utility of this approach in understanding the common
genetic aetiology of multimorbid traits.

Results
GWAS SNPs mark spatial regulatory regions. Disease-
associated SNPs often mark gene enhancers, silencers, and insu-
lators19. We set out to identify the genes whose transcript levels
are associated with regulatory regions marked by disease- and
phenotype-associated SNPs (daSNPs). We downloaded 20,782
daSNPs (p < 5 × 10−6) from the GWAS Catalog (www.ebi.ac.uk/
gwas/). The CoDeS3D pipeline14 was used to interrogate Hi-C
chromatin interaction libraries20 (see Methods) to identify genes
that are captured as physically interacting with the GWAS SNP-
labelled regions (Fig. 1a) within nuclei from one or more of seven
cell lines (GM12878, HMEC, HUVEC, IMR90, K562, KBM7 and
NHEK)20. The resulting 1,183,037 spatial SNP-gene pairs were
used to query the GTEx database (www.gtexportal.org, multi-
tissue eQTLs analysis v4) to identify spatial eQTL-eGene pairs,
out of which only 16,248 SNP-gene pairs had significant
(FDR ≤0.05) eQTL associations. Spatial SNP-gene pairs with
evidence of interaction in >1 cell lines or >1 replicates in a single

cell line are significantly more enriched (two-proportions Z-test,
p-value <2.2 × 10−16) for eQTL associations than pairs with only
one interaction in one replicate of a cell line (Fig. 1b).

A total of 7776 (~38.4%) of the GWAS SNPs analysed were
associated with a change in the expression (i.e. eQTLs) of 7917
eGenes at an FDR ≤ 0.05 (Benjamini Hotchberg14), for a total of
16,248 distinct spatial eQTL-eGene pairs (76,013 interactions in
different tissues). daSNPs with significant eQTLs are distributed
(range= 86–764) across chromosomes 1-22. The distributions of
daSNPs and spatial eQTLs correlate (Pearson’s r, 0.86 and 0.74,
respectively) with the sizes of the chromosomes, with chromo-
somes 1 and 21 having the most and least spatial eQTLs,
respectively (a in Supplementary Fig. 1). Similarly, the number of
spatial eGenes on chromosomes correlated (Pearson’s r= 0.86)
with the number of genes per chromosome (b in Supplementary
Fig. 1). Notably, none of the 182 daSNPs on chromosome X was
identified as having significant spatial eQTL effects with any gene
(b in Supplementary Fig. 1). However, expression of 41 genes on
the X chromosome is associated with spatial eQTLs from other
chromosomes (b and d in Supplementary Fig. 1). The under-
representation of GWAS SNPs and spatial eQTLs on the X
chromosome can be explained by the exclusion of X-linked
genetic variants from GTEx and two-thirds of GWAS21,22. As
none of the databases referenced here have Y or mitochondrial
data, there are also no SNPs nor spatial eGenes identified on
those chromosomes.

Only 24.3% of the spatial eQTL-eGene pairs matched the SNP-
gene mapping in the GWAS Catalog (Fig. 1c). 13,240 (75.7%)
spatial eQTL-eGene pairs are missed in the GWAS mapping of
genes to SNPs. Notably, the inclusion of spatial information was
associated with a similar increase in the detection of tissue-specific
eQTL-eGene regulation (Fig. 1c). This finding is consistent with
previous observations14,22 that highlighted the discordant results
between the nearest-gene and eQTL-based assignment of GWAS
SNPs to target genes. Of the 7917 affected eGenes, 70.0% (5545)
were associated with only cis-spatial interactions (i.e. both partners
are from the same chromosome and separated by <1,000,000 bp, as
defined elsewhere22,23), 19.3% (1528) by only trans-interactions
(i.e. 663 are affected by an eQTL SNP on the same chromosome
but separated by ≥1,000,000 bp, and 865 are affected by an eQTL
SNP from different chromosomes22,23), and 10.7% (844) by both
cis- and trans-interactions (Fig. 1c, a in Supplementary Fig. 2,
Supplementary Data 1). Approximately 49% of spatial eQTL SNPs
affect more than one gene (b in Supplementary Fig. 2). The spatial
eQTL-eGene Hi-C fragment loop distances range from 0 bp to 248
Mb (c in Supplementary Fig. 2). The most significant spatial eQTL-
eGene interactions involved associations between: (1) the long
intergenic non-protein coding RNA CRHR1-IT1 (Chr. 17) and
rs12373124, rs12185268, rs1981997, rs2942168, rs17649553,
rs17689882 and rs8072451 in subcutaneous adipose tissue (peQTL
range, 1.39 × 10−95–4.33 × 10−94); and (2) PEX6 (Chr. 6) and
rs9296404 in skeletal muscle (peQTL 1.59 × 10−93; c and d in
Supplementary Fig. 1).

To estimate how much functional information is gained by the
integration of spatial data, we took all 339 daSNPs on chromosome
22 and queried the GTEx v7 analysis for significant eQTL
associations. The GTEx-only method yielded 4408 eQTL associa-
tions, all of which were within 1Mb genomic distance (Fig. 1d, e,
Supplementary Data 2). We then analysed the same set of 339
daSNPs using the CoDeS3D pipeline, which integrates GTEx v7
analysis. The CoDeS3D approach identified 4543 spatial eQTL
associations of which 3542 (~78%) were also found in the GTEx-
only associations (Fig. 1d, e, Supplementary Data 2). 866 (19.6%) of
the GTEx-only associations, with eQTL normalised effect sizes
(NES, i.e. the slope of linear regression) of −1.11 to 1.15, were lost
in the CoDeS3D analysis due to lack of evidence for a spatial
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connection between the genomic fragments containing the SNP and
gene. Conversely, the integration of spatial data enabled the
detection of 1001 spatial eQTL associations, with eQTL NES
ranging between −1.61 and 0.74, that were not detected by the
GTEx-only method (Fig. 1d, f). These results are consistent with a
significant number of eQTL effects involving 3D looping interac-
tions, up to and beyond 1Mb. The absence of direct physical

contacts for the 866 eQTLs is consistent with alternative
mechanisms, including the diffusion of regulatory factors released
from the eQTL locus13, contributing to the regulatory network.

Multimorbid phenotypes cluster around shared eGenes. We
reasoned that the common pathogenesis seen in polygenic
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Fig. 1 Integration of interaction data identifies distant target genes of GWAS SNPs. A spatial SNP-gene pair is defined as interaction(s), in more than one cell
line, between the fragment harbouring the SNP and any fragment(s) in the region spanning the gene. In the cartoon example in a there are two unique
fragment interactions between the SNP and gene fragments. One interaction is captured in only one replicate, R1, of cell line, CL1. The second interaction is
captured in two replicates, R1 and R2, of cell line CL1, and one replicate, R1, of cell line CL2. Thus, the SNP-gene pair has a total of two fragment interactions,
and four supporting interactions. b Genome-wide SNP–gene pairs with ≥1 supporting interactions are enriched (two-proportions Z-test p-value < 2.2 × 10
−16) for eQTL association. c Integration of spatial data enabled the identification of genome-wide eQTL-eGene pairs that were missed by GWA studies,
which typically used linear proximity to identify the target gene. It is notable that the identification of eQTL-eGene pairs extended to tissue-specific effects.
d The majority of eQTL associations on chromosome 22 are identifiable by incorporating spatial information (i.e. Hi-C interaction data). Calculation of eQTLs
using GTEx alone identified 866 GTEx-only associations. By contrast, CoDeS3D identified 1001 associations that had a spatial component. e Integration of
spatial data allows for detection of distal eQTL associations on chromosome 22. ND not determinable. f The mean eQTL normalised effect size (NES) of the
1001 spatial eQTL informed associations, on Chr. 22, is significantly different from the mean eQTL effect size of the 866 associations from only GTEx. Centre
line, bounds of box, and whiskers of boxplots represent the median, 2nd and 3rd quartile, and minimum and maximum values, respectively
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diseases and phenotypes occurs because they share common
biochemical pathways and genes. To identify associations among
phenotypes, we populated phenotype matrices according to their
common spatial eQTL SNPs or eGenes (a and b in Supplemen-
tary Fig. 3, Supplementary Data 3). Q–Q plots of the ratios of
shared spatial eQTL SNPs and eGenes identified greater coverage
of intermediate values between 0 and 1 that was consistent with
increased information within the phenotype matrix that was
populated using the eGenes (a and b in Supplementary Fig. 3). To
ensure that the spatial eGene association pattern was non-ran-
dom, we generated 1000 null datasets by pooling together all
phenotype-associated spatial eGenes and randomly reassigning
them to phenotypes, such that each control phenotype had the
same number of eGenes as its corresponding test phenotype.
Phenotype matrices populated by the mean null phenotype
eGenes ratios had different association and distribution patterns
from those generated for the test phenotypes (c in Supplementary
Fig. 3, Supplementary Data 3).

Of the 1351 phenotypes analysed, 618 are significantly
associated with ≥4 spatial eGenes. Convex biclustering24 revealed
the intricate interrelationships among the 618 phenotypes based
on spatial eGene pleiotropy (Supplementary Fig. 4). Phenotype
clusters included: (a) closely related measures of a phenotype (e.g.
hypertension, blood pressure and pulse pressure); (b) phenotypes
which are observed as co- or multimorbid (e.g. white matter
hypersensitivities, stroke and dementia25; or ovarian cancer,
interstitial lung disease, Alzhiemer’s disease and other cognitive
disorders26–28); and (c) phenotypes that have controversial
reports of inter-phenotype association e.g. autism spectrum
disorder and iron biomarker levels29,30. Notably, the observed
pattern of multimorbidity derived from shared spatial eGenes is
different from the interrelationships between phenotypes with
≥4 spatial eQTL SNPs (Supplementary Fig. 5).

Multiple variants from one genomic region have previously
been associated with cross-phenotypes e.g. the IFI30 locus in
autoimmune diseases11, and the CDKN2B-ASI locus in coronary
artery disease, glioma and intracranial aneurysm31. However,
these studies did not resolve the target genes of the variants. It
is noteworthy that spatial eGenes that are common to
most phenotypes in the clusters we detected lie adjacent to each
other in a contiguous genomic region (typically 100–400 kb
in length) and are in cis-association with the eQTL SNPs.
This is exemplified by a subset of immune-related disorders
that cluster about the PGAP3–GSDMA locus (Chr. 17:
37,827,375–38,134,431; hg19); skin pigmentation and skin cancer,
which are clustered about the SPATA33–URAHP region (Chr.
16:89,724,152–90,114,191; hg19); and a mood disorder cluster
that is built about the NT5DC2-TMEM110 locus (Chr.
3:52558385–52931597; hg19; Supplementary Fig. 6). This study,
to the best of our knowledge, is the first to observe contiguous
target genes of spatial eQTL SNPs in complex cross-phenotypes.

The largest observed multimorbid cluster (Supplementary
Fig. 4, cluster#6) is an outgroup of phenotypes located in the
bottom left hand corner of the matrix that highlights inter-
relationships among polyunsaturated fatty acids (PUFAs),
Crohn’s disease, inflammatory bowel disease, colorectal cancer,
laryngeal squamous carcinoma, insulin sensitivity, comprehensive
strength index, and cholesterol levels (Fig. 2a). The cluster is built
about a 283 kb region on chromosome 11 that contains the
DAGLA, MYRF, TMEM258, RP11-467L20, FADS1, FADS2,
FADS3, and BEST1 genes (Fig. 2b; Supplementary Data 4).
Consistent with this observation, genetic variations in the FADS1-
FADS3 region have previously been associated with alterations in
the synthesis of PUFAs32, inflammatory bowel diseases33,
cholesterol levels and BMI34, coronary artery disease and type 2
diabetes35, and colorectal cancer36. Our discovery-based

approach also confirms earlier observations of pulmonary
multimorbidity and genetically controlled regulatory variation
in the CHRNA region37 (a in Supplementary Fig. 6 and
Supplementary Fig. 9).

Common genes are affected by different disease eQTLs. We
mapped the spatial eQTL-eGene interactions within the FADS1-3
locus (Fig. 3a) in order to investigate the effect of genetic variation
on the regulatory network for the multimorbid phenotypes
associated with the cluster. The transcription levels of the FADS1,
FADS2, TMEM258 and DAGLA genes, that are central to this
cluster, are associated with eQTLs that are located within these
genes and across the region (Fig. 3a). Nine of the putative reg-
ulatory regions are located within introns of genes (i.e. MYRF,
TMEM258, FEN1, FADS1, FADS2 and FADS3) in this locus.
Putative regulatory effects linking eQTLs in FADS1-3 with
DAGLA, or eQTLs in MYRF with FADS1-3 cross a topologically
associating domain (TAD) boundary located in the vicinity of
FEN1, whose transcription is not associated with any of the
eQTLs (Supplementary Fig. 7). Spatial eQTLs associated with
some phenotypes (e.g. LDL cholesterol, muscle measurement and
comprehensive strength index) are few and localised while others
(e.g. cis-trans-18:2 fatty acid, phospholipid) are dispersed across
the locus. However, despite this, almost all of the phenotype-
associated SNPs in this cluster are correlated with a change in the
transcript level of more than one gene (Fig. 3b). We also observed
this one-to-many SNP-eGene eQTL association in the pulmonary
cluster, including inter-TAD connections from the region marked
by rs8042374 (c in Supplementary Fig. 9). Collectively, these
results are consistent with previous reports of the formation of
complex networks of multiple long-range interactions by reg-
ulatory elements and gene promoters38.

eQTLs have gene- and tissue-specific effect patterns. SNPs that
are in high linkage disequilibrium (LD) might be predicted to
have inseparable regulatory effects on target genes. However,
given the composite nature of regulatory elements and networks,
it is likely that even linked SNPs affect different regulatory ele-
ments. Therefore, we obtained the effect sizes of spatial eQTLs
within the PUFA eGene cluster from different tissues (GTEx v7,
01/12/2017) to identify associations between eQTLs that are in
strong LD. We characterised two distinct patterns, i.e. groups A
and B, of eQTL associations with the target genes within the
FADS region (Supplementary Data 5). The tissue eQTL effect
patterns of the linked SNPs seem to be consistent with their
differences in allele frequency, as informed by the R2 and D′
scores (Fig. 4, a in Supplementary Fig. 8, Supplementary Data 5).
However, some exceptions exist e.g. in the CEU population
rs174574 (minor allele frequency, MAF, 0.63) in Group B and
rs1535 (MAF= 0.36) in Group A are in complete LD (R2=D′=
1) but have opposite effects on their common target genes. The
minimum and maximum effect sizes of rs1535 are −0.76 (FADS1,
peQTL= 5.3 × 10−21, cerebellum) and 0.8 (FADS2, peQTL= 2.3 ×
10−10, spleen, while the maximum and minimum effect sizes of
rs174574 are −0.72 (FADS2, peQTL= 1.5 × 10−8, spleen) and 0.73
(FADS1, peQTL= 1.5 × 10−18, cerebellum). By contrast, rs1000778
(MAF= 0.73) and rs422249 (MAF= 0.65) have a similar eQTL
effect pattern (Group B) on target genes, FADS1 and FADS2
despite lower levels of linkage (CEU R2= 0.365, D′= 0.753). We
observed similar patterns linking LD and regulatory effects within
the CHRNA locus (a and b in Supplementary Fig. 9). The mini-
mum CEU D′ and R2 scores for the eQTL SNPs in the CHRNA
locus is 0.715 and 0.097, respectively. Again, the tissue eQTL
effect pattern is similar to the R2 scores, which are allele
frequency-dependent LD measures.
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The spatial eQTLs in the fat metabolism cluster that are located
within the FADS1-3 locus are all associated with an inverse
relationship between FADS1 and FADS2 transcription levels
(Fig. 4, Supplementary Fig. 8). At the time of writing our results,
these inverse eQTL effects on FADS1 and FADS2 were also
reported in another study39. Our results reveal that FADS1 and
FADS2 are not the only genes affected in this region (b in
Supplementary Fig. 8). Wherever there is an eQTL effect on
MYRF, FEN1, and FADS3; the direction of the effect size is the

same as observed for FADS1. On the other hand, eQTL effects on
TMEM258 mirror those that occur at FADS2. Notably, all but five
eQTLs (i.e. rs174574, rs422249, rs174448, rs174449, and
rs100078) are associated with a negative effect on FADS1 and a
positive effect on FADS2 transcript levels (b in Supplementary
Fig. 8). It is possible that the opposite regulatory effect observed
for these five eQTLs represents allele flipping (Supplementary
Data 5). Our results indicate that a composite regulatory hub
forms from dispersed locations to regulate the convergent,
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of a gene name represent the percentage of phenotypes whose associated variants spatially affect the expression of that gene in the cluster e.g. the
expression of FADS1, FADS2 and TMEM258 are associated with eQTLs in 26 of the 40 phenotypes in the cluster (Supplementary Data 4)
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duplicated (61% amino acid identity and have 75% similarity32)
FADS1 and FADS2 genes.

Consistent with our understanding of tissue and cell type
specificity of gene regulation, the tissue eQTL associations
showed cell line-dependent enrichment patterns (Fig. 5a). The
strongest and weakest eQTL associations in subcutaneous adipose
were observed in the GM12878 and KBM7 cell lines respectively,
while in omental visceral adipose, they were observed in the
HMEC and NHEK cell lines. There was no correlation between

the total strength (i.e. p-values) of eQTL associations and the total
number of spatial interactions (a and b in Supplementary Fig. 10).
Similarly, the observed frequency of Hi-C fragment contact
counts of the eQTL-eGene pairs in the cell lines showed less tissue
specificity (Fig. 5b; c in Supplementary Fig. 10). There was a
strong positive correlation (r= 0.87) between the percentage of
spatial eQTL-eGene interactions and the number of RNASeq
GTEx samples in tissues (d in Supplementary Fig. 10).
Collectively, these results suggest that the frequency of spatial
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Fig. 3 Spatial eQTL-eGene interactions central to the fat metabolism cluster. a Transcript levels for genes located within Chr. 11: chr11:61447905–61659017
are associated with eQTLs located in clusters across the 283 kb locus. For simplicity, we grouped eQTLs according to separation in the linear sequence
such that they are located in different genes, or are separated by ≤5 kb. Genomic locations are from human genome Hg19 and the eQTL-eGene interaction
analysis used GTEx v4 (18/10/2016). b Phenotype-associated eQTLs are localised or dispersed across the FADS1 locus. eQTLs associated with cis-trans-
18:2 fatty acid levels are the most dispersed. eQTLs rs174545-50 are associated with the most phenotypes. The regulatory region span (in bp) includes the
spatial eQTL SNPs in the group. eQTL SNPs are coloured according to the putative regulatory regions in a
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Fig. 4 eQTLs have different effect patterns within the fat metabolism cluster. Spatial eQTLs have tissue-specific and LD-dependent effects on genes in the
FADS cluster. There is also an inverse association between the eQTL effects on FADS1 and FADS2. rs174574, rs422249, rs174448, rs174449, and rs100078
are associated with an increase in FADS1 and decrease in FADS2 transcript levels. All other eQTLs are associated with a decrease in FADS1 and increase in
FADS2 transcript levels. Effect sizes of spatial eQTL on eGenes were obtained from GTEx v7
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eQTL-eGene contact in cell lines are relatively uniform across
tissues but the eQTL effects in the cell lines are tissue specific.
This is consistent with previous results that show that transcrip-
tion is not necessary for the formation and maintenance of a
spatial connection40,41.

GWAS eQTLs spatially affect Mendelian genes. Rare monogenic
or Mendelian diseases are typically considered to be associated
with highly penetrant loss of function mutations. However, genes
linked to Mendelian diseases have also been implicated in

polygenic disorders42,43. Therefore, we determined if the spatial
eGenes we identified as being associated with complex diseases,
were also implicated in Mendelian diseases. Using the OMIM
database, a catalogue of associations between human genes and
mendelian traits, we identified that 62% (5069) of the spatial
eGenes are catalogued in the OMIM database (Fig. 6a, Supple-
mentary Data 6). This is consistent with the possibility that there
is a distal regulatory component in rare Mendelian disorders.

There are four gene-phenotype mapping categories in the
OMIM database: (1) the unknown defect category, in which a
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disorder is associated with a gene with no known functional role;
(2) the linkage category, which maps a gene to a disorder based
on linkage despite no mutation having been found in the gene yet;
(3) the mutation category, in which a mutation in the gene has
been identified as the basis of the mapped disorder; and (4) the
duplication category, which comprises disorders that are caused
by deletion or duplication of contiguous genes. Our method
captured a significantly low proportion (0.6%) of gene-phenotype
associations in the linkage category (15.4% of the total gene-
phenotype associations). During our investigation, we discovered
that the linkage category includes genes whose exact locations
and strands are yet to be resolved in major resources including
the UCSC genome browser, Ensembl, and Gene Cards. This may
explain why we detected a low number of associations in the
linkage category. By contrast, factoring in the 3D genome
organisation significantly increased the chance of identifying

gene-phenotype associations (i.e. from 81.9 to 98.2%) in the
mutation category (Fig. 6b), which is consistent with the
functional roles of the genes we identified.

Discussion
Here we created a genetic multimorbidity atlas of traits that have
the same set of genetic components (i.e. pleiotropy in spatial
eQTLs or eGenes) with no particular bias to causation, con-
founding or endpoint effects.

The integration of spatial data enabled the identification of
distal daSNP target genes that have been missed by proximity to
GWAS associations. Furthermore, our method also increased
the ability to detect eQTL associations that are >1Mb apart or
inter-chromosomal. It is important to note that our approach
identifies only regulatory interactions that require 3D looping as
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part of their mechanism of action. It remains likely that have we
missed regulatory associations that occur through alternative
mechanisms e.g. diffusion of regulatory factors, SNP–SNP, SNP-
non-gene regulatory effects, or non-coding RNAs.

We identified greater pleiotropy in human complex diseases
and phenotypes at the spatial eGene level than at daSNP level.
The correlation (r= 0.89) between number of daSNPs and spatial
eGenes suggests that phenotypes with greater number of asso-
ciated SNPs are better represented in pleiotropy. Previous studies
have reported pleiotropy in complex traits44. Our findings are
consistent with the work of Sivakumaran et al.44 in 2011, who
reported 16.9 and 4.6% pleiotropy at the gene and variant levels.
However, our study differs from theirs in significant ways as
Sivakumaren et al.: (1) used 1687 SNPs that satisfied the GWAS
significance threshold (p-values < 5 × 10−8); (2) adopted the tar-
get genes that were suggested by the authors of the GWAS,
annotated in the GWAS Catalog, or are in LD with tag SNPs; and
(3) reported that variant pleiotropy is associated with gene
location, and that exonic variants are more pleiotropic than
intergenic variants. By contrast, we used 7776 SNPs with sug-
gestive GWAS p-values (<5 × 10−6) and defined the target genes
using spatial eQTL evidence. Notably, we find that spatial eQTLs
within 1 megabase of eGenes are more than twice as common as
eQTLs within genes (a in Supplementary Fig. 2). The integration
of genomic organisation information into the interpretation of
SNP function enabled the identification of novel regulatory
interactions in complex traits. Further empirical studies are
required to validate these interactions.

We hypothesise that the spatial eGene pleiotropy we identified
within the phenotype clusters makes a biological contribution to
the multimorbidity between the phenotypes. The most common
genes in the multimorbid clusters are typically located adjacent to
each other in a contiguous genomic region (Fig. 4 and Supple-
mentary Fig. 9). We propose that these regions comprise different
composite regulatory elements, each having a distinct and dis-
tinguishable effect on the genes therein, which in turn play a role
in the pathogenesis of the associated complex phenotypes. The
effects of these composite regulatory elements are reflected in the
LD architecture of the regions. The LD data was from the 1000
Genomes CEU population (whereas the GTEx population is
85.2% Caucasian), however the results indicate that the inheri-
tance of these regions may be linked to physical association
between regions that are separated in the linear sequence.
Moreover, the finding of large effect sizes for eQTLs involving
variants in genomic regions with low LD is consistent with pre-
vious observations of greater deleterious effects, and larger per-
SNP heritability45 for poorly linked variants, while genomic
regions with high LD have lower heritability and greater exonic
deleterious effects46.

The concentration of multiple intronic spatial eQTLs within
low recombination cluster regions indicates inherited allelic het-
erogeneity (i.e. multiple signals at a locus that affect a trait)47.
This is consistent with evidence that discrete multiple variants
(and not a single causal variant) within an LD block impact
multiple linearly separated enhancers and the expression of target
genes11,48,49. However, causative variants cannot be separated
from disease modifiers at this level because LD is subject to allele
frequency, recombination, selection, genetic drift and
mutation50,51. As such, variants in LD can affect each other’s
statistical values52.

Our finding that FADS1 (along with MYRF, FEN1 and FADS3)
and FADS2 (along with TMEM258) are inversely associated with
eQTLs located across the FADS locus informs on the mechanism
through which genetic variation contributes to the biochemistry
of PUFA synthesis in complex multimorbid disorders. FADS1
and FADS2 encode the delta-5 (D5D) and delta-6 desaturase

(D6D) enzymes, respectively, which catalyse the rate-limiting
steps in PUFA biosynthesis respectively32,53. Inhibition of D6D,
which acts upstream of D5D in the pathway, has been correlated
with decreases in inflammation in several rodent studies53–55.
Our results are consistent with a significant genetic (the FADS1
variant rs174548 [Fig. 4; Supplementary Fig. 8]) contribution to
reduced expression of D5D, which in turn leads to a build-up of
pro-inflammatory eicosanoids (via n-6 PUFA). Notably, only 5
genetic variants (rs422249, rs174448, rs174449, rs1000778 and
rs174574) increase D5D transcript levels and thus favour the
synthesis of anti-inflammatory eicosanoids.

TAD boundaries are generally considered to be conserved
across tissues and developmental stages56,57. However, differences
in TAD formation do occur58,59. We observed both intra- and
inter-TAD spatial eQTL-eGene interactions, in addition to eQTLs
involving variants located at TAD boundaries. For example,
eQTLs rs8042374 in the CHRNA locus (about which the lung
disorders cluster, Supplementary Fig. 9) and rs174537 in the
FADS locus (Supplementary Fig. 7) both lie at a TAD boundary.
This is consistent with observations that genetic mutations at
TAD boundaries can impact on enhancer-promoter
interactions60,61. It remains possible that cell line, develop-
mental or cellular state-specific chromatin interactions62,63 have
been missed in the HiC libraries we used to identify the eQTL-
eGene and inter-phenotype relationships due to the heterogeneity
of sources of the GWAS, HiC, and GTEx data. Future work can
overcome this limitation by focusing on tissue-specific Hi-C
library formation to enable the teasing apart of the nuances
associated with cell and tissue-specific chromatin interactions in
the complex disorders of interest (e.g. using pancreatic islet for
type 2 diabetes64).

Several studies have shown that both large-effect rare variants
and small-effect variants are associated with complex
diseases49,65,66. Yet, there is no evidence that the rare variants
located at the gene locus are the main drivers of the genetic
variance67. Our analysis of the OMIM database suggests that
genes harbouring rare variants with large effects are also distally
regulated by common variants with small effects.

We hypothesise that the common genes within a phenotype
cluster highlight the underlying molecular mechanisms that drive
shared multimorbidity (Fig. 7a). By contrast, the unique pre-
sentations of individual phenotypes within a multimorbid cluster
result from molecular mechanisms driven by genes that are not
shared by other members of the cluster (Fig. 7a). The genetic
contribution to the regulation of multimorbidity is explained by
three non-exclusive models: (1) genetic variants that are asso-
ciated with more than one disease phenotype affect the same
target genes (Fig. 7b), indicating genetic pleiotropy; (2) different
genetic variants associated with the multimorbid phenotypes
mark a single regulatory element (e.g. a super-enhancer) and thus
common gene(s) (Fig. 7c); or (3) different variants each marking
different regulatory elements that target the same gene (Fig. 7d).

In conclusion, the integration of spatial interaction and gene
eQTL information with phenotype association data leads to the
identification of the genetic components that encode the mole-
cular mechanisms that underlie both the multimorbidity and the
unique development of complex disorders and traits. Further
refinement of these relationships will require empirical studies
that integrate multi-omics and epigenetic information on cells
and tissues from patients with multimorbid disorders.

Methods
Data and reference files. The genetic variants used in this study were single-
nucleotide polymorphisms (SNPs) from all traits in the GWAS Catalog (www.ebi.
ac.uk/gwas; v1.0.1, downloaded on 25 August 2016) with p-values < 5 × 10−6. We
defined a phenotype as the trait associated with a SNP in the GWAS Catalog. A
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composite phenotype was created when more than one trait are associated with a
SNP in a single study. Genomic positions of SNPs were obtained from the human
hg19 genome build chromosome bed files downloaded from the NCBI (see Data
Availability). We used the GENCODE transcript model (see Data Availability) as
the reference for gene annotations. The GENCODE transcript model is also used in
GTEx. All isoforms of a gene were collapsed into a single composite gene region.
The human genome reference used in this study is the hg19 (GRChr37) build of the
human genome release 75 (see Data Availability).

Identification of spatial SNP-gene pairs. Rao et al20 have previously prepared
high resolution Hi-C chromatin interaction libraries of the seven cell lines (i.e.
GM12878, HMEC, HUVEC, IMR90, K562, KBM7 and NHEK) used in this study.
In summary, they used an in-house pipeline that included BWA alignment of
paired end reads against the hg19 build of the human genome. They then filtered
out ambiguous alignments, difficult to align read pairs, and duplicates. We
downloaded the cleaned mapping locations of Hi-C read pairs (i.e. HIC*_mer-
ged_nodups.txt files) from Gene Expression Omnibus (GEO accession number=
GSE63525, *Supplementary Table 1) using the download_default_data module in
CoDeS3D. The required data format is such that the rows in the interaction file
describe the alignment of both read pairs (i.e. 1 and 2) with the following columns:
read name, strand1, chromosome1, position1, fragment1, strand2, chromosome2,
position2, fragment2. CoDeS3D works with any Hi-C pipeline that can generate
interaction files in the required data format (e.g. HOMER, Juicer).

The hg19 human genome sequence was digested with the same restriction
enzyme employed in preparing the Hi-C libraries (i.e. MboI) using the Restriction
package of Biopython in the digest_genome module of CoDeS3D. The genome
digestion produced a table of DNA fragments, which is queried by the
process_inputs and find_interactions modules of CoDeS3D to identify the
fragments harbouring SNPs, and their paired fragments. Next, CoDeS3D.
find_genes was used with the intersect command in pybedtools to identify paired
fragments that overlap with a composite gene region within the reference genome
(Fig. 1a). There was no binning or padding around restriction fragments to obtain
gene overlap. Genes within, or overlapping, restriction fragments, which are in
contact with fragments containing the daSNPs were identified as spatial pairs to the
SNP-containing fragments.

Identification of spatial eQTL-eGene pairs. The resulting SNP-gene pairs were
then used to query the GTEx database (www.gtexportal.org, multi-tissue eQTLs
analysis v4) to identify eQTL-eGene pairs i.e. SNPs that are associated with a
change in the expression genes in at least one tissue. The Test Your Own API on
the GTEx portal allows for the analysis of both cis and trans eQTL associations.
Spatial SNP-gene pairs that have no eQTL association are excluded from the
subsequent steps, which include multiple testing. The false discovery rate of the
eQTL associations p-values were adjusted using the Benjamini–Hochberg

procedure, and associations with adjusted p-values < 0.05 were deemed spatial
eQTL-eGene pairs.

Construction of phenotype matrices. A mxn matrix of ai,j was constructed, where
m and n are the same set of phenotypes and a is the proportion of eGenes in
phenotype i that are common with phenotype j. We defined a phenotype as the
trait associated with a SNP in the GWAS Catalog. Sometimes more than one trait
are associated with a SNP in a single study, in that case we created a composite
phenotype of the traits. The pairwise ratio of common eGenes between phenotype i
and phenotype j was calculated as the number of their common genes divided by
the total number of eGenes associated with phenotype i,

ratio i ¼ eGenesi\ eGenesj
eGenesi

ð1Þ

A similar matrix of pairwise eQTL ratios was also constructed.
To control for the eGene matrix, all 7917 eGenes were pooled together and

randomly assigned to phenotypes so that each phenotype in the control matrix had
the same number of eGenes as its corresponding phenotype in the eGene matrix.
The pairwise ratios of common eGenes among the phenotypes were calculated as
done in the eGene matrix. 1000 different null datasets were constructed in this
manner and the mean matrix was calculated.

Convex biclustering of phenotypes. To group phenotypes based on the eGenes
they share, we selected only phenotypes that have ≥4 eGenes in common. We used
the cvxbuclustr R package, a convex biclustering algorithm that simultaneously
groups observations and features of high-dimensional data24. A combined Gaussian
kernel with k-nearest neighbour weights of the phenotype eGene ratios matrix was
constructed. A biclustering solution path of 100 equally spaced γ parameters from
100 to 103 was initialised and a validation using the cobra_validate function was
performed to select a regularisation parameter γ, on which the biclustering models
would be based. The biclust_smooth function was used to generate a bicluster
heatmap of data smoothed at the model with the minimum validation error (Uγ*).

Multimorbidity analysis. To identify eGenes that are central to phenotype
biclusters, an eGene commonality index was calculated for each eGene in the
cluster. We defined the commonality index of an eGene as the ratio of phenotypes
in a cluster that are associated with that eGene. Mapping of eQTL-eGene inter-
actions and their effects in the fat metabolism cluster was based on GTEX v7 multi-
tissue analysis and hg19 genome assembly respectively. The linkage disequilibrium
analysis of eQTLs in the FADS region was done on CEU population data obtained
from LDLink 3.0 (https://analysistools.nci.nih.gov/LDlink/)68. Visualisation of Hi-

Unique A genes
define A’s distinct
mechanisms

Unique B genes
define B’s distinct
mechanisms

Common genes
define comorbid
mechanisms

Disease A

Disease B

a b

c

d

SNP

Gene

Regulatory
element

Regulatory
interaction

Fig. 7 Schematic model of gene pleiotropy in multimorbidities. a Common target genes between any two complex disorders highlight the molecular
mechanism(s) that underlie their common pathogenicity. The sets of target genes that are unique to the disorders represent the mechanisms that make
the disorders different. Gene pleiotropy in multimorbidities of complex disorders can occur when b a variant associated with the disorders marks a
regulatory element that target the common gene; c different variants associated with different disorders mark the same (super)-regulatory element that
impacts the common gene; or d different regulatory elements marked by different variants impact the common gene
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C, H3K4me1, H3K27ac, DNAse and Pol2 data in the GM12878 cell line was done
with HiGlass (higlass.io)69.

OMIM analysis. The ‘genemap2’ data was obtained from the OMIM database
(omim.org, accessed 11/08/2017). Spatial eGenes that are included in the OMIM
database were analysed for gene-phenotype mapping methods and compared with
the OMIM genes. OMIM’s phenotype-gene mapping methods are numbered thus:
(1) Gene has unknown underlying defect but is associated with the disorder. (2)
Disorder is mapped to gene based on linkage but mutation in gene has not been
found. (3) A mutation in the gene has been identified as the basis of the mapped
disorder. (4) Disorder is caused by deletion or duplication of contiguous genes.

URLs. For GWAS Catalog, see https://www.ebi.ac.uk/gwas/. For GTEx portal, see
https://www.gtexportal.org/home/. For LDLink 3.0, see https://analysistools.nci.
nih.gov/LDlink/. For HiGlass, see higlass.io.

Code availability. CoDeS3D pipeline is available at https://github.com/
alcamerone/codes3d [https://doi.org/10.5281/zenodo.1478239]

The cvxbiclustr R package version 0.0.1 was used for convex biclustering.
All Python and R scripts used for data curation, analysis, and visualisation are

available at https://github.com/Genome3d/multimorbidity-atlas [https://doi.org/
10.5281/zenodo.1479964]

R version 3.3.1 and RStudio version Version 1.0.143 was used for all R scripts.
All python scripts are based on Python 3.6.6 except for CoDeS3D, which is

based on Python 2.7

Data availability
The dataset generated by the CoDeS3D pipeline that support the findings in this
study are available in figshare with the identifier https://doi.org/10.17608/k6.
auckland.6459728.v1. Supplementary Data 1 is available in figshare with the
identifier https://doi.org/10.17608/k6.auckland.7295681. Supplementary Data 2 is
available in figshare with the identifier https://doi.org/10.17608/k6.
auckland.7308455. Supplementary Data 3 is available in figshare with the identifier
https://doi.org/10.17608/k6.auckland.7295687. Supplementary Data 4 is available is
available in figshare with the identifier https://doi.org/10.17608/k6.
auckland.7295702. Supplementary Data 5 is available in figshare with the identifier
https://doi.org/10.17608/k6.auckland.7295711. Supplementary Data 6 is available
in figshare with the identifier https://doi.org/10.17608/k6.auckland.7295843. Source
data underlying Figs. 1b, c, e, f, 4, 5a, b, 6a, b, and Supplementary Figs. 1a–d, 2a–c,
3a–c, 4, 5, 6a–d, 8a–c, 9a, b, and 10a–d are provided as a data source at figshare
[https://doi.org/10.17608/k6.auckland.7308944] and are also referenced in the
visualization.Rmd R Markdown file in the Github repository [https://github.com/
Genome3d/multimorbidity-atlas/]. The GWAS Catalog associations (version 1.0.1)
data are available at https://www.ebi.ac.uk/gwas/docs/file-downloads. The Hi-C
data20 that support the findings in this study are available from GEO with
accession number, GSE63525. Accession numbers of cell replicates are given in
Supplementary Table 1. Human genome build hg19 (GRChr37) was downloaded
from ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/. SNP annotations
(human genome, build hg19) were obtained from ftp://ftp.ncbi.nih.gov/snp/
organisms/human_9606_b146_GRCh37p13. Gene annotations (Transcript model
from GENCODE) were downloaded from http://www.gtexportal.org/static/
datasets/gtex_analysis_v6p/reference/gencode.v19.genes.v6p_model.
patched_contigs.gtf.gz
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