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Otitis media (OM) is a common polymicrobial infection of the

middle ear in children under the age of 15 years. A widely used

experimental strategy to analyse roles of specific phenotypes of

bacterial pathogens of OM is to study changes in co-infection

kinetics of bacterial populations in animal models when a

wild-type bacterial strain is replaced by a specific isogenic

mutant strain in the co-inoculating mixtures. As relationships

between the OM bacterial pathogens within the host are

regulated by many interlinked processes, connecting the

changes in the co-infection kinetics to a bacterial phenotype

can be challenging. We investigated middle ear co-infections

in adult chinchillas (Chinchilla lanigera) by two major OM

pathogens: non-typeable Haemophilus influenzae (NTHi) and

Moraxella catarrhalis (Mcat), as well as isogenic mutant strains

in each bacterial species. We analysed the infection kinetic

data using Lotka–Volterra population dynamics, maximum

entropy inference and Akaike information criteria-(AIC)-

based model selection. We found that changes in

relationships between the bacterial pathogens that were not

anticipated in the design of the co-infection experiments

involving mutant strains are common and were strong
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regulators of the co-infecting bacterial populations. The framework developed here allows for a

systematic analysis of host–host variations of bacterial populations and small sizes of animal

cohorts in co-infection experiments to quantify the role of specific mutant strains in changing the

infection kinetics. Our combined approach can be used to analyse the functional footprint of

mutant strains in regulating co-infection kinetics in models of experimental OM and other

polymicrobial diseases.
blishing.org
R.Soc.open

sci.5:180810
1. Introduction
Otitis media (OM) is a common polymicrobial bacterial infection of the middle ear in children which is

caused by three major bacterial pathogens: non-typeable Haemophilus influenzae (NTHi), Moraxella
catarrhalis (Mcat) and Streptococcus pneumoniae (Sp) [1]. The relationships among these OM pathogens

are both direct and indirect in nature. For example, quorum signals (autoinducer-2 or AI-2) secreted

by NTHi help Mcat to form a biofilm and survive in the hostile middle ear environment [2]. This

interaction represents a direct relationship (or an active interaction [3,4]) between NTHi and Mcat. In

another case, NTHi stimulates the host immune response in the middle ear that suppresses the

growth of Sp [5,6]; this interaction is an example of an indirect relationship (or a passive interaction)

between NTHi and Sp. The qualitative (cooperative, competitive or neutral) and quantitative

(interaction strength) nature of the active and passive interactions between the OM bacterial pathogens

depend on phenotypes specific to bacterial strains and the host response [4,7]. Mechanistic

understanding of how these interactions affect pathogenesis of polymicrobial diseases including OM

has been a major research goal for developing vaccine candidates and other therapeutic strategies [8,9].

A common strategy to evaluate mechanistic roles of specific phenotypes of bacterial OM pathogens in
vivo has been to co-infect animal models with bacterial pathogens obtained from clinical isolates and then

assess changes in infection kinetics by replacing a wild-type bacterial strain with a mutant strain

[2,6,10,11]. The mutant strains are designed to produce a loss or gain of specific bacterial phenotypes

of interest. However, because the bacterial phenotypes probed by a mutant strain can be tightly

intertwined with the phenotypes of the other bacterial pathogens, via active and passive interactions,

this task could become challenging. For example, a mutant strain of Mcat lacking the ability to receive

quorum signal from NTHi conceivably results in a decrease in the cooperative interaction from NTHi

to Mcat. However, the same mutation could produce unanticipated changes in other relationships

such as change in cooperation/competition of Mcat to NTHi. When these unanticipated changes are

strong regulators of bacterial populations in co-infection experiments, we are required to revise our

mechanistic understanding regarding the role of the specific mutation in influencing co-infection kinetics.

To this end, we address the above challenge by developing a framework that provides an answer to

the following question: How is it possible to assess if unanticipated changes in the relationships induced

by introducing mutant strains of OM pathogens in co-infection experiments are strong or weak regulators

of the bacterial populations in the experiments? We define loss or gain of phenotype(s) in a specific

mutant strain as a weak regulator when the interactions between bacterial species in co-infection

experiments with the mutant strain are modified according to changes in the phenotype(s) as

hypothesized for the mutant strain. The change in the phenotype(s) is defined as a strong regulator

when additional unanticipated interactions are altered in co-infection experiments with the mutant

strain. A more precise and formal definition of the weak and strong regulators is provided in the

Material and methods section. The answer to the above question will provide a quantitative way to

evaluate the mechanistic role of a bacterial gene in affecting the co-infection kinetics. Our framework

combines (1) in vivo bacterial load measurements in an animal model, with (2) in silico approaches

comprising Lotka–Volterra (LV) population dynamic models [12,13], maximum entropy (MaxEnt)

inference [14–17] and Akaike information criterion (AIC)-based model selection [18]. The animal

model we used is a Chinchilla lanigera experimental OM model [11], wherein the animals’ middle ears

are co-inoculated with NTHi (86-028NP) and Mcat. These strains may be wild-type or isogenic

mutant strains.

Our study revealed three important findings. First, the unanticipated changes in the relationships

between OM bacterial pathogens that substantially affect the co-infection kinetics are commonly

present in co-infection with mutant bacterial strains in experimental OM. Second, several bacterial

phenotypes are tightly correlated across co-infecting bacterial stains. Third, our combined framework

provides a systematic way to deal with two common difficulties faced when analysing infection
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Figure 1. Schematic representation of our framework to determine roles of mutant bacterial strains in regulating co-infection
kinetics. (a) Inter- and intra-species interactions between two bacterial species NTHi and Mcat residing within a host can be
both active (solid lines) or passive (dashed lines) in nature. These interactions can be simplified and described by LV interaction
parameters (faijg). a11 (greater than 0) and a22 (greater than 0) represent intra-species interactions for NTHi and Mcat,
respectively. a12 and a21 represent the overall effect of Mcat on the growth of NTHi and NTHi on the growth of Mcat,
respectively. a12 and a21 can be positive (competitive interaction), zero (neutral interaction) or negative (cooperative
interaction). (b) Replacing a wild-type strain by a mutant strain in the co-infection experiments can change the LV interactions.
These changes may be anticipated (blue ‘X’) or not anticipated (red ‘X’) based on the design of the experiment. Our
framework uses data from co-infection experiments involving the wild-type strains to generate models that determine if these
unanticipated changes are weak or strong regulators of bacterial kinetics. These models are compared to each other using AIC.
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kinetic measurements in animal models: host–host variations of bacterial populations and small size of

animal cohorts. Our framework can be used to design mutant strains to generate desired infection

kinetics in experimental models of polymicrobial diseases such as OM and infections secondary to

cystic fibrosis [3] with potential implications for therapeutic strategies [9].
2. Results
2.1. Development of a framework to assess effects of genetic mutation of the bacterial strains

in co-infection kinetics
We developed a two species LV model to describe co-infection kinetics of populations of NTHi and Mcat

strains within an individual chinchilla host (figure 1a and Material and methods section). For simplicity

in the mathematical expressions of the probability distributions and interaction parameters, we will refer

to NTHi strains (wild-type or mutant) as species 1 and Mcat strains (wild-type or mutant) as species 2

throughout the manuscript. The LV interactions (a11, a12, a21 and a22) characterize the relationships
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between the bacterial species that originate due to active and passive interactions (figure 1a and Material

and methods section). Now we can pose the motivating challenge in terms of the LV interactions. How is

it possible to assess if unanticipated changes in the LV interactions induced by mutant strains are strong
or weak regulators of the bacterial populations in vivo? The unanticipated LV interactions in co-infection

experiments with mutant strains are the ones that were not accounted for in the design of the

experiment. For example, the hag mutant of Mcat does not adhere to the host’s epithelial cell layer as

well as the wild-type Mcat strain [19]. Hence, replacing the wild-type Mcat strain in the co-infection

by NTHi (wt) þMcat (wt) by the hag mutant strain should increase Mcat’s self-inhibition; i.e. a22

should increase (see table 1 for details). Therefore, in the design of the co-infection with NTHi (wt) þ
Mcat (hag), one would anticipate a lower carrying capacity for Mcat or an increase of a22. However,

the changes in passive interactions induced by the hag mutant can also lead to changes in other LV

interactions that were not anticipated, such as an increase in a21. In addition, the host–host variations

measured in the NTHi and Mcat populations were assumed to arise from the variations of the LV

interactions (faijg) in our models. We developed a framework (figure 1b) to address the above

question. The framework is executed in two main steps.

Step 1. The wild-type NTHi (or N1) and the wild-type Mcat (or N2) populations in individual

chinchillas were measured in co-infection experiments carried out in a cohort of n number of

chinchillas at a time T (7 or 14 days) post inoculation. These data were used to generate the reference

data (denoted by the subscript r) nDr. This reference dataset was composed of the mean values

ð �N1, �N2Þ, variances ðs2
1, s2

2Þ and the covariance ðr12Þ calculated from the bacterial load measurements

in the cohort; i.e. nDr ; f �N1, �N2, s2
1, s2

2, r12g ; fnDj
rg for j ¼ 1, . . . , 5. We estimated the probability

distribution function p̂ðN1, N2Þ of populations of wild-type NTHi (N1) and wild-type Mcat (N2) in the

chinchilla cohort using MaxEnt (electronic supplementary material, figure S1), wherein the mean

values, variances and the covariance as measured in the experiments (nDr) were constrained in the

calculation (electronic supplemental material, §S2). Using this p̂ðN1, N2Þ, we calculated the joint

probability distribution of the interaction parameters q̂ða11, a12, a21, a22Þ ð; q̂ðfaijgÞ using a MaxEnt-

based method (details in the Material and methods section and electronic supplementary material,

figures S2–S3). The estimated joint probability distribution function q̂ðfaijgÞwas used to generate

models that fall either in the weak or the strong category.

Step 2. We generated a test dataset using data from co-infection experiments where at least one of the

wild-type bacterial strains was replaced by a mutant strain. The test dataset n0Dx contains the population

means, variances and covariance for the cohort which contained n0 number of chinchillas for the same

time T (7 or 14 days) post inoculation. The subscript x in n0Dx, to be determined in our analysis,

quantifies the role of the mutation in the co-infection: x ¼ weak or x ¼ strong. As described above, this

distinction indicates whether the unanticipated changes in LV interactions induced by the mutant

strain(s) were weak or strong regulators of the bacterial populations. To safeguard against small sizes of

n0 (approx. 10 or less), we performed bootstrapping [23] on the data, wherein we sampled n0 data

points with replacement from the original. In this way, we generated t sets and determined x in each

of those t samples of n0Dx. These t samples of n0Dx, e.g.
ð1Þ
n0 Dx, . . . ,

ðtÞ
n0 Dx, were generated by evaluating

n0Dx in t independent groups containing n0 number of animals each. Next we evaluated which

model(s) generated in step 1 for a particular co-infection experiment best described the t samples of

the test dataset ðð1Þn0 Dx, . . . ,
ðtÞ
n0 DxÞ; subsequently, we assigned the category (weak or strong) of the best

model to x. The best model was found (whenever possible) by comparing the Akaike information

criterion (AIC) values for each model in a head-to-head pairwise manner for each of the t samples.

The ‘Condorcet Winner’ was the model which was preferred over all others in head-to-head

comparisons [24]. We chose the Condorcet winner as the best model. Further details are provided in

the Material and methods section and in the electronic supplementary material.

2.2. Application of the framework on synthetic data
To test the efficacy of our method, we generated synthetic data and applied the framework developed in

the previous section. We had the following three goals in mind: (i) validate the framework, (ii) determine

how the strengths of the mutations and/or the host immune response affect interspecies interactions and

(iii) determine the dependence of the model selection on the sample size or the number (n0) of animals in

the cohort. We generated the synthetic data by numerical solution of coupled ODEs that described LV-

type population kinetics involving two interacting bacterial species and a host immune response (see

Material and methods section). The parameters describing the inter- and intra-species bacterial

interactions as well as the host immune response were drawn from uniform distribution within
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specific ranges to generate host–host variations of the co-infection kinetics (see Material and methods).

We chose the parameter range for the wild-type strains such that it produced steady-state population

values similar to those observed in vivo (electronic supplementary material, figures S6–S8).

The average statistical variables nDr ; f �N1, �N2, s2
1, s2

2r12g, calculated from the numerical solutions at

T ¼ day 7, produced the reference dataset. We generated test datasets fn0Dxg, wherein one of the wild-

type strains was replaced by a mutant strain. Specifically, we considered the following two mutant

strains for species 1. The ðaðþÞ11 Þ mutant, which is an increase in the a11 parameter, possesses increased

self-competition for species 1 compared to wild-type. The ðaðþÞ21 Þ mutant, which is an increase in the

a21 parameter, possesses increased competition of species 1 towards species 2 as compared to wild-

type. We also considered two mutant strains for species 2. The ðaðþÞ22 Þ mutant, which is an increase in

the a22 parameter, possesses increased self-competition for species 2 compared to wild-type. The

ðaðþÞ12 Þ mutant, which is an increase in the a12 parameter, possesses increased competition of species 2

towards species 1 as compared to wild-type. The mutants were generated by changing the ranges of

the associated parameters from that of the wild-type strains (see Material and methods). For example,

the range of a11 used to generate the mutant strain a
ðþÞ
11 spanned a smaller range [a0, b] compared that

of the wild-type strain, [a, b], where, a , a0. Each of these mutations was performed with low,

moderate and large strengths based on the relative change in the magnitude of range for the

parameters. We also solved the co-infection kinetics in the presence of no, weak and strong host

immune response. Thus, in total we considered 9 � 4 different mutation experiments in silico
(electronic supplementary material, figures S9–S12). The test datasets fn 0Dxg were obtained from the

co-infection kinetics involving the above mutant strains.

We show results for two mutant strains a
ðþÞ
12 and a

ðþÞ
22 with moderate strength mutations in the absence

of any host immune response (figure 2b,c). The rest of the mutants are described in the electronic

supplementary material. We followed the steps described in electronic supplementary material §S1 to

determine the nature of the mutation (or x) in a test dataset n 0Dx. First, we used nDr to generate

models that belonged to the weak or the strong category corresponding to the co-infection

strain#1(wt)þstrain#2ðaðþÞ22 Þ or strain#1(wt)þstrain#2ðaðþÞ12 Þ. Next, we compared the models with the

samples (t . 100) of the test dataset and evaluated the Condorcet winner model. We found that for

the co-infection with strain#1(wt) þ strain#2ðaðþÞ22 Þ, a model in the x ¼ weak category was the

Condorcet winner (figure 2d and f ). By contrast, for the co-infection with strain#1(wt) þ strain#2ðaðþÞ12 Þ,
a model in the x ¼ strong category was the Condorcet winners (figure 2e,g). These results can be

explained by correlations among the LV interaction parameters (electronic supplementary material,

figure S6) pertaining to the reference dataset nDr. The correlations of a22 with the other LV parameters

for the above co-infection (strain#1(wt)þstrain#2(wt)) are substantially small (less than 0.06); therefore,

increasing a22 alone, as in the a
ðþÞ
22 strain, will minimally affect the other parameters. Therefore, the

changes in other LV parameters (unanticipated changes) induced by the increase in a22 for the a
ðþÞ
22

strain will be small. These unanticipated changes would play a weak role in regulating the bacterial

populations. By contrast, a12 is correlated strongly with several other interaction parameters (e.g. a21,

Corr � 20.5) (electronic supplementary material, figure S6). Thus increasing a12 even by a moderate

amount, as in the a
ðþÞ
12 strain, will produce large changes in the other LV parameters. Those

unanticipated changes will generate a strong effect on the bacterial populations. These expectations

about the effects of the correlations among the parameters were consistent with the results obtained

from our framework. Therefore, these results validate our framework. The roles of the above mutant

strains in affecting co-infection kinetics for different mutation strengths change depending on the

mutation strength and/or the presence of the host immune response (electronic supplementary

material, figures S9–S12). Therefore, strengths of the mutations and the host immune response are

important in determining the influence of the mutations in the co-infection kinetics.

We checked the dependence of the Condorcet winner on the sample size n0 in the test dataset. We

found that even for small sample sizes (n0 ¼ 10), the framework picked the correct Condorcet winner;

however, the margin of victory increased with larger n0 (figure 2f,g).

2.3. Analysis of the in vivo data
We analysed co-infection kinetics in Chinchilla lanigera co-inoculated with a mixture of wild-type NTHi and

Mcat strains or mixtures of NTHi and Mcat strains wherein at least one of the bacterial strains was a mutant

strain. The chinchillas were inoculated by injecting 103 CFU of NTHi and 104 CFU of Mcat directly into the

middle ears of the animals. The co-infection experiments investigated the hag, mcaB, aaa, mclR and dtgt
mutant strains of Mcat and the luxS mutant strain of NTHi (table 1; electronic supplementary material,



7

wt + wt wt + strain a 22

6
5
4
3
2N

2 
(1

06  
C

FU
)

N1 (106 CFU)

1

0

7
6
5
4
3
2N

2 
(1

06  
C

FU
)

1

0100 200 300 400 500 600
N1 (106 CFU)

100 200 300 400 500 600

(+)(a) (b)
7
6
5
4
3
2N

2 
(1

06  
C

FU
)

1

0
N1 (106 CFU)

100 200 300 400 500 600

wt + strain a 12
(+)(c)

2

n¢ = 1000
100

80

60

40

20

0

4
6
8

10
12
14ru

nn
er

 m
od

el

16
18

opponent model
2 4 6 8 10 12 1416 18

(d)

10

n¢ winning
model

pC

100

1000

OOOX

OOOX

OOOX

0.463

0.737

0.70

wt + strain a 22
(+)( f )

10

n¢ winning
model

pC

100

1000

OOOX

OOOX

OOOX

5.3×10–6

0.0019

0.0516

wt + strain a 12
(+)(g)

n¢ = 1000
100

80

60

40

20

0

2
4
6
8

10
12
14ru

nn
er

 m
od

el

16
18

opponent model
2 4 6 8 10 12 1416 18

(e)

Figure 2. Application of the scheme on synthetic data. (a) Values of N1, N2 pairs (104 pairs) obtained from steady-state solutions of
the ODEs corresponding to the LV model where faijg were drawn from uniform distributions in the following ranges: 2.74�
1023 � a11 � 0.2, 2200 � a12 � 5, 25 � a21 � 0.1 and 1.9 � a22 � 140. The solutions where either N1 or N2 went
to zero values or became very large (N1 . 530 � 106 or N2 . 7 � 106) were not included in the synthetic dataset. (b)
Synthetic data (105 data points) for a co-infection with the mixture wt þ a(þ)

22 strain. The a(þ)
22 strain was generated by

increasing the lower range of a22 to 120. (c) Synthetic data (105 data points) for the co-infection for the mixture wt þ a(þ)
12

strain. The a(þ)
12 strain was generated by increasing the lower range of a12 to 22. (d ) The percentage of the time a runner

model won against an opponent model in head-to-head comparison of AICs for the models describing the synthetic data in (b).
The m ¼ 19 different models are indexed by integers. The percentages shown were obtained for t ¼ 100 trials, each with a
sample size of n0 ¼ 1000. A bright row indicates the winning model. (e) Results in head-to-head comparisons between the
models presented similar to the data in (c ). ( f,g) The probability pC for the Condorcet winner to win all the pairwise
encounters in the t samples is shown for increasing sample size n0. pC for the Condorcet winner model (#i) is calculated using
pC ¼

Q
j(=i) fij, where fij (greater than 1/2) denotes the fraction of the t samples where the Condorcet winner model #i was

preferred over model #j. The product is calculated for all the m 2 1 pairwise combinations where m number of models were
considered. pC increased with the sample size (n0). The winning models are denoted in the second column by the changes in
a11, a12, a21 and a22 for the wild-typeþwild-type co-infection. O indicates no change, X indicates an increase and o
indicates a decrease.
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table S1). The properties of the mutant strains and their hypothesized effects on the LV interaction

parameters are described in table 1. The populations of the NTHi and Mcat strains were measured at 7

days (day 7) and 14 days (day 14) post inoculation (figure 3; electronic supplementary material, table S1).

The data were collected from both ears of the chinchillas in cohorts containing more than five

animals. The bacterial counts showed large to moderate host–host variations (electronic

supplementary material, figure S1). These variations could arise from the host–host differences in the

physiology, anatomy and immune responses in the upper respiratory tract of the outbred population

of chinchillas. The mean NTHi population was substantially larger (greater than 100 fold) than that of

Mcat for the co-inoculation with the wild-type NTHi and Mcat strains (figure 3). The mean

populations of the wild-type NTHi strain at day 7 were lower if co-inoculated with any mutant Mcat

strain (except Mcat (mcaB)) rather than if co-inoculated with wild-type Mcat (electronic supplementary

material, table S1). By contrast, the mean populations of the Mcat strains for the same co-infections
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showed small changes (increase or decrease) (figure 3; electronic supplementary material, table S1). Co-

inoculation with NTHi (luxS) þMcat (wt) resulted in a negligible change in the mean Mcat population

but a large decrease in the mean NTHi population at day 7 as compared to the NTHi (wt) þMcat (wt)
experiment. When both the NTHi (wt) and the Mcat (wt) strains were replaced by their mutant strains in

the co-inoculating mixtures, the mean populations of both the strains decreased at day 7. At day 14, the

mean populations of the NTHi strains decreased, compared to the NTHi (wt) þMcat (wt) experiment, in

all the experiments with any mutant strains. The covariances between the populations of the NTHi and

the Mcat strains were negative for the majority of the cases investigated here (electronic supplementary

material, table S1). In a few cases, such as NTHi (wt) þMcat (hag) NTHi or NTHi (wt) þMcat (mcaB) the

covariances were positive (electronic supplementary material, table S1). Overall, the data showed a

complex pattern as further explained below.

Changes in the bacterial counts due to mutations pointed towards the presence of unanticipated

changes in the bacterial relationships in regulating bacterial populations. For example, compared to

co-infecting with NTHi (wt) þMcat (wt), co-infecting with NTHi (wt) þMcat (hag) substantially

decreases the NTHi population (almost by half ), whereas the Mcat population only decreases a small

amount. As the hag mutant has lower adherence and poor biofilm formation capability compared to

its wild-type counterpart, we would expect the Mcat population to decrease while having minimal

consequence to the NTHi population. Because the NTHi population was substantially reduced here, it

suggests a potential change in the interaction from Mcat towards NTHi. We used our framework to

quantify the roles of specific NTHi and Mcat mutations in regulating the bacterial populations in co-

infection experiments. As described in the previous section, the data from the co-infection experiments

with the wild-type strains generated our reference dataset nDr. The models in the weak or the strong
category were generated using nDr and were compared against the test datasets fn 0Dxg. The test

datasets were obtained from the co-infection experiments that involved at least one mutant strain.

Multiple samples of a test dataset were obtained by using bootstrapping [23]. Our analysis showed

that for the majority of the cases, models with additional interactions (strong models) better described

the data (at both day 7 and day 14) compared to models with no additional interactions (weak
models) (figure 4). We found that the weak model described the data obtained at day 7 for the co-
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infection with NTHi (wt) þMcat (mcaB) (figure 4b) better than any strong model. However, at day 14, a

strong model (electronic supplementary material, figure S4) described the same data better than any weak
model. Therefore, unanticipated changes in LV interactions were prevalent in co-infections with mutant

bacterial strains both at early and late stages of the co-infection kinetics.

2.4. Host immune responses modulate Mcat – NTHi interactions at later stages of the infection
The mean populations of the wild-type strains of NTHi and Mcat increase as the infection progresses

from day 7 to day 14 post inoculation (figure 5). However, the covariance of the NTHi and Mcat

populations becomes more negative (approx. twofold change) (electronic supplementary material,

table S1). The negative correlation indicates that the populations of the two species are more mutually

exclusive; that is, when one species has high abundance, then the other’s is low. We hypothesized

that the host immune response generated by both the pathogens could lead to a decrease in

cooperation (or increase in a12 and a21) between Mcat and NTHi. We tested our hypothesis by

applying our scheme with the day 7 data as the reference and day 14 data as the test. The model

wherein a12 and a21 increase was the Condorcet winner (figure 5). The agreement demonstrates the

role of the host immune response in regulating passive inter-species interaction between Mcat and NTHi.
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3. Discussion
Co-infection of animal models with mutant bacterial strains is a powerful tool in probing mechanisms

that underlie pathogenesis of polymicrobial infections such as OM. However, the interconnected and

variable nature of interactions involving bacterial pathogens within the host makes it challenging to

connect specific perturbations, such as a mutation, in these experiments to mechanisms. The data-

driven framework developed here provides a systematic method of addressing this challenge. The

framework uses bacterial counts measured in animal hosts to quantitatively determine perturbations

in the bacterial interactions induced by the replacement of a wild-type bacterial strain with a mutant

strain that strongly or weakly regulates bacterial populations in the co-infection. Therefore, using this

framework we are able to quantitatively assess the mechanistic role of a specific bacterial phenotype

probed by an isogenic mutant strain in affecting the co-infection kinetics. Isogenic mutant strains are

used for identification of bacterial determinants of colonization, persistence and virulence. Thus the

quantitative information obtained from our framework will be valuable for determining specific

targets for diagnostics, development of therapy and potentially vaccination. In addition, our

framework also addresses the practical problem of systematically analysing bacterial count data

obtained from a small size (approx. 10 animals) of animal cohorts in co-infection experiments.

Application of our framework to co-infection experiments in Chinchilla lanigera co-inoculated with

wild-type and mutant strains of two major OM pathogens (NTHi and Mcat) found that in a majority

of the co-infections the mutant strains gave rise to unanticipated changes in the bacterial interactions,

which influenced the bacterial populations substantially. The emergence of unanticipated

perturbations of the bacterial interactions is probably caused by the interdependencies between the

interactions and the hostile environment of the host [16]. The interdependencies can be caused due to

many shared processes such as feeding on common nutrients, exchanging small molecules and the

host immune response that regulates the growth of OM pathogens within the host [5,8]. Therefore,

when a specific bacterial phenotype is altered in the form of a mutant strain, several other phenotypes

in co-infecting OM pathogens are also altered, some of which can be non-intuitive. Our analysis of the

synthetic co-infection data lends support to this speculation. We found that correlations between the

LV parameters generated non-intuitive changes in several LV interactions when a specific LV

interaction was perturbed in a mutant strain, and in many cases these unanticipated changes in the

LV interactions were strong regulators of the bacterial populations.

Our framework required estimation of LV interactions involving the co-infecting bacterial pathogens

using the measured bacterial counts. The estimated interactions between wild-type strains of NTHi and

Mcat demonstrate prevalence of cooperative interspecies interactions (a12 , 0, a21 , 0) (electronic

supplementary material, figure S3). Previous experiments noted several molecular mechanisms

regarding the help of NTHi towards Mcat’s growth, e.g. the quorum signal AI-2 secreted by NTHi

helping Mcat to form a biofilm and thereby helping it to survive within the host [22,25]. Reciprocally, the

estimated interactions also suggested cooperation of Mcat towards the growth of NTHi (or a21 , 0).
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Such a cooperative effect can potentially occur through passive interactions. For example, Mcat binds and

sequesters AI-2 molecules secreted by NTHi; this sequestration could help keep the AI-2 abundances at

an optimal level for production of quorum signals by NTHi. Similar optimal regulation of quorum

sensing has been found in mutualistic relationship between two human oral bacteria, Actinomyces
naeslundii T14 V and Streptococcus oralis 34, where AI-2 secreted from the latter bacterial species help the

former species to form biofilms [26]. Furthermore, Mcat bacteria are known to form large aggregates (or

autoagglutination) via the Hag protein. Such aggregates can help NTHi to form biofilms as mixed NTHi-

Mcat biofilms within the host [20,21]. Another example of cooperation involves nutrient recruitment. The

inflammation caused by Mcat can produce an influx of host serum which also can provide nutrients for

the growth of NTHi [27]. All three of the above sources of interaction could contribute towards

generating an overall cooperative interaction from Mcat to NTHi.

We found that several LV interactions (e.g. a12 and a21) involving NTHi and Mcat are tightly

correlated (jCorrj. 0.5) with each other. As the MaxEnt method estimates the most spread out or

uniform probability distribution phenotype that is consistent with the measured data [17], the method

used here provided the most conservative estimate correlations between the LV interactions. This

approach is a major departure from several methods that have been developed in recent years to

evaluate interactions [28–30] pertaining to microbiome datasets where the correlations between the

interaction parameters are not analysed. Ecological models often assume LV interactions between

coexisting species as uncorrelated random variables [13]. This assumption makes the calculations

amenable to analytical methods. The presence of strong correlations between LV interaction

parameters could have important implications in assessing general principles underlying the diversity

of eco-systems [31].
4. Material and methods
4.1. Experiments
Moraxella catarrhalis persistence in the middle ear chambers of chinchillas was assessed essentially as

described previously [2]. Animals were purchased on need and allowed to acclimate to the vivarium

for more than 10 days before infection. No used animals showed visible sign of illness prior to

infection. Chinchillas (five animals per group) were anaesthetized with isofluorane and infected via

transbullar injection with both approximately 104 CFU of M. catarrhalis and approximately 103 CFU of

H. influenzae. All inocula were confirmed by plate counting. Animals were euthanized at 7 and 14

days post infection, and their bullae were aseptically opened to recover possible effusion fluid. Middle

ear lavage was performed using sterile PBS and also saved and combined. Bullae were then excised

and homogenized in 10 ml of sterile PBS. All of fluid and homogenized samples were serially diluted

and plated on brain heart infusion (BHI) agar plates to obtain viable counts of M. catarrhalis. Note

that H. influenzae would not grow on BHI plate due to lack of haemin and NAD. H. influenzae bacteria

were enumerated on BHI agar supplemented with 10 mg ml21 haeme and NAD and containing

5 mg ml21 clarithromycin, which inhibits the growth of M. catarrhalis.

4.1.1. Bacterial strains and growth conditions

Moraxella catarrhalis strain O35E, as a WT and parent strain in this study, is a commonly used laboratory

strain [32]. Moraxella catarrhalis O35E hag::Sp containing a spectinomycin resistance cassette disrupting

the hag gene is a kind gift from Dr Eric Hansen. Non-typeable H. influenzae strain 86-028NP is a

nasopharyngeal isolate from a child with chronic OM [33], and its luxS::Kn mutant with a kanamycin

resistance cassette disrupting the AI-2 synthase was described previously [22]. Moraxella catarrhalis
strains were cultured in BHI medium (Difco), and H. influenzae strains were cultivated in BHI medium

supplemented with 10 mg ml21 of haemin chloride (MP Biomedicals) and 10 mg ml21 of NAD (Sigma),

referred as supplemented BHI (sBHI). Mixture cultures of both M. catarrhalis and H. influenzae used sBHI.

4.1.2. Mutant bacterial strains

M. catarrhalis mclR::spec was generated by insertional mutagenesis using the following approach.

Genomic DNA was purified from M. catarrhalis O35E using the Wizard genomic DNA purification kit

(Promega), essentially according to the manufacturer’s instructions. Portions of the mclR (allele

MCR_1062) open reading frame were amplified using the PCR and primers specific for intragenic
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regions (luxRUPF: CATCATGACTTGGTAACTTGCTG, luxRUPR: GCTGATCGGCAATTTGCCCCC

GGGGTCGAGTGGCTTCTACACC). The resulting amplicons were cloned and a spectinomycin

resistance cassette was introduced into a SmaI restriction site within the intergenic primers. This

mutant allele was introduced into the parental strain by natural transformation and the resistant

derivatives were confirmed by PCR and DNA sequence analysis.

4.1.3. Hag promoter mutants

Deletion of a tgt sequence and insertion of an aaa sequence within a predicted lux box within the hag

promoter was achieved by overlap PCR; the resulting allele was introduced by natural transformation

using a linked spectinomycin resistance marker (Li et al., unpublished data).

4.2. Estimation of probability distribution function q(faijg) of Lotka – Volterra
interactions faijg

4.2.1. Lotka – Volterra modelling of the population kinetics

We described the population kinetics of populations of NTHi and Mcat in the middle ear of the host

(Chinchilla lanigera) using two coupled ordinary differential equations (ODEs) following the Lotka–

Volterra (LV) model [12]:

dNðpÞ1

dt
¼ rðpÞ1 NðpÞ1 (KðpÞ1 – aðpÞ11 NðpÞ1 � aðpÞ12 NðpÞ2 )

and
dNðpÞ2

dt
¼ rðpÞ2 NðpÞ2 (KðpÞ2 – aðpÞ21 NðpÞ1 � aðpÞ22 NðpÞ2 ):

9>>>=
>>>;

ð4:1Þ

N1
(p) and N2

(p) denote the populations of the NTHi and Mcat strains, respectively, in the middle ear of an

individual host. Individual hosts are indexed by the superscript p. The parameters r1K1 and r2K2 denote

the growth rates of species 1 and 2, respectively, where K1 and K2 denote the corresponding carrying

capacities. The parameters faijg describe effective interactions involving the bacterial species. a11 and

a22 denote self-competition for growth for species 1 and 2, respectively, and a12 and a21 denote the

influence (competition or cooperation) of species 2 and 1 on the growth of the other species, 1 and 2,

respectively. Note, a12 and a21 can assume positive (indicating competition) or negative (indicating

cooperation) values, whereas a11 and a22 can only possess non-negative values. The carrying capacities

and the interaction parameters faijg determine the maximum bacterial load that can be sustained in

the local environment. The above simple description of the bacterial infection kinetics within a host

provides a coarse-grained and effective description of the kinetics, where the bacterial populations

represent an average over spatial length scales including spatial structures such as biofilms. The effects

of the immune response, nutrients, protective effects of biofilm formation and quorum sensing are

effectively described in terms of the interaction parameters and the carrying capacities (table 1). The

above model describes the interactions between the bacterial species and the host minimally where the

LV interaction parameters provide a clear description of the inter- and intra-species interactions

between the co-infecting bacterial species. These effects can vary from host to host giving rise to host-

dependent values of the effective parameters; therefore, we consider host–host variations of the model

parameters (faijg, fKig). As the NTHi and Mcat replication rates are approximately 1 h21, it is

reasonable to assume that in a time scale of days the kinetics in equation (4.1) reaches a steady state, i.e.

rðpÞ1 NðpÞ1 (KðpÞ1 –aðpÞ11 NðpÞ1 � aðpÞ12 NðpÞ2 ) ¼ 0

and rðpÞ2 NðpÞ2 (KðpÞ2 –aðpÞ21 NðpÞ1 � aðpÞ22 NðpÞ2 ) ¼ 0:

9=
; ð4:2Þ

The steady-state equations (equation (4.2)) help reduce the number of parameters in determining

populations of NTHi and Mcat.

NðpÞ1 (1–a
ðpÞ
11 NðpÞ1 � a

ðpÞ
12 NðpÞ2 ) ¼ 0

and NðpÞ2 (1–a
ðpÞ
21 NðpÞ1 � a

ðpÞ
22 NðpÞ2 ) ¼ 0:

9=
; ð4:3Þ

We defined a
ðpÞ
ij ¼ aðpÞij =KðpÞi in equation (4.3). Thus, the dependences of the carrying capacities fKig are

effectively contained in the scaled variables faijg. The LV interaction parameters a
(p)
11 , a

ðpÞ
12 , a

ðpÞ
21 , a

ðpÞ
22
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determine the bacterial abundances at the steady state (or the stable fixed points). The above equations

produce four fixed points, (NðpÞ1 ¼ 0, NðpÞ2 ¼ 0), (NðpÞ1 ¼ 0, NðpÞ2 ¼ 1=a
ðpÞ
22 ), (NðpÞ1 ¼ 1=a

ðpÞ
11 , NðpÞ2 ¼ 0) and

ðNðpÞ1 ¼ ([aðpÞ]
�1

)11 þ ([aðpÞ]
�1

)12, NðpÞ2 ¼ ([aðpÞ]
�1

)21 þ ([aðpÞ]
�1

)22Þ, where, a (p) and [a (p)]21 denote the

matrix, faij
(p)g and its inverse. The stability of the fixed points is determined by the linear stability

analysis (electronic supplementary material, §S3). We consider only the stable fixed points, where

NðpÞ1 . 0 and NðpÞ2 . 0. The parameter values yielding any other type of solutions (e.g.

NðpÞ1 ¼ NðpÞ2 ¼ 0, NðpÞ1 , 0 or NðpÞ2 , 0, NðpÞ1 ! 1 or NðpÞ2 ! 1) are assumed not to occur in the

bacterial kinetics. Thus, we consider the solutions,

NðpÞ1 ¼([aðpÞ]
�1

)11 þ ([aðpÞ]
�1

)12

and NðpÞ2 ¼([aðpÞ]
�1

)21 þ ([aðpÞ]
�1

)22,

9=
; ð4:4Þ

when they are stable and are positive. Next, we estimated the LV interaction parameters {a
ðpÞ
ij } from the

bacterial loads (NðpÞ1 and NðpÞ2 ) for an individual animal (indexed by p). For a measured value of

NðpÞ1 and NðpÞ2 , it is not possible to estimate the four parameters {a
ðpÞ
ij } uniquely using the above

equations. Therefore, we developed a MaxEnt-based inference scheme to estimate the parameters in

the chinchilla population using the measured bacterial loads. The MaxEnt-based method estimates

parameters based on the measured data without any additional prior assumption. This also implies

that MaxEnt estimates the ‘flattest’ distribution that is consistent with the measured data. A recent

work [34] used maximum caliber inference, which is an extension of MaxEnt for analysing time-

dependent data [15,17], to estimate parameters in a gene regulatory reaction network. Parameter

estimation in gene regulatory reaction networks using sparse time-dependent data represents a

problem of similar spirit as the problem investigated here. First, we estimated the probability

distribution function of N1 and N2, p̂ðN1, N2Þ, in the chinchilla population using MaxEnt (electronic

supplementary material, figure S1). Then, we estimated the joint probability distribution function

q̂ðfaijgÞ in the interaction parameters faijg using the estimated p̂ðN1, N2Þ by applying MaxEnt the

second time (electronic supplementary material, figures S2–S3). The details regarding the

implementation of the method for the in vivo data are provided below and in the electronic

supplementary material, §S2.
4.2.2. MaxEnt estimation of p̂ðN1, N2Þ
The bacterial loads for wild-type strains of NTHi and Mcat in 10 adult chinchillas (10 � 2 ears ¼ 20

samples) were used to calculated the mean bacterial loads (E(N1) and E(N2)), variances (s2(N1) and

s2(N2)) and the covariance, Cov(N1, N2). p̂ðN1, N2Þ was estimated using a MaxEnt procedure where

the space in N1 and N2 was discretized on an equally spaced 81 � 81 lattice (fI, Jg). The ranges of

N1 and N2 were 0–530 � 106 CFUs and 0–7 � 106 CFUs, respectively. The MaxEnt method

involved maximizing Shannon entropy [16,17], S ¼ �
P

I, J p(NðIÞ1 , NðJÞ2 )ln[ p(NðIÞ1 , NðJÞ2 )] subject to the

constraints, E(N1) ¼
P

I, J NðIÞ1 p(NðIÞ1 , NðJÞ2 ), E(N2) ¼
P

I, J NðJÞ2 p(NðIÞ1 , NðJÞ2 ), s2(N1) ;
P

I, J NðIÞ1 NðIÞ1 p(NðIÞ1 ,

NðJÞ2 ), s2(N2) ;
P

I, J NðIÞ2 NðIÞ2 p(NðIÞ1 , NðJÞ2 ) and Cov(N1, N2) ¼
P

I, J NðIÞ1 NðJÞ2 p(NðIÞ1 , NðJÞ2 ). The solution that

maximizes S is given by p̂ðNðIÞ1 , NðJÞ2 Þ/ expðl1NðIÞ1 þ l2NðJÞ2 þ l3NðIÞ1 NðIÞ1 þ l4N(J)
2 NðJÞ2 þ l5N(I)

1 NðJÞ2 Þ. The

five Lagrange’s multipliers (l1, . . . , l5) were calculated by solving the constraint equations in

Matlab using the built-in function fsolve. We will denote the discrete probability distribution,

p̂ðNðIÞ1 , NðJÞ2 Þ by p̂ðN1, N2Þ, hereafter, to keep the notation simple.
4.2.3. Estimation of q̂ðfaijgÞ
We estimated q̂ðfaijgÞ using p̂ðN1, N2Þ by applying the MaxEnt inference the second time. We discretize

the four-dimensional space spanned by a11, a12, a21 and a22 on a grid. a11 and a22 assume only positive

real values, and a21 and a12 can assume both positive and negative real values. Specifically, we

discretized a11 from 0.027 to 2 � 106 CFU and a22 from 18.9189 to 1400 � 106 CFU into 74 bins each.

We discretized a12 from 22000 to 50 � 106 CFU and a21 from 250 to 1 � 106 CFU into 201 bins each.

We have varied the bounds and the lattice sizes of the grids and there was no change in the

qualitative results (electronic supplementary material, figure S5). In this case, the Shannon’s entropy

[16,17], SQ ¼ 2
P
faijg q(faijg)ln[q(faijg)] was maximized subject to the constraint that the estimated
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q(faijg) should reproduce p̂ðN1, N2Þ, i.e.

p̂ðN1, N2Þ ¼
X

faijjequationð4:4Þ and stability conditionsg
q̂ðfaijgÞ: ð4:5Þ

The stability conditions (electronic supplementary material, §S3) make sure that the fixed points in

equation (4.4) are stable solutions. Equation (4.5) was inverted to obtain q̂ðfaijgÞ. The solution is given

by Das et al. [14],

q̂ðfaijgÞ ¼
p̂ðN1ðfaijgÞ, N2ðfaijgÞÞ

kðfaijgÞ
, ð4:6Þ

k(faijg) in the above equations denotes the degeneracy factor or the number of distinct points in the a

space that produce the same value of N1 and N2. We calculated k(faijg) numerically by counting the

number of lattice points in the a space that map to the same lattice point in the N-space.

4.3. Determination of the role (x ¼ weak or x ¼ strong) of the mutant strain
in co-infection kinetics

Our framework to evaluate the role of the mutant strain is divided into two main steps as outlined in the

main text. Step 1. We estimated q̂ðfaijgÞ using the reference dataset nDr as described in §4.2. We used

q̂ðfaijgÞ to generate models that belong to the weak or the strong category. The details regarding how

these models were generated are given below. Weak models: A specific mutant strain is hypothesized

to possess loss or gain of phenotype(s) at the design stage of the co-infection experiments (see table 1

for details). The hypothesized changes in the specific phenotypes for the mutant strain will result in

changes in a subset of LV interaction parameters pertaining to the co-infection kinetics of the

populations of the mutant strain and another bacterial species within the chinchilla host. This subset

of LV interaction parameters is denoted by fapqg, faijg, where p ¼ i and q ¼ j for each aij in fapqg.
E.g. for the co-infection with NTHi (wt) þMcat (mcaB), the mcaB mutant strain increases the value of

a21, thus the set fapqg contains only one parameter a21, whereas for co-infection with NTHi (wt) þ
Mcat (dtgt), the dtgt mutant strain increases both a21 and a22, and fapqg will contain two parameters,

a21 and a22. The models in the weak category are defined by the probability distribution function of

the interactions parameters (qw(a;a)) in the models. The weak models are parametrized by fakg which

quantifies the extent by which each of the interaction parameters in fapqg is perturbed in q̂ðfaijgÞ to

generate qw(a;a), i.e.

qwða; aÞ ¼ q̂ðfaijgÞ
Y
k[K

Qðak, a pqÞ, ð4:7Þ

where K ¼ f( p, q)g. Q(ak, apq) denotes the Heaviside theta function Q(ak2apq) or Q(apq 2 ak). Q(ak 2 apq)

is chosen when the mutation decreases the value of apq such that the values apq . ak are absent in the

mutant, or Q(apq 2 ak) is chosen when the mutation increases the values of apq such that the lower

values apq , ak are absent in the mutant. To illustrate, the weak model for the co-infection

NTHi (wt) þMcat (mcaB) is parametrized by a1 and is generated using qw(a; a1) ¼ q̂ðfaijgÞQ(a21 � a1).

Strong models: The models in the strong category considered unanticipated changes in the LV

interaction parameters for co-infection kinetics where a wild-type strain is replaced by a mutant strain.

If a mutant strain in a co-infection is hypothesized to change a subset of LV interaction parameters

fapqg, then the strong models consider changes in fapqg and additional LV interactions (or

unanticipated changes) outside of fapqg. Similar to the weak models, the strong models are defined

by the probability distribution function of the interactions parameters (qs(a; a)) and are parametrized

by fakg which quantifies the extent by which each of the interaction parameters is perturbed in

q̂ðfaijgÞ to generate qs(a; a), i.e.

qsða; aÞ ¼ q̂ðfaijgÞ
Y
k[K

Qðak, a pqÞ
Y
h[H

Qðah, auvÞ: ð4:8Þ

In the above equations, H , faijg\K, where H defines the set of LV interactions outside fapqg.
For example, the strong models for co-infection NTHi (wt) þMcat (mcaB) were generated from in total

six types of models: three types that vary pairs of interactions simultaneously, namely,

qs(a; a1, a2) ¼ q̂ðfaijgÞQ(a21 � a1)Q(a11, a2), qs(a; a1, a3) ¼ q̂ðfaijgÞQ(a21 � a1)Q(a12, a3), qs(a; a1, a4) ¼
q̂ðfaijgÞQ(a21 � a1)Q(a22, a4), and three types that vary a triplet of interactions simultaneously, namely,
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qs(a; a1, a2, a3) ¼ q̂ðfaijgÞQ(a21 � a1)Q(a11, a2)Q(a12, a3), qs(a; a1, a2, a4) ¼ q̂ðfaijgÞQ(a21 � a1)Q

(a11, a2)Q(a22, a4) and qs(a; a1, a3, a4) ¼ q̂ðfaijgÞQ(a21 � a1)Q(a12, a3)Q(a22, a4). Note, in each of the six

types of models a21 is always included and varied in the same way (increasing a21). We consider

changes up to the triplet of LV interactions for generating the strong models.

Step 2. The models qw(a; a) and qs(a; a) were used to generate means of bacterial populations

ðuw=s ; f �N1ðfakgÞ, �N2ðfakgÞgw=s ; fu1
w=s, u

2
w=sgÞ in the hosts using the steady-state equations (equation

(4.1)). We assumed that each of the t samples of the test dataset ðð1Þn0 Dx: . . . ,
ðtÞ
n0 DxÞ is distributed as a

bivariate normal distribution,

PððiÞn0 Dx; m1, m2, S1, S2Þ ¼ A expð�ðiÞx2Þ, ð4:9Þ

where

ðiÞx2 ¼ n0
[m1 �

ðiÞ
n0 D

1
x]

2

2S2
1

þ n0
[m2 �

ðiÞ
n0 D

2
x ]

2

2S2
2

, ð4:10Þ

m1,2 and S1,2 can be estimated from
ð1Þ
n0 Dx , . . . ,

ðtÞ
n0 Dx as,

m̂1 ¼
1

t

Xt

i¼1

ðiÞ
n0 D

1
x, m̂2 ¼

1

t

Xt

i¼1

ðiÞ
n0 D

2
x,

Ŝ
2
1 ¼

1

t

Xt

i¼1

ðiÞ
n0 D

3
x Ŝ

2
2 ¼

1

t

Xt

i¼1

ðiÞ
n0 D

4
x

:

Note the j index in the superscript of
ðiÞ
n0 D

j
x denotes the jth element of the set

ðiÞ
n0 Dx and should not be

confused as a power. We demand that the means of the bacterial populations in the models describe

the means in PððiÞn0 Dx; m1, m2, S1, S2Þ, i.e.

uw=sðfakgÞ1 ¼ m1, uw=sðfakgÞ2 ¼ m2: ð4:11Þ

Next, we determined the parameters (fakg) by minimizing (i)x2 (or maximizing the corresponding

likelihood),

ðiÞx2
w=s ¼ n0

[u1
w=s �

ðiÞ
n0 D

1
x]

2

2S2
1

þ n0
[u2

w=s �
ðiÞ
n0 D

2
x]

2

2S2
2

ð4:12Þ

and then computed AIC for the ith sample of the test dataset after the minimization as,

ðiÞAICw=s ¼ �2ðiÞx2ðm ¼ ûw=sÞÞ þ gðKÞ, ð4:13Þ

where ûw=s is the mean bacterial population in the model evaluated at the fakg values that minimized

equation (4.10), and K is the number of parameters in fakg. We used g(K ) ¼ 2K for our calculations.
4.3.1. Evaluation of the Condorcet winner

We made head-to-head comparisons for all possible pairwise combinations of models using AIC values

as the metric. For a given pair, the winning model was the one which had a lower AIC value for a

majority of the t samples. The model that won all of its head-to-head comparisons was declared the

overall winner; this model is also known as the Condorcet winner, because it is preferred more than

all others in pairwise comparisons. Throughout our study, both for the in silico and in vivo portions,

we always found a Condorcet winner. The category under which the Condorcet winning model fell

(weak or strong) was then assigned to x.

4.4. Generation of the synthetic data
The purpose of the synthetic data was to evaluate the framework with data that mimics in vivo data but

has known levels of mutation strength and host immune response. In addition to the reference dataset,

we generated 36 total in silico mutation datasets. Specifically, we generated a mutation on each of the four

parameters (a11, a12, a21, a22); a mutation had one of three levels of severity (low, moderate, large), and

was paired with one of three levels of host’s immune response (none, weak, strong). Below, we outline

how each was generated.
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4.4.1. The reference set nDr

We first created a reference dataset analogous to a NTHi (wt) þMcat (wt) co-infection experiment. Using

the simplified LV two-species model (equation (4.4)), we set the following ranges for each of the

interaction parameters: a11 e [2.74 � 1023, 0.2], a12 e [2200,5], a21 e [25, 0.1] and a22 e [1.89189, 140].

These ranges were guided by the values observed from the in vivo data so that the in silico reference

set was roughly similar to in vivo data. To calculate a single data point of a (N1, N2) pair of

abundances, we randomly drew a value for each parameter (assuming a uniform distribution) and

calculated the steady-state abundances using equation (4.4). For all the datasets, we generated n ¼ 105

points per dataset. The reference dataset nDr was calculated by collating all the (N1, N2) pairs obtained

by drawing the a parameters from random distributions as described above.

4.4.2. Mutation sets

All ‘mutations’ of the reference dataset were done by increasing the value of exactly one interaction

parameter; specifically, by raising the minimum value in the parameter’s range. The three levels of the

mutation indicated the severity of the increase. A low level a11 mutation has a11 e [0.027, 0.2]; at

moderate severity: a11 e [0.1, 0.2] and at large severity: a11 e [0.18, 0.2]. The ranges for all twelve

possibilities are shown in electronic supplementary material, figures S9–S12.

We also aimed to evaluate the framework with respect to different levels of a host’s immune

response. In cases with no host response, we use the above method. For a non-zero immune response,

we used a simplified model wherein only N2 induces the immune response, and only N1 is affected

(detrimentally). Specifically, we introduced a Michaelis–Menten term to the first ODE in the standard

LV two-species model:

dNðpÞ1

dt
¼ NðpÞ1 (1–aðpÞ11 NðpÞ1 � aðpÞ12 NðpÞ2 ) – kd NðpÞ1

NðpÞ2

Km þN2

 !

and
dNðpÞ2

dt
¼ NðpÞ2 (1 – aðpÞ21 NðpÞ1 � aðpÞ22 NðpÞ2 ):

9>>>>=
>>>>;

ð4:14Þ

In that term, Km is the amount of N2 necessary for the immune response to be at half-max. The

susceptibility of N1 to an immune attack is governed by the kd parameter. So, with no immune

response, we set kd ¼ 0. For a weak immune response kd e [0,1]. For a strong immune response, kd e

[0,10]. As before, when choosing a value for kd, we assumed a uniform distribution.
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