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Structural and chemical biology of deacetylases for
carbohydrates, proteins, small molecules and
histones
Marco Bürger 1 & Joanne Chory1,2

Deacetylation is the removal of an acetyl group and occurs on a plethora of targets and for a

wide range of biological reasons. Several pathogens deacetylate their surface carbohydrates

to evade immune response or to support biofilm formation. Furthermore, dynamic acetyla-

tion/deacetylation cycles govern processes from chromatin remodeling to posttranslational

modifications that compete with phosphorylation. Acetylation usually occurs on nitrogen and

oxygen atoms and are referred to as N- and O-acetylation, respectively. This review discusses

the structural prerequisites that enzymes must have to catalyze the deacetylation reaction,

and how they adapted by formation of specific substrate and metal binding sites.

Intuitively, a deacetylation reaction requires prior acetylation. The introduction of an acetyl
group into a molecule results in an amide bond formation upon nitrogen acetylation (N-
acetylation) and in the creation of an ester bond if an oxygen is being acetylated (O-acet-

ylation). Historically, N-acetylation of biomolecules has received overwhelming attention over
O-acetylation, due to the discovery of outstanding and very general regulatory biological fea-
tures: In 1976, co-translational N-terminal protein acetylation was first reported1, a modification
that has a profound impact on protein stability and localization. The reaction is catalyzed by N-
terminal acetyltransferases (NATs), six of which have been identified in humans so far. Another
important discovery was the acetylation/deacetylation dynamics that control histone function
run by histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities2, and the fact
that acetylation is required to activate the tumor-suppressor protein p533. Another prominent
example is the acetylation of lysine 40 on α-tubulin, which is a requirement for stable micro-
tubule formation4–6. Compared to these important targets, O-acetylation has remained much
less explored. The most prominent example has been the acetylation of serine and threonine
residues by the bacterial YopJ effector family. The plague bacterium Yersinia pestis uses acet-
yltransferases to acetylate phosphosites within the MAPK pathway, thereby cutting off signal
transduction in the host cell and sabotaging immune response7. The YopJ superfamily of
acetyltransferases is conserved in animal and plant pathogenic bacteria8, and as a matter of fact,
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the structural details about YopJ activation and mechanism are
known from studies about HopZ1a and PopP2, which are pro-
duced by the phytopathogens Pseudomonas syringae and Ral-
stonia solanacearum, respectively9,10. It remains unclear whether
protein O-acetylation is exclusively a strategy used by pathogens
or whether it is also a common, native reaction, which dynami-
cally regulates the cellular phosphoproteome.

Besides the acetylation and deacetylation of amino acids, we
discuss how the high number of acetylated targets and different
target molecules has led to the evolution of an evenly high
diversity of deacetylating enzymes (Fig. 1). These—while having

basic catalytic chemistry in common—are characterized by spe-
cific structural features that allows them to recognize a high
variety of substrates: For example, the majority of acetylated
carbohydrates such as chitin, peptidoglycan, and N-
acetylglucosamine are modified with acetyl groups via an amide
bond on their nitrogen atoms11, with the exception of acetylxylan,
which is O-acetylated via an ester linkage (Fig. 2a). Finally, we
outline how small metabolic molecules with O-linked acetyl
groups such as the antibiotic cephalosporin C or the opioid heroin
(Fig. 2b) usually get deacetylated by promiscuous esterases12,13

and discuss the role of deacetylases in plant immunity.
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Fig. 1 Phylogenetic tree of the deacetylase families discussed in this review, showing NCBI reference sequences (RefSeq)87 accession numbers. Created
with SeaView 4.5.488. All protein structures herein were visualized with CCP4mg89. Proteins discussed in this review were taken to represent each family
and are displayed showing their folds, PDB codes and annotations from the CAZy database90 (CE4, CE7, and CE9)
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Carbohydrate de-N-acetylases
Oligomerized sugars are among the most abundant and most
durable building blocks in life14. Their diversity ranges from
chitin, which makes up the exoskeleton of insects and the cell
walls of fungi to peptidoglycan, the constitutive cell wall com-
ponent of many bacteria. Remodeling of these oligomers by
deacetylation has proven crucial for pathogenesis and host
immune evasion. Most of these modifications are N-acetylation
events and therefore, despite different folds, one common feature
of the deacetylating enzymes can be found in their active sites. To
break the amide bond, a His–His–Asp triad that binds a divalent
metal cation and a catalytic Asp–His pair with a nearby water
molecule are an often-found architecture15,16. The catalytic base
aspartate will abstract a proton from the water, making it a
nucleophile. This deprotonation is aided by the metal ion, which
decreases the pKa of the water. The catalytic acid histidine pro-
tonates the nitrogen-bound reaction intermediate, breaking the
amide bond and leaving a free amine and an acetate17,18. This
mechanism holds true not only for acetylated sugar oligomers but

for N-acetylation in general (Fig. 3a). Thus, the main differences
between the enzymes lie in their surface topology, accom-
modating substrates of different shapes and sizes. The crystal
structure of the chitin deacetylase ClCDA from the fungal plant
pathogen Colletotrichum lindemuthianum revealed a (β/α)(7)
barrel fold and a prominent cleft with strong negative charge as
binding site for the acetyl group19 (Fig. 4a). Deacetylated chitin
(chitosan) is a very poor substrate for chitinases20; therefore
deacetylation helps avoiding the creation of chitin breakdown
products, which would otherwise be recognized by the plant’s
immune system.

The crystal structure of 1-D-myo-inosityl 2-acetamido-2-
deoxy-alpha-D-glucopyranoside deacetylase (MshB) from Myco-
bacterium tuberculosis revealed a typical Rossman fold but also
features a strong electronegative surface cleft, which has a deeper
depression compared to the chitin deacetylase (Fig. 4b)21. The
substrate GlcNAc-Ins is not as large as the polymeric chitin;
therefore, a more profiled binding cleft has evolved, providing a
site located deeper in the protein to bind the acetyl group.
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Fig. 2 Overview of the diversity of deacetylase substrates discussed in this review. a Carbohydrates, b small molecules, and c amino acid residues. N-acetyl
are highlighted in blue and O-acetyl in red, respectively. Chemical structures were drawn using ChemDraw (Perkin Elmer)

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0214-4 REVIEW ARTICLE

COMMUNICATIONS BIOLOGY |           (2018) 1:217 | DOI: 10.1038/s42003-018-0214-4 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


GlcNAc-Ins is a precursor in the biosynthesis of mycothiol22, an
important reducing agent in actinomycetes including myco-
bacteria, helping to control reactive oxygen species. In contrast,
the periplasmatic, metal-dependent poly-acetyl-D-glucosamine
(PNAG) deacetylase from Bordetella bronchiseptica (BpsB) dis-
plays a (β/α)(7) barrel fold and a surface topology characterized by
a more distinct electronegative spot for binding of the acetate,
surrounded by less negative charge23. Deacetylation of PNAGs is
crucial for Bordetella biofilm stability and colonialization of the
respiratory tract. A recent study about PgaB and BpsB has
revealed that the proteins’ C-terminal domains, which were
previously thought to be catalytically inactive, have glycoside
hydrolase activity24. This activity requires deacetylated PNAGs.
The current model, therefore, suggests a sequential degradation of
PNAG molecules by PgaB proteins, first by deacetylating the
substrate and then by hydrolyzing the glycosidic bonds. For
reasons of clarity, the authors of the above-mentioned publication
have also introduced new names for B. bronchiseptica BpsB and
E. coli PgaB, which are now referred to as PgaBBb and PgaBEc,
respectively. In the crystal structure of PgaBBb, a nickel ion was
found in the catalytic center. Biochemical tests showed the
highest enzyme activity with Ni2+ and Co2+, and the Escherichia
coli homolog PgaBEc was found with a nickel cation in the metal
binding site, too25. Compared to the chitin deacetylase ClCDA,
the substrate binding site of PgaBBb is deeper, and the metal ion is
located more towards the center of the cavity (Fig. 4c). The dis-
tances of the metal ion to the side chains of the His/His/Asp triad
are smaller in the zinc-bound structure of ClCDA than in both
nickel-bound structures of PgaBBb and PgaBEc (Fig. 4g–i). The
higher mass of the atomic nucleus of zinc compared to nickel
causes a more contracted electron shell and consequently a
smaller atomic van der Waals radius of the zinc atom. The atomic
van der Waals radii of zinc and nickel are 1.39 and 1.63 Å,

respectively, and generally, the van der Waals radii decrease with
an increasing atomic mass within elements 19–30 in period 4 of
the periodic table26. Therefore, a slightly larger metal binding site
might be needed to accommodate a cobalt or nickel compared to
zinc. Although the differences in these distances are rather subtle,
they might be the reason why cobalt and nickel increase bio-
chemical activity of PgaB while the smaller zinc does not. A
smaller metal might be bound to the metal-binding triad with
insufficient affinity or might be inefficiently positioned towards
the catalytic water.

Compared to both PgaBBb and PgaBEc, the crystal structure of
the N-acetylglucosamine-6-phosphate (GlcNAc-6-P) deacetylase
from E. coli folds into a TIM barrel architecture and the protein
surface features a much less electronegative charge around the
substrate binding site27. Instead, the protein surface is more
hydrophobic around a distinct cavity of sharp electronegative
charge (Fig. 4d). Next to the entrance to the site, an electro-
positive spot for the coordination of the phosphate group of the
GlcNAc-6-P molecule is located. The catalytic centers of several
solved structures of GlcNAc-6-P deacetylases have turned out to
be relatively different regarding the side chains involved in metal
and substrate binding: The above-mentioned enzyme from E. coli
features a His/His/Glu metal binding site and a catalytic center
composed of Asp/Asn/Gln plus the nucleophilic water28. How-
ever, these asparagine and glutamine residues are substituted by
two histidines in the homologous enzyme from Thermotoga
maritima (PDB code 1O12). The ortholog from Bacillus subtilis
incorporates two divalent iron ions. It is assumed that one of the
two metals facilitates the nucleophilic attack activated by the
other metal through stabilization of the substrate29. Additionally,
the active GlcNAc-6-P deacetylase in B. subtilis is a dimer
(Fig. 4l), in which the His/His/Glu and His/His/Asp metal
binding sites are being contributed by one monomer and the
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substrate binding residues by the other monomer. Only upon
dimerization do the two parts come close enough to form an
active substrate binding site (Fig. 4m).

Another protein family, peptidoglycan deacetylases, also facil-
itate bacterial evasion of host immune response and are, there-
fore, important virulence factors. In particular, deacetylated
peptidoglycan is not recognized by mammalian lysozyme, which

requires the N-acetyl group for catalysis30. The peptidoglycan
GlcNAc deacetylase from Streptococcus pneumoniae displays a
prominent electronegative cleft on the protein surface, con-
stituting the substrate binding groove18. The cleft is surrounded
by charge as negative except for a few electropositive spots on the
side. The homolog from B. subtilis possesses a more hydrophobic
surrounding but both proteins have a His/His/Asp metal binding
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site and a His/Asp/water catalytic center in common31. Both
proteins have a (β/α)(7) barrel structure. Interestingly, the Strep-
tococcus enzyme was found with a zinc ion coordinated inside the
substrate binding site while attempts to bind zinc to the Bacillus
homolog failed. Instead, it was eventually complexed with cad-
mium. A comparison of the two metal binding sites showed
longer distances between metal-coordinating residues in the B.
subtilis structure compared to S. pneumoniae (Fig. 4 j–k), there-
fore a larger ion might be needed for activity (cadmium has a van
der Waals radius of 1.58 Å compared to 1.39 Å of zinc). In 2009,
the crystal structure of a biochemically uncharacterized, putative
amidase from the eukaryotic parasite Encephalitozoon cuniculi
was published32. No activity on any tested substrate has been
observed and distortions in the protein’s active site arrangements
underlined the importance of the correct positioning of the parts
that compose substrate binding site and catalytic center. The
shape of the substrate binding groove looks dissimilar to the ones
found in the previously discussed enzymes, and the active site
metal ion is located more than 5 Å away from the position found
in other deacetylases (Fig. 4e). In addition, the reaction-activating
aspartic acid has shifted away from the active site. Therefore, the
enzyme appears either generally catalytically inactive or it binds a
molecule structurally much different than previously tested sugar
substrates.

Another important enzyme implicated in pathogenicity is
UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deace-
tylase (LpxC). It catalyzes the first committed step of lipid A
biosynthesis33,34. Lipid A is the membrane anchor of lipopoly-
saccharide (LPS) or endotoxin, the major component of the outer
membrane of Gram-negative bacteria35. LpxC has a unique
overall fold that does not match any other known architectures.
LpxC has a zinc binding site composed of an aspartate and two
histidines36. The surface of the protein features a hydrophobic
tunnel going through the upper part of the protein to accom-
modate the lipid moiety and a strong electronegative substrate
binding site. It had been unclear whether a bifunctional general
acid–base glutamate in the active site would promote the
nucleophilic attack of a water, with a histidine stabilizing the
oxyanion intermediate37, but without acting as a general acid or if
the glutamate and histidine act as a typical general acid–base
catalyst pair38. The first mechanism is similar to the one found
for carboxypeptidase A39. Here, the glutamate activates the
nucleophilic zinc–water complex, but it also facilitates the col-
lapse of the tetrahedral reaction intermediate through partial
protonation of the amine leaving group. In the second mechan-
ism, the glutamate also activates the nucleophilic zinc–water
complex, but the amine leaving group is protonated by the
histidine, leading to the breakdown of the tetrahedral inter-
mediate. More recent crystal structures have supported the latter
model40.

Carbohydrate de-O-acetylases / acetylxylan esterases
Acetylxylan esterases or acetylxylan deacetylases are part of a
concerted enzymatic action to break down plant cell wall
xylan41–43, and they usually target the O-2 and/or O-3 position
on the acetylxylan molecule44. A 2006 study revealed the crystal
structures of two related metal-dependent xylan esterases from
Streptomyces lividans and Clostridium thermocellum45. The S.
lividans protein turned out reminiscent of the structural organi-
zation known from sugar de-N-acetylases, with a (β/α)(7) barrel
fold and a His/His/Asp triad binding a zinc cation. In contrast,
the C. thermocellum homolog displays a different loop con-
formation in the metal binding center plus a histidine to tyrosine
substitution, leading to a cobalt ion being coordinated by an
aspartate and a histidine. The second histidine is found replaced

by four water molecules. In both structures the nucleophilic water
is accompanied by a catalytic base aspartate and a catalytic acid
histidine. Interestingly, both enzymes displayed the highest
activity with Co2+, however, while the S. lividans protein retained
a third of its activity when provided Zn2+, the activity of the C.
thermocellum homolog was almost completely diminished. Both
enzymes were able to tolerate manganese.

Other xylan esterases have a different architecture: The struc-
ture of acetylxylan esterase (AXE II) from the fungus Penicillium
purpurogenum revealed a canonical SGNH hydrolase fold with a
catalytic triad comprising a nucleophilic serine, a catalytic acid
histidine and a catalytic base aspartate46. The mechanism of de-
O-acetylation is somewhat similar to de-N-acetylation but does
not involve a nucleophilic water or a metal ion. The reason for
this is the presence of a serine residue. Upon substrate binding,
the aspartate in the catalytic triad forms a low-energy barrier
with the histidine, increasing the histidine’s pKa on the imidazole
ring. The histidine will act as a general base and abstracts a
proton from the hydroxyl group on the serine, making it
nucleophilic. A tetrahedral reaction intermediate is then formed.
The proton is transferred to the ester bond, which breaks upon
protonation (Fig. 3b). A later crystal structure of AXE II from the
thermophilic soil bacterium Geobacillus stearothermophilus
showed the same organization of the catalytic site as the P. pur-
purogenum enzyme. Interestingly, the G. stearothermophilus
protein turned out to be an octamer, which was confirmed in
solution47. A possible reason for this quaternary structure could
be either specificity or higher catalytic efficiency since this orga-
nization moves the active sites of the monomers in close proxi-
mity to each other. The hydrogen bonds and π-stacking
interactions that stabilize the octamerization are located closely to
the active sites, suggesting that the multimeric arrangement might
stabilize the catalytic loops. Indeed, a follow-up study has men-
tioned dimerizing mutations of the protein that lead to a reduc-
tion in enzymatic activity48,49. Alternatively, the assembly might
simply increase stability, considering that G. stearothermophilus is
a thermophilic organism.

Multimeric cephalosporin-C and multi-substrate esterases
Cephalosporin C50 was first isolated from the fungus Acre-
monium51 and —like most other β-lactam antibiotics such as
penicillin52—targets bacterial cell wall biosynthesis53. The acetyl
group in cephalosporin C makes it a target for bacterial deace-
tylases, the activity of which leads to inactivation of the chemical.
The structure of a cephalosporin C esterase from Thermotoga
maritima has been solved and revealed a classical α/β hydrolase
fold and a catalytic Ser/His/Asp triad. The protein features an
electronegative binding site for the acetyl group right after the
active site serine and an additional, larger cavity immediately
adjacent to it54. This second depression most likely serves to
accommodate the bulky core structure of the cephalosporin
molecule. A homologous structure from Bacillus subtilis showed
an almost identical fold but displayed a less electronegative charge
on the surface and a smaller binding groove (Fig. 4f), possibly
indicating a slightly divergent substrate specificity12. One addi-
tional and interesting feature is the higher oligomeric order of the
proteins. The enzymes are native hexamers, with their active sites
pointing inwards a substrate tunnel, making their assemblies
reminiscent of the self-organizing proteasome architecture
(Fig. 5). In one of the T. maritima structures, the entrance to this
tunnel is covered by several phenylalanine residues, indicating a
possible gatekeeper role for these amino acids and a selection
towards more hydrophobic molecules. Both surface topology and
multimerization appear to contribute to the substrate specificity
of these enzymes, which is not limited to cephalosporin C but it is
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likely that they serve as a general de-O-acetylation conduit for
small molecules.

Another example of a hexameric and promiscuous detoxifica-
tion deacetylase is human carboxylesterase 1 (CES1)13. CES1 also
folds into a canonical α/β hydrolase architecture with a classical
Ser/His/Asp catalytic triad55. The specificity towards small
molecules in likely given by its oligomerization properties, with
the enzyme known for deacetylation of cocaine and heroin. CES1
exists in a trimer-hexamer equilibrium, with the hexamer com-
posed of two stacked trimers. Binding of a small molecule to the
allosteric Z-sites of the hexamer causes it to separate into two
active trimers. Like the active site, the allosteric site is pro-
miscuous too, and only the size of the molecule appears impor-
tant for binding to the Z-site. The reason for this allosteric

regulation is not fully understood but the fact that the inside of
the trimer is lined up with hydrophobic side chains (except for
the active sites) might require a higher oligomeric organization
for protein stability.

Histone / lysine deacetylases
Modification of histones has an important role in regulation of
chromatin structure and gene activity56, and are modulated by
the activities of histone acetyltransferases (HATs) and histone
deacetylases (HDACs)2. The acetylation occurs on lysine residues
lying in the N-termini of core histones57 but the activity of
HDACs is not limited to histones. HDAC6, for instance, deace-
tylates α-tubulin58. The enzymes’ cofactors divide them into two
major groups: zinc and NAD+ dependent59,60. Whereas zinc-
dependent HDACs are characterized by a canonical arginase fold,
the NAD+-dependent class displays a typical Rossmann archi-
tecture (Table 1, Fig. 1), a structural motif frequently found in
proteins that bind nucleotides. Sequence homology classifies them
in class I, IIa, IIb, and III HDCAs. Class I enzymes are expressed
in all tissues in humans and mice, and they feature a zinc binding
site made of an Asp/Asp/His triad and a catalytic site composed
of two histidines, one tyrosine, and a nucleophilic water. They
also bind a potassium ion about 7 Å away from the catalytic zinc
that might have a role in substrate binding61. Besides their
expression in a tissue-specific manner, one feature that distin-
guishes class IIa HDACs from class I enzymes is the presence of
an additional non-catalytic but structural zinc ion. This additional
metal is coordinated by two histidines and two cysteines, which
are strictly conserved within the class IIa family but absent in
other HDACs62.

Class IIa HDACs are catalytically weak deacetylases, due to the
substitution of the catalytically important tyrosine by a histidine,
and histones are not their substrates. The current thinking,
therefore, has accepted a non-catalytic role for class IIa HDACs.
Only their interaction in a complex with SMRT/N-CoR and
HDAC3, a class I HDAC, provides catalytic activity, which
entirely comes from the associated HDAC3 protein63. Class IIb
members strongly resemble class I enzymes, with slight differ-
ences in how the catalytic machinery functions. A study of the
class IIb HDAC6 suggests that the tandem histidines in the cat-
alytic site occupy separate roles as general base and general acid64.
In HDAC8, a class I HDAC, the second histidine serves as both,
general base and acid61.

Class III HDACs, also called sirtuins, have an NAD+-depen-
dent mechanism. The NAD+ forms a ternary complex with the
enzyme and the substrate. Nicotinamide is then released from the
NAD+, followed by the transfer of the acetyl group from the
substrate onto the ADP-ribose, leaving the substrate’s lysine
deacetylated. Thus, sirtuins possess both deacetylase and ADP
ribosyl transferase activities65. All sirtuins seem to have a con-
served histidine residue that acts as the general base, deproto-
nating one of the ribose oxygens66 (Fig. 3c).

In addition to these groups, plants express another family of
HDACs, called type-2 HDACs (HD2s). HD2s were first identified
in maize67, and have since been found in almost all land plants.
About 60% of HD2s contain a zinc-finger domain and HD2s
without this domain are only found in angiosperms68,69. HD2s
seem to be involved in leaf development70 and abiotic stress
response71, both of which are plant-specific functions. Although
there are reports suggesting that HD2s might have deacetylase
activity, as they seem to have a role in the deacetylation of nuclear
proteins72, and are able to modulate levels of histone acetyla-
tion73, direct biochemical or structural evidence proving that they
are deacetylases is still missing.

a

90°
b

Fig. 5 Some deacetylases achieve specificity through oligomerization. a
Oligomerization properties of small molecule deacetylases highlighting the
narrow tunnel entrance to the hexamer and b the active sites (yellow circle)
positioned towards the inside of the substrate conduit (PDB code 1ODS12).
The electrostatic surface potential is contoured from −12.8 kT e−1 (red) to
+12.8 kT e−1 (blue)
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N-acetyl-L-citrulline deacetylases
The first step in arginine biosynthesis is the acetylation of glu-
tamate. This is followed by the so-called acetyl cycle, in which the
acetyl group gets passed on from glutamate, finally leading to the
formation of N-acetyl-L-ornithine. N-acetyl-L-ornithine will then
be deacetylated, recycling the acetyl group onto glutamate,
thereby regenerating N-acetyl-L-glutamate and yielding L-orni-
thine, an arginine precursor74. This last step is catalyzed by the
enzyme acetylornithine deacetylase75. However, arginine bio-
synthesis in Proteobacteria follows a different path and does not
involve the direct deacetylation of L-ornithine but rather a
transcarbamoylation into N-acetyl-L-citrulline and its deacetyla-
tion to L-citrulline76,77. Thus, a different enzyme is needed: N-
acetyl-L-citrulline deacetylase (ACDase). In 2007, the crystal
structure of ACDase from Xanthomonas campestris was solved78.
The protein possesses a metal binding site of His/Asp/Glu that
coordinates a cobalt ion within an aminopeptidase architecture.
The cobalt is in contact with the nucleophilic water within the

catalytic site comprising a glutamate as a single bifunctional
general acid–base catalyst. The binding site constitutes a deep
electronegative cleft, with a long hydrophobic arm forming the C-
terminal domain. The fact that ACDases are Proteobacteria-
specific, which involves major pathogens, makes it an interesting
drug target.

Plant protein deacetylases
Recently, a family of plant-specific protein deacetylases has been
identified that are implicated in suppression of the host’s
hypersensitive response (HR) against pathogens. The protein is
called SOBER1, an α/β hydrolase highly related to acyl-protein
thioesterases79. An insertion in the catalytic lid-loop renders the
protein’s specificity into a protein deacetylase by blocking the
hydrophobic tunnel that would otherwise accommodate longer
substrates. The SOBER1 family can be further broken down into a
TIPSY1 group, which possesses deacetylase activity but does not

Table 1 Overview of the proteins and their molecular features discussed in this review

Name PDB code Substrate Co-factor Catalytic domain Biological function

Carbohydrate deacetylases
Colletotrichum lindemuthianum
CDA

2IW0 Chitin Zn2+ (β/α)(7) barrel Fungal chitin deacetylation,
evasion of plant host response

Mycobacterium tuberculosis
MshB

1Q74 GlcNAc-Ins Zn2+ Rossmann fold Biosynthesis of the bacterial
reducing agent mycothiol

Bordetella bronchiseptica
BpsB

5BU6 PNAG oligomers Ni2+ (β/α)(7) barrel Biofilm formation

Escherichia coli
PgaB

4F9D PNAG oligomers Ni2+ (β/α)(7) barrel Biofilm formation

Escherichia coli
NagA

1YRR,
2P50

GlcNAc-6-P Zn2+ TIM barrel Murein recycling

Thermotoga maritima
NagA

1O12 GlcNAc-6-P Zn2+ TIM barrel Murein recycling

Bacillus subtilis
NagA

2VHL GlcNAc-6-P 2 Zn2 TIM barrel Murein recycling

Streptococcus pneumoniae
PgdA

2C1G Peptidoglycan Zn2+ (β/α)(7) barrel Bacterial peptidoglycan
deacetylation, evasion of
immune response

Bacillus subtilis
PgdA

1W1B Peptidoglycan Cd2+ (β/α)(7) barrel Bacterial peptidoglycan
deacetylation, evasion of
immune response

Encephalitozoon cuniculi
U11_0510

2VYO Unknown Zn2+ (β/α)(7) barrel Unknown, likely inactive protein

Aquifex aeolicus
LpxC

1P42 UDP-N-acetylglucosamine Zn2+ LpxC fold Lipid A biosynthesis

Streptomyces lividans
Axe

2CC0 Acetylxylan Zn2+ (β/α)(7) barrel Plant cell wall degradation

Clostridium thermocellum
Axe

2C79 Acetylxylan Co2+ (β/α)(7) barrel Plant cell wall degradation

Penicillium purpurogenum
Axe2

1BS9 Acetylxylan SGNH hydrolase fold Plant cell wall degradation

Geobacillus stearothermophilus
Axe2

3W7V Acetylxylan SGNH hydrolase fold Plant cell wall degradation

Small molecule deacetylases
Thermotoga maritima AxeA 1VLQ,

3M81
Cephalosporin C α/β hydrolase fold Xylooligosaccharide/

Cephalosporin C hydrolysis
Bacillus subtilis
CAH

1ODS Cephalosporin C α/β hydrolase fold Xylooligosaccharide/
Cephalosporin C hydrolysis

Homo sapiens
CES1

1MX1,
1MX5

Small molecules α/β hydrolase fold Promiscuous multi-drug
degradation

Xanthomonas campestris
ACDase

2F7V N-acetyl-L-citrulline Co2+ Aminopeptidase fold Arginine biosynthesis

Histone deacetylases
Homo sapiens
HDAC8

1T64 Acetyllysines on histones Zn2+ Arginase fold Histone deacetylation

Homo sapiens
HDAC4

2VQJ Acetyllysines on histones Zn2+ Arginase fold Histone deacetylation

Homo sapiens
HDAC6

5EDU Acetyllysines on histones Zn2+ Arginase fold Histone deacetylation

Homo sapiens
SIRT1

4I5I Acetyllysines on histones NAD+ Rossmann fold Histone deacetylation

Protein deacetylases
Arabidopsis thaliana
SOBER1

6AVV Acetylated proteins α/β hydrolase fold Hypersensitive response (HR)
in plant immunity
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suppress hypersensitive response80. The proteins are highly pro-
miscuous and SOBER1’s confirmed deacetylation substrates so far
are the bacterial effector protein AvrBsT and the microtubule-
associated ACIP1, which in turn is a substrate of AvrBsT.
Another recent story reported that SOBER1 is able to suppress
HR elicited by multiple bacterial acetyltransferases81. Though
specific deacetylation sites are not known to date, the lack of a
metal ion and the presence of a classical Ser/His/Asp catalytic
triad suggest that SOBER1 and TIPSY1 are protein de-O-
acetylases and are unable to break amide bonds.

Potential human protein de-O-acetylases
Reports about human protein deacetylases have exclusively
focused on histone/lysine deacetylases and until today, no protein
de-O-acetylases have been identified. The above-mentioned
SOBER1/TIPSY1 family is only conserved in plants and the oli-
gomerization properties of the promiscuous human CES1 esterase
likely limits its substrate scope to small molecules. However, a
protein called LYPLAL1 has been identified as an enzyme with
disputed catalytic function. Genetic association studies have
suggested its role in fatty acid metabolism and the protein acting
as a phospholipase82–84. Like SOBER1, it is structurally related to
acyl-protein thioesterases (APTs) and it was long thought to be
the third human APT85. However, a structural study concluded
that a different loop conformation impairs the substrate binding
tunnel, changing LYPLAL1’s substrate specificity towards short
acyl groups86. The presence of a Ser/His/Asp catalytic triad and
the fact that LYPLAL1 is a monomer suggest a possible function
as a protein de-O-acetylase.

Summary and outlook
Deacetylation events occur on a high number of chemically very
different biomolecules (Fig. 2). Some reactions manipulate cell
surface features to evade host immune response, others are
involved in the regulation of basic cellular events and or counter-
react prior acetylation events by bacterial effector proteins. Based
on their catalyzed reaction, deacetylases can be divided into major
groups: Metal-dependent de-N-acetylases and de-O-acetylases
featuring a classical catalytic triad (Table 1). All deacetylases
possess a distinct binding site for the acetyl group on their protein
surface, characterized by a strong electronegative charge. Thus,
substrate specificity originates from the immediate surrounding
of the acetyl binding pocket. Further specificity appears to be
given by oligomerization properties, creating a tunnel-like
structure with a molecular weight cutoff selecting for small
molecules.

Targeting deacetylases with small molecules might be a pro-
mising strategy to improve human health and aid agriculture.
Especially bacterial and fungal deacetylases constitute an inter-
esting drug target, since they are involved in pathogenicity or
bacteria-specific metabolism, such as evasion of the mammalian
immune response20,30, amino acid biosynthesis76 or biofilm for-
mation23. In addition, inhibitors for the SOBER1 family of pro-
tein deacetylases might be a strategy to support the plant’s
immune response against pathogenic Pseudomonas and Xantho-
monas, based on the findings that SOBER1 suppresses hyper-
sensitive response in Brassicaceae79,80.

While histone acetylation/deacetylation is well researched, and
studies have been carried out to map acetylation sites cell-wide,
these attempts have exclusively focused on lysine acetylation.
Future studies are, therefore, likely to address O-acetylation and
de-O-acetylation events in a global manner. It is still unknown as
to how serine and threonine acetylation is used to compete with
and regulate the phosphoproteome. A direct competition has only
been shown in a handful of cases and each time, a pathogen was

involved. In addition, no animal protein de-O-acetylase has been
confirmed yet and their prediction from the protein sequence is
rather difficult since minor changes to the fold or surface topol-
ogy can result in a fundamentally altered substrate specificity.
Therefore, more data obtained from mass spectrometry and
structural studies will be necessary until acetylomic studies catch
up with the amount of attention that other posttranslational
modifications are receiving.
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