Skip to main content
. 2018 Dec 5;8:17678. doi: 10.1038/s41598-018-36098-5

Table 2.

Centrality Analysis Gene Results.

Symbol Description Degree (p-value) Closeness (p-value) Betweenness (p-value) Eigenvector (p-value)
PIK3CA phosphoinositide-3-kinase, catalytic, alpha polypeptide 406 (p = 1.8E−08) 0.00081 (p = 6.4E−01) 43246.5 (p = 0.0E + 00) 0.16 (p = 2.9E−03)
MAPK8 mitogen-activated protein kinase 8 372 (p = 3.8E−07) 0.00078 (p = 6.6E−01) 30937.8 (p = 0.0E + 00) 0.15 (p = 6.3E−03)
CD44 CD44 molecule (Indian blood group) 349 (p = 1.3E−08) 0.00075 (p = 6.6E−01) 32129.4 (p = 0.0E + 00) 0.13 (p = 7.3E−03)
MAPK1 mitogen-activated protein kinase 1 280 (p = 3.5E−03) 0.00074 (p = 6.5E−01) 19719.2 (p = 1.7E−03) 0.13 (p = 3.9E−02)
CREB1 cAMP responsive element binding protein 1 283 (p = 1.2E−08) 0.00073 (p = 6.4E−01) 15524.7 (p = 0.0E + 00) 0.12 (p = 3.0E−03)
LEP leptin 301 (p = 8.7E−10) 0.00072 (p = 6.6E−01) 22639.7 (p = 0.0E + 00) 0.12 (p = 5.6E−03)
CCL2 chemokine (C-C motif) ligand 2 276 (p = 3.3E−03) 0.00071 (p = 6.9E−01) 13595.3 (p = 4.5E−03) 0.12 (p = 1.0E−01)
JUN jun proto-oncogene 232 (p = 5.9E−03) 0.00071 (p = 6.7E−01) 11905.8 (p = 1.2E−02) 0.12 (p = 4.3E−02)
ESR1 estrogen receptor 1 269 (p = 4.7E−09) 0.00071 (p = 6.6E−01) 17433.2 (p = 0.0E + 00) 0.11 (p = 5.8E−03)
FOS FBJ murine osteosarcoma viral oncogene homolog 229 (p = 3.1E−03) 0.00070 (p = 6.4E−01) 21885.2 (p = 2.5E−07) 0.10 (p = 7.4E−02)
CD36 CD36 molecule (thrombospondin receptor) 247 (p = 5.0E−07) 0.00070 (p = 6.5E−01) 11865.1 (p = 6.5E−13) 0.11 (p = 7.2E−03)
IL1B interleukin 1, beta 224 (p = 6.5E−03) 0.00070 (p = 6.6E−01) 12492.5 (p = 3.4E−03) 0.09 (p = 1.6E−02)
HGF hepatocyte growth factor (hepapoietin A; scatter factor) 213 (p = 9.4E−06) 0.00069 (p = 6.6E−01) 8254.8 (p = 2.6E−07) 0.12 (p = 4.6E−03)

Centrality analysis was conducted using the Cytoscape plug-in CentiScaPe and four centrality metrics (degree, eigenvector, closeness, and betweenness) to identify the most important nodes (i.e., genes) in the merged transcriptional network. The top 10 ranked genes in each perspective centrality metric is included in the table and indicate the most influential genes within the network. The centrality scores of each node were compared against the background distribution of centrality scores that were obtained from randomly generated 1,000 random merged networks. P-values were calculated using z-test to examine the significant difference between the real and random networks.