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Otitis media (OM) is a common polymicrobial infection of the
middle ear in children under the age of 15 years. A widely used
experimental strategy to analyse roles of specific phenotypes of
bacterial pathogens of OM is to study changes in co-infection
kinetics of bacterial populations in animal models when a
wild-type bacterial strain is replaced by a specific isogenic
mutant strain in the co-inoculating mixtures. As relationships
between the OM bacterial pathogens within the host are
regulated by many interlinked processes, connecting the
changes in the co-infection kinetics to a bacterial phenotype
can be challenging. We investigated middle ear co-infections
in adult chinchillas (Chinchilla lanigera) by two major OM
pathogens: non-typeable Haemophilus influenzae (NTHi) and
Moraxella catarrhalis (Mcat), as well as isogenic mutant strains
in each bacterial species. We analysed the infection kinetic
data using Lotka—Volterra population dynamics, maximum
entropy inference and Akaike information criteria-(AIC)-
based model selection. We found that changes in
relationships between the bacterial pathogens that were not
anticipated in the design of the co-infection experiments
involving mutant strains are common and were strong
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regulators of the co-infecting bacterial populations. The framework developed here allows for a
systematic analysis of host—host variations of bacterial populations and small sizes of animal
cohorts in co-infection experiments to quantify the role of specific mutant strains in changing the
infection kinetics. Our combined approach can be used to analyse the functional footprint of
mutant strains in regulating co-infection kinetics in models of experimental OM and other
polymicrobial diseases.

1. Introduction

Otitis media (OM) is a common polymicrobial bacterial infection of the middle ear in children which is
caused by three major bacterial pathogens: non-typeable Haemophilus influenzae (NTHi), Moraxella
catarrhalis (Mcat) and Streptococcus pneumoniae (Sp) [1]. The relationships among these OM pathogens
are both direct and indirect in nature. For example, quorum signals (autoinducer-2 or AI-2) secreted
by NTHi help Mcat to form a biofilm and survive in the hostile middle ear environment [2]. This
interaction represents a direct relationship (or an active interaction [3,4]) between NTHi and Mcat. In
another case, NTHi stimulates the host immune response in the middle ear that suppresses the
growth of Sp [5,6]; this interaction is an example of an indirect relationship (or a passive interaction)
between NTHi and Sp. The qualitative (cooperative, competitive or neutral) and quantitative
(interaction strength) nature of the active and passive interactions between the OM bacterial pathogens
depend on phenotypes specific to bacterial strains and the host response [4,7]. Mechanistic
understanding of how these interactions affect pathogenesis of polymicrobial diseases including OM
has been a major research goal for developing vaccine candidates and other therapeutic strategies [8,9].

A common strategy to evaluate mechanistic roles of specific phenotypes of bacterial OM pathogens in
vivo has been to co-infect animal models with bacterial pathogens obtained from clinical isolates and then
assess changes in infection kinetics by replacing a wild-type bacterial strain with a mutant strain
[2,6,10,11]. The mutant strains are designed to produce a loss or gain of specific bacterial phenotypes
of interest. However, because the bacterial phenotypes probed by a mutant strain can be tightly
intertwined with the phenotypes of the other bacterial pathogens, via active and passive interactions,
this task could become challenging. For example, a mutant strain of Mcat lacking the ability to receive
quorum signal from NTHi conceivably results in a decrease in the cooperative interaction from NTHi
to Mcat. However, the same mutation could produce unanticipated changes in other relationships
such as change in cooperation/competition of Mcat to NTHi. When these unanticipated changes are
strong regulators of bacterial populations in co-infection experiments, we are required to revise our
mechanistic understanding regarding the role of the specific mutation in influencing co-infection kinetics.

To this end, we address the above challenge by developing a framework that provides an answer to
the following question: How is it possible to assess if unanticipated changes in the relationships induced
by introducing mutant strains of OM pathogens in co-infection experiments are strong or weak regulators
of the bacterial populations in the experiments? We define loss or gain of phenotype(s) in a specific
mutant strain as a weak regulator when the interactions between bacterial species in co-infection
experiments with the mutant strain are modified according to changes in the phenotype(s) as
hypothesized for the mutant strain. The change in the phenotype(s) is defined as a strong regulator
when additional unanticipated interactions are altered in co-infection experiments with the mutant
strain. A more precise and formal definition of the weak and strong regulators is provided in the
Material and methods section. The answer to the above question will provide a quantitative way to
evaluate the mechanistic role of a bacterial gene in affecting the co-infection kinetics. Our framework
combines (1) in vivo bacterial load measurements in an animal model, with (2) in silico approaches
comprising Lotka—Volterra (LV) population dynamic models [12,13], maximum entropy (MaxEnt)
inference [14-17] and Akaike information criterion (AIC)-based model selection [18]. The animal
model we used is a Chinchilla lanigera experimental OM model [11], wherein the animals’ middle ears
are co-inoculated with NTHi (86-028NP) and Mcat. These strains may be wild-type or isogenic
mutant strains.

Our study revealed three important findings. First, the unanticipated changes in the relationships
between OM bacterial pathogens that substantially affect the co-infection kinetics are commonly
present in co-infection with mutant bacterial strains in experimental OM. Second, several bacterial
phenotypes are tightly correlated across co-infecting bacterial stains. Third, our combined framework
provides a systematic way to deal with two common difficulties faced when analysing infection

01808L ' s uado 05 "y BioBuysiigndiaaosjekorsos:



. LV
(a) active 051 2(+/_/0)

ﬁ interactions

passive o, (+/-/0)
) f*\
@ =P
4 —>,’\ unanticipated changed are weak regulators

1. Generate models

co-infection in the weak and
w/ mutant the strong categories
strains @
@ A

@ &--mm - 4—— @ C------- )
A3 ‘A % II
Mie st PR i 7 2. AIC-based
i i r comparison of
models
| w/ co-infection data
|
A4
ﬁ\ unanticipated changes are strong regulators
s @
\ A
S &

Figure 1. Schematic representation of our framework to determine roles of mutant bacterial strains in regulating co-infection
kinetics. (a) Inter- and intra-species interactions between two bacterial species NTHi and Mcat residing within a host can be
both active (solid lines) or passive (dashed lines) in nature. These interactions can be simplified and described by LV interaction
parameters ({a,-,—}). a1 (greater than 0) and «,, (greater than 0) represent intra-species interactions for NTHi and Mcat,
respectively. «, and «;; represent the overall effect of Mcat on the growth of NTHi and NTHi on the growth of Mcat,
respectively. o, and ay; @n be positive (competitive interaction), zero (neutral interaction) or negative (cooperative
interaction). (b) Replacing a wild-type strain by a mutant strain in the co-infection experiments can change the LV interactions.
These changes may be anticipated (blue ‘X’) or not anticipated (red ‘X’) based on the design of the experiment. Our
framework uses data from co-infection experiments involving the wild-type strains to generate models that determine if these
unanticipated changes are weak or strong requlators of bacterial kinetics. These models are compared to each other using AIC.

kinetic measurements in animal models: host—host variations of bacterial populations and small size of
animal cohorts. Our framework can be used to design mutant strains to generate desired infection
kinetics in experimental models of polymicrobial diseases such as OM and infections secondary to
cystic fibrosis [3] with potential implications for therapeutic strategies [9].

2. Results

2.1. Development of a framework to assess effects of genetic mutation of the bacterial strains
in co-infection kinetics

We developed a two species LV model to describe co-infection kinetics of populations of NTHi and Mcat
strains within an individual chinchilla host (figure 1a and Material and methods section). For simplicity
in the mathematical expressions of the probability distributions and interaction parameters, we will refer
to NTHi strains (wild-type or mutant) as species 1 and Mcat strains (wild-type or mutant) as species 2
throughout the manuscript. The LV interactions (a1, a1, ap; and ayy) characterize the relationships
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between the bacterial species that originate due to active and passive interactions (figure 1a and Material
and methods section). Now we can pose the motivating challenge in terms of the LV interactions. How is
it possible to assess if unanticipated changes in the LV interactions induced by mutant strains are strong
or weak regulators of the bacterial populations in vivo? The unanticipated LV interactions in co-infection
experiments with mutant strains are the ones that were not accounted for in the design of the
experiment. For example, the hag mutant of Mcat does not adhere to the host’s epithelial cell layer as
well as the wild-type Mcat strain [19]. Hence, replacing the wild-type Mcat strain in the co-infection
by NTHi (wf) + Mcat (wt) by the hag mutant strain should increase Mcat’s self-inhibition; i.e. as
should increase (see table 1 for details). Therefore, in the design of the co-infection with NTHi (wt) +
Mcat (hag), one would anticipate a lower carrying capacity for Mcat or an increase of a,,. However,
the changes in passive interactions induced by the hag mutant can also lead to changes in other LV
interactions that were not anticipated, such as an increase in a;. In addition, the host—host variations
measured in the NTHi and Mcat populations were assumed to arise from the variations of the LV
interactions ({a}) in our models. We developed a framework (figure 1b) to address the above
question. The framework is executed in two main steps.

Step 1. The wild-type NTHi (or N;) and the wild-type Mcat (or N,) populations in individual
chinchillas were measured in co-infection experiments carried out in a cohort of n number of
chinchillas at a time T (7 or 14 days) post inoculation. These data were used to generate the reference
data (denoted by the subscript r) ,D,. This reference dataset was composed of the mean values
(N1, N3), variances (07, 03) and the covariance (p;,) calculated from the bacterial load measurements
in the cohort; ie. ,D, = {Ny, Ny, 03, 03, pp} = {,D}} for j=1,..., 5. We estimated the probability
distribution function p(Ny, N») of populations of wild-type NTHi (N;) and wild-type Mcat (N,) in the
chinchilla cohort using MaxEnt (electronic supplementary material, figure S1), wherein the mean
values, variances and the covariance as measured in the experiments (,D,) were constrained in the
calculation (electronic supplemental material, §52). Using this p(N;, N2), we calculated the joint
probability distribution of the interaction parameters (a1, a1, az1, @) (=§({;j}) using a MaxEnt-
based method (details in the Material and methods section and electronic supplementary material,
figures S2-S3). The estimated joint probability distribution function §({a;})was used to generate
models that fall either in the weak or the strong category.

Step 2. We generated a test dataset using data from co-infection experiments where at least one of the
wild-type bacterial strains was replaced by a mutant strain. The test dataset ,, D, contains the population
means, variances and covariance for the cohort which contained n’ number of chinchillas for the same
time T (7 or 14 days) post inoculation. The subscript x in ,D,, to be determined in our analysis,
quantifies the role of the mutation in the co-infection: x = weak or x = strong. As described above, this
distinction indicates whether the unanticipated changes in LV interactions induced by the mutant
strain(s) were weak or strong regulators of the bacterial populations. To safeguard against small sizes of
n' (approx. 10 or less), we performed bootstrapping [23] on the data, wherein we sampled n’ data
points with replacement from the original. In this way, we generated  sets and determined x in each
of those t samples of ,,Dy. These t samples of ,,Dy, e.g. ,(ny, o, LC)DX, were generated by evaluating
wDy in t independent groups containing n’ number of animals each. Next we evaluated which
model(s) generated in step 1 for a particular co-infection experiment best described the t samples of
the test dataset (S)Dx, ., f,,t/)Dx) ; subsequently, we assigned the category (weak or strong) of the best
model to x. The best model was found (whenever possible) by comparing the Akaike information
criterion (AIC) values for each model in a head-to-head pairwise manner for each of the t samples.
The ‘Condorcet Winner’ was the model which was preferred over all others in head-to-head
comparisons [24]. We chose the Condorcet winner as the best model. Further details are provided in
the Material and methods section and in the electronic supplementary material.
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2.2. Application of the framework on synthetic data

To test the efficacy of our method, we generated synthetic data and applied the framework developed in
the previous section. We had the following three goals in mind: (i) validate the framework, (ii) determine
how the strengths of the mutations and/or the host immune response affect interspecies interactions and
(iii) determine the dependence of the model selection on the sample size or the number (1’) of animals in
the cohort. We generated the synthetic data by numerical solution of coupled ODEs that described LV-
type population kinetics involving two interacting bacterial species and a host immune response (see
Material and methods section). The parameters describing the inter- and intra-species bacterial
interactions as well as the host immune response were drawn from uniform distribution within
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specific ranges to generate host—host variations of the co-infection kinetics (see Material and methods).
We chose the parameter range for the wild-type strains such that it produced steady-state population
values similar to those observed in vivo (electronic supplementary material, figures S6-S8).

The average statistical variables ,D, = {N1, N>, o%, O%plz}, calculated from the numerical solutions at
T = day 7, produced the reference dataset. We generated test datasets {,, Dy}, wherein one of the wild-
type strains was replaced by a mutant strain. Specifically, we considered the following two mutant
strains for species 1. The (aﬁ)) mutant, which is an increase in the a;; parameter, possesses increased
self-competition for species 1 compared to wild-type. The (ag)) mutant, which is an increase in the
ap) parameter, possesses increased competition of species 1 towards species 2 as compared to wild-
type. We also considered two mutant strains for species 2. The (ag)) mutant, which is an increase in
the ap, parameter, possesses increased self-competition for species 2 compared to wild-type. The
(ai?) mutant, which is an increase in the a;, parameter, possesses increased competition of species 2
towards species 1 as compared to wild-type. The mutants were generated by changing the ranges of
the associated parameters from that of the wild-type strains (see Material and methods). For example,
the range of ay; used to generate the mutant strain aﬁ) spanned a smaller range [a/, b] compared that
of the wild-type strain, [a, b], where, a <a’. Each of these mutations was performed with low,
moderate and large strengths based on the relative change in the magnitude of range for the
parameters. We also solved the co-infection kinetics in the presence of no, weak and strong host
immune response. Thus, in total we considered 9 x 4 different mutation experiments in silico
(electronic supplementary material, figures S9-512). The test datasets {,/D,} were obtained from the
co-infection kinetics involving the above mutant strains.

We show results for two mutant strains ag) and a(;zr)with moderate strength mutations in the absence
of any host immune response (figure 2b,c). The rest of the mutants are described in the electronic
supplementary material. We followed the steps described in electronic supplementary material §51 to
determine the nature of the mutation (or x) in a test dataset , D,. First, we used ,D, to generate
models that belonged to the weak or the strong category corresponding to the co-infection
strain#l(wt)+strain#2(ag)) or strain#l(wt)+strain#2(ag)). Next, we compared the models with the
samples (t > 100) of the test dataset and evaluated the Condorcet winner model. We found that for
the co-infection with strain#1(wt) + strain#Z(ag)), a model in the x=weak category was the
Condorcet winner (figure 24 and f). By contrast, for the co-infection with strain#1(wt) + strain#Z(ag)),
a model in the x = strong category was the Condorcet winners (figure 2¢,9). These results can be
explained by correlations among the LV interaction parameters (electronic supplementary material,
figure S6) pertaining to the reference dataset ,D,. The correlations of ay, with the other LV parameters
for the above co-infection (strain#1(wt)+strain#2(wt)) are substantially small (less than 0.06); therefore,
increasing ay, alone, as in the a(g) strain, will minimally affect the other parameters. Therefore, the
changes in other LV parameters (unanticipated changes) induced by the increase in ay, for the aé?
strain will be small. These unanticipated changes would play a weak role in regulating the bacterial
populations. By contrast, a;, is correlated strongly with several other interaction parameters (e.g. oz,
Corr ~ —0.5) (electronic supplementary material, figure S6). Thus increasing a;, even by a moderate
amount, as in the ag) strain, will produce large changes in the other LV parameters. Those
unanticipated changes will generate a strong effect on the bacterial populations. These expectations
about the effects of the correlations among the parameters were consistent with the results obtained
from our framework. Therefore, these results validate our framework. The roles of the above mutant
strains in affecting co-infection kinetics for different mutation strengths change depending on the
mutation strength and/or the presence of the host immune response (electronic supplementary
material, figures S9-S12). Therefore, strengths of the mutations and the host immune response are
important in determining the influence of the mutations in the co-infection kinetics.

We checked the dependence of the Condorcet winner on the sample size 1’ in the test dataset. We
found that even for small sample sizes (n’ = 10), the framework picked the correct Condorcet winner;

however, the margin of victory increased with larger n' (figure 2f,).
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2.3. Analysis of the in vivo data

We analysed co-infection kinetics in Chinchilla lanigera co-inoculated with a mixture of wild-type NTHi and
Mcat strains or mixtures of NTHi and Mcat strains wherein at least one of the bacterial strains was a mutant
strain. The chinchillas were inoculated by injecting 10° CFU of NTHi and 10* CFU of Mcat directly into the
middle ears of the animals. The co-infection experiments investigated the hag, mcaB, aaa, mcIR and dtgt
mutant strains of Mcat and the luxS mutant strain of NTHi (table 1; electronic supplementary material,
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Figure 2. Application of the scheme on synthetic data. () Values of N;, N, pairs (10* pairs) obtained from steady-state solutions of
the ODEs corresponding to the LV model where {c;} were drawn from uniform distributions in the following ranges: 2.74 x

1073 < a1 <02, —200 < a; <5 —5<a;;<0.1and 1.9 < ay; < 140. The solutions where either N; or N, went
to zero values or became very large (N; > 530 x 10° or N, > 7 x 10°) were not included in the synthetic dataset. (b)

Synthetic data (10° data points) for a co-infection with the mixture wt + 53’ strain. The oy’ strain was generated by
increasing the lower range of as, to 120. (c) Synthetic data (10° data points) for the co-infection for the mixture wt 4 a3’
strain. The a3 strain was generated by increasing the lower range of v, to —2. () The percentage of the time a runner
model won against an opponent model in head-to-head comparison of AlCs for the models describing the synthetic data in (b).

The m = 19 different models are indexed by integers. The percentages shown were obtained for t = 100 trials, each with a

sample size of n” = 1000. A bright row indicates the winning model. (¢) Results in head-to-head comparisons between the
models presented similar to the data in (c). (fg) The probability pc for the Condorcet winner to win all the pairwise
encounters in the t samples is shown for increasing sample size n’. p, for the Condorcet winner model (#7) is calculated using

pc= 1 f; where f; (greater than 1/2) denotes the fraction of the t samples where the Condorcet winner model #i was
preferred over model #. The product is calculated for all the m — 1 pairwise combinations where m number of models were

considered. p¢ increased with the sample size (n'). The winning models are denoted in the second column by the changes in

aqq, qy, 0y and «;, for the wild-type4-wild-type co-infection. O indicates no change, X indicates an increase and o

indicates a decrease.

table S1). The properties of the mutant strains and their hypothesized effects on the LV interaction
parameters are described in table 1. The populations of the NTHi and Mcat strains were measured at 7
days (day 7) and 14 days (day 14) post inoculation (figure 3; electronic supplementary material, table S1).

The data were collected from both ears of the chinchillas in cohorts containing more than five
animals. The bacterial counts showed large to moderate host—host variations (electronic
supplementary material, figure S1). These variations could arise from the host—host differences in the
physiology, anatomy and immune responses in the upper respiratory tract of the outbred population
of chinchillas. The mean NTHi population was substantially larger (greater than 100 fold) than that of
Mcat for the co-inoculation with the wild-type NTHi and Mcat strains (figure 3). The mean
populations of the wild-type NTHi strain at day 7 were lower if co-inoculated with any mutant Mcat
strain (except Mcat (mcaB)) rather than if co-inoculated with wild-type Mcat (electronic supplementary
material, table S1). By contrast, the mean populations of the Mcat strains for the same co-infections
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1 NTHi (wt) + Mcat (wt)

2 NTHi (wt) + Mcat (mcaB)

3 NTHi (wt) + Mcat (hag)
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. 5 NTHi (wf) + Mcat (mcIR)
80 ..
75 . 6 NTHi (wt) + Mcat (aaa)
70 L "* 7 NTHi (wf) + Mcat (dzgr)
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40| 12 NTHi (luxS) + Mcat (drgr)
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day 7 Mcat
day 14 NTHi . U
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Figure 3. Mean populations of NTHi and Mcat strains in co-infection experiments. Shows the mean populations of NTHi and Mcat
strains at day 7 and day 14 post inoculation calculated from counts in the bullae measured in greater than 5 chinchillas for each of
the 12 different cases of co-inoculation. The combinations of the bacterial strains used for co-inoculating the chinchillas are listed.

showed small changes (increase or decrease) (figure 3; electronic supplementary material, table S1). Co-
inoculation with NTHi (luxS) + Mcat (wt) resulted in a negligible change in the mean Mcat population
but a large decrease in the mean NTHi population at day 7 as compared to the NTHi (wf) + Mcat (wt)
experiment. When both the NTHi (wf) and the Mcat (wt) strains were replaced by their mutant strains in
the co-inoculating mixtures, the mean populations of both the strains decreased at day 7. At day 14, the
mean populations of the NTHi strains decreased, compared to the NTHi (wt) + Mcat (wt) experiment, in
all the experiments with any mutant strains. The covariances between the populations of the NTHi and
the Mcat strains were negative for the majority of the cases investigated here (electronic supplementary
material, table S1). In a few cases, such as NTHi (wt) + Mcat (hag) NTHi or NTHi (wt) + Mcat (mcaB) the
covariances were positive (electronic supplementary material, table S1). Overall, the data showed a
complex pattern as further explained below.

Changes in the bacterial counts due to mutations pointed towards the presence of unanticipated
changes in the bacterial relationships in regulating bacterial populations. For example, compared to
co-infecting with NTHi (wt) + Mcat (wt), co-infecting with NTHi (wt) + Mcat (hag) substantially
decreases the NTHi population (almost by half), whereas the Mcat population only decreases a small
amount. As the hag mutant has lower adherence and poor biofilm formation capability compared to
its wild-type counterpart, we would expect the Mcat population to decrease while having minimal
consequence to the NTHi population. Because the NTHi population was substantially reduced here, it
suggests a potential change in the interaction from Mcat towards NTHi. We used our framework to
quantify the roles of specific NTHi and Mcat mutations in regulating the bacterial populations in co-
infection experiments. As described in the previous section, the data from the co-infection experiments
with the wild-type strains generated our reference dataset ,D,. The models in the weak or the strong
category were generated using ,D, and were compared against the test datasets {,/D,}. The test
datasets were obtained from the co-infection experiments that involved at least one mutant strain.
Multiple samples of a test dataset were obtained by using bootstrapping [23]. Our analysis showed
that for the majority of the cases, models with additional interactions (strong models) better described
the data (at both day 7 and day 14) compared to models with no additional interactions (weak
models) (figure 4). We found that the weak model described the data obtained at day 7 for the co-
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Figure 4. Comparison between the Condorcet winner model and measurement at day 7 post inoculation with mutant strains. The
probability distribution function p(N;, N,) generated by the Condorcet winner model for a co-infection at day 7 post inoculation is
shown using a heat map. The measured bacterial loads for the same co-infection for individual chinchillas are shown in red points.
The anticipated changes in the LV parameters for a co-infection involving a specific mutant strain are shown in the first row of the
table shown on the left of a sub-figure. The changes suggested by the Condorcet winning model are shown in the second row. A
filled or a smaller empty circle indicates an increase or decrease of a specific parameter, respectively The cases where the phenotype
is uncertain, i.e. either an increase or decrease, are marked by a bull's-eye symbol (@). (a) NTHi (wt)-Mcat (hag), (b) NTHi (wt)-
Mcat (mcaB), (¢) NTHi (wt)-Mcat (aaa), (d) NTHi (luxS)-Mcat (wt), (e) NTHi (wt)-Mcat (mcIR) and (f) NTHi (wt)-Mcat (dtgt). Note
that we compared our prediction against the measured data in terms of average populations as bacterial measurements were
available for only few animals. The individual data points shown on the graphs were not explicitly compared, thus some of
the individual measurements (dots) can lie at the boundaries of the predicted distribution (coloured squares) and need not
reflect quality of comparison between the average bacterial populations.

infection with NTHi (wt) + Mcat (mcaB) (figure 4b) better than any strong model. However, at day 14, a
strong model (electronic supplementary material, figure S4) described the same data better than any weak
model. Therefore, unanticipated changes in LV interactions were prevalent in co-infections with mutant
bacterial strains both at early and late stages of the co-infection kinetics.

2.4, Host immune responses modulate Mcat—NTHi interactions at later stages of the infection

The mean populations of the wild-type strains of NTHi and Mcat increase as the infection progresses
from day 7 to day 14 post inoculation (figure 5). However, the covariance of the NTHi and Mcat
populations becomes more negative (approx. twofold change) (electronic supplementary material,
table S1). The negative correlation indicates that the populations of the two species are more mutually
exclusive; that is, when one species has high abundance, then the other’s is low. We hypothesized
that the host immune response generated by both the pathogens could lead to a decrease in
cooperation (or increase in @, and ap;) between Mcat and NTHi. We tested our hypothesis by
applying our scheme with the day 7 data as the reference and day 14 data as the test. The model
wherein aj, and ap; increase was the Condorcet winner (figure 5). The agreement demonstrates the
role of the host immune response in regulating passive inter-species interaction between Mcat and NTHi.
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Figure 5. The prediction at day 14 post inoculation for the wild-type strains generated using the day 7 data. The data are displayed
using the same visualization scheme as in figure 4.

3. Discussion

Co-infection of animal models with mutant bacterial strains is a powerful tool in probing mechanisms
that underlie pathogenesis of polymicrobial infections such as OM. However, the interconnected and
variable nature of interactions involving bacterial pathogens within the host makes it challenging to
connect specific perturbations, such as a mutation, in these experiments to mechanisms. The data-
driven framework developed here provides a systematic method of addressing this challenge. The
framework uses bacterial counts measured in animal hosts to quantitatively determine perturbations
in the bacterial interactions induced by the replacement of a wild-type bacterial strain with a mutant
strain that strongly or weakly regulates bacterial populations in the co-infection. Therefore, using this
framework we are able to quantitatively assess the mechanistic role of a specific bacterial phenotype
probed by an isogenic mutant strain in affecting the co-infection kinetics. Isogenic mutant strains are
used for identification of bacterial determinants of colonization, persistence and virulence. Thus the
quantitative information obtained from our framework will be valuable for determining specific
targets for diagnostics, development of therapy and potentially vaccination. In addition, our
framework also addresses the practical problem of systematically analysing bacterial count data
obtained from a small size (approx. 10 animals) of animal cohorts in co-infection experiments.

Application of our framework to co-infection experiments in Chinchilla lanigera co-inoculated with
wild-type and mutant strains of two major OM pathogens (NTHi and Mcat) found that in a majority
of the co-infections the mutant strains gave rise to unanticipated changes in the bacterial interactions,
which influenced the bacterial populations substantially. The emergence of unanticipated
perturbations of the bacterial interactions is probably caused by the interdependencies between the
interactions and the hostile environment of the host [16]. The interdependencies can be caused due to
many shared processes such as feeding on common nutrients, exchanging small molecules and the
host immune response that regulates the growth of OM pathogens within the host [5,8]. Therefore,
when a specific bacterial phenotype is altered in the form of a mutant strain, several other phenotypes
in co-infecting OM pathogens are also altered, some of which can be non-intuitive. Our analysis of the
synthetic co-infection data lends support to this speculation. We found that correlations between the
LV parameters generated non-intuitive changes in several LV interactions when a specific LV
interaction was perturbed in a mutant strain, and in many cases these unanticipated changes in the
LV interactions were strong regulators of the bacterial populations.

Our framework required estimation of LV interactions involving the co-infecting bacterial pathogens
using the measured bacterial counts. The estimated interactions between wild-type strains of NTHi and
Mcat demonstrate prevalence of cooperative interspecies interactions (ajp <0, az <0) (electronic
supplementary material, figure S3). Previous experiments noted several molecular mechanisms
regarding the help of NTHi towards Mcat’s growth, e.g. the quorum signal AI-2 secreted by NTHi
helping Mcat to form a biofilm and thereby helping it to survive within the host [22,25]. Reciprocally, the
estimated interactions also suggested cooperation of Mcat towards the growth of NTHi (or ay; < 0).
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Such a cooperative effect can potentially occur through passive interactions. For example, Mcat binds and [ 12 |
sequesters AI-2 molecules secreted by NTHi; this sequestration could help keep the AI-2 abundances at
an optimal level for production of quorum signals by NTHi. Similar optimal regulation of quorum
sensing has been found in mutualistic relationship between two human oral bacteria, Actinomyces
naeslundii T14 V and Streptococcus oralis 34, where AI-2 secreted from the latter bacterial species help the
former species to form biofilms [26]. Furthermore, Mcat bacteria are known to form large aggregates (or
autoagglutination) via the Hag protein. Such aggregates can help NTHi to form biofilms as mixed NTHi-
Mcat biofilms within the host [20,21]. Another example of cooperation involves nutrient recruitment. The
inflammation caused by Mcat can produce an influx of host serum which also can provide nutrients for
the growth of NTHi [27]. All three of the above sources of interaction could contribute towards
generating an overall cooperative interaction from Mcat to NTHi.

We found that several LV interactions (e.g. ajp and ;) involving NTHi and Mcat are tightly
correlated (|Corr| > 0.5) with each other. As the MaxEnt method estimates the most spread out or
uniform probability distribution phenotype that is consistent with the measured data [17], the method
used here provided the most conservative estimate correlations between the LV interactions. This
approach is a major departure from several methods that have been developed in recent years to
evaluate interactions [28—-30] pertaining to microbiome datasets where the correlations between the
interaction parameters are not analysed. Ecological models often assume LV interactions between
coexisting species as uncorrelated random variables [13]. This assumption makes the calculations
amenable to analytical methods. The presence of strong correlations between LV interaction
parameters could have important implications in assessing general principles underlying the diversity
of eco-systems [31].
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4. Material and methods

4.1. Experiments

Moraxella catarrhalis persistence in the middle ear chambers of chinchillas was assessed essentially as
described previously [2]. Animals were purchased on need and allowed to acclimate to the vivarium
for more than 10 days before infection. No used animals showed visible sign of illness prior to
infection. Chinchillas (five animals per group) were anaesthetized with isofluorane and infected via
transbullar injection with both approximately 10* CFU of M. catarrhalis and approximately 10> CFU of
H. influenzae. All inocula were confirmed by plate counting. Animals were euthanized at 7 and 14
days post infection, and their bullae were aseptically opened to recover possible effusion fluid. Middle
ear lavage was performed using sterile PBS and also saved and combined. Bullae were then excised
and homogenized in 10 ml of sterile PBS. All of fluid and homogenized samples were serially diluted
and plated on brain heart infusion (BHI) agar plates to obtain viable counts of M. catarrhalis. Note
that H. influenzae would not grow on BHI plate due to lack of haemin and NAD. H. influenzae bacteria
were enumerated on BHI agar supplemented with 10 ug ml ™! haeme and NAD and containing
5 pg ml ™! clarithromycin, which inhibits the growth of M. catarrhalis.

4.1.1. Bacterial strains and growth conditions

Moraxella catarrhalis strain O35E, as a WT and parent strain in this study, is a commonly used laboratory
strain [32]. Moraxella catarrhalis O35E hag::Sp containing a spectinomycin resistance cassette disrupting
the hag gene is a kind gift from Dr Eric Hansen. Non-typeable H. influenzae strain 86-028NP is a
nasopharyngeal isolate from a child with chronic OM [33], and its [uxS::Kn mutant with a kanamycin
resistance cassette disrupting the AI-2 synthase was described previously [22]. Moraxella catarrhalis
strains were cultured in BHI medium (Difco), and H. influenzae strains were cultivated in BHI medium
supplemented with 10 pug ml ! of haemin chloride (MP Biomedicals) and 10 ng ml ! of NAD (Sigma),
referred as supplemented BHI (sBHI). Mixture cultures of both M. catarrhalis and H. influenzae used sBHI.

4.1.2. Mutant bacterial strains

M. catarrhalis mclIR::spec was generated by insertional mutagenesis using the following approach.
Genomic DNA was purified from M. catarrhalis O35E using the Wizard genomic DNA purification kit
(Promega), essentially according to the manufacturer’s instructions. Portions of the mcIR (allele
MCR_1062) open reading frame were amplified using the PCR and primers specific for intragenic



regions (luxRUPF:  CATCATGACTTGGTAACTTGCTG, 1uxRUPR: GCTGATCGGCAATTTGCCCCC  |EE}
GGGGTCGAGTGGCTTCTACACC). The resulting amplicons were cloned and a spectinomycin
resistance cassette was introduced into a Smal restriction site within the intergenic primers. This
mutant allele was introduced into the parental strain by natural transformation and the resistant
derivatives were confirmed by PCR and DNA sequence analysis.

4.1.3. Hag promoter mutants

Deletion of a tgt sequence and insertion of an aaa sequence within a predicted lux box within the hag
promoter was achieved by overlap PCR; the resulting allele was introduced by natural transformation
using a linked spectinomycin resistance marker (Li et al., unpublished data).

4.2. Estimation of probability distribution function g({ c;}) of Lotka—Volterra
interactions { c; }
4.2.1. Lotka—Volterra modelling of the population kinetics

We described the population kinetics of populations of NTHi and Mcat in the middle ear of the host
(Chinchilla lanigera) using two coupled ordinary differential equations (ODEs) following the Lotka-—
Volterra (LV) model [12]:
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N{P and N denote the populations of the NTHi and Mcat strains, respectively, in the middle ear of an
individual host. Individual hosts are indexed by the superscript p. The parameters r,K; and r,K;, denote
the growth rates of species 1 and 2, respectively, where K; and K, denote the corresponding carrying
capacities. The parameters {a;} describe effective interactions involving the bacterial species. a1 and
Ay denote self-competition for growth for species 1 and 2, respectively, and 4, and a,; denote the
influence (competition or cooperation) of species 2 and 1 on the growth of the other species, 1 and 2,
respectively. Note, a4, and a,; can assume positive (indicating competition) or negative (indicating
cooperation) values, whereas a;; and a5, can only possess non-negative values. The carrying capacities
and the interaction parameters {a;} determine the maximum bacterial load that can be sustained in
the local environment. The above simple description of the bacterial infection kinetics within a host
provides a coarse-grained and effective description of the kinetics, where the bacterial populations
represent an average over spatial length scales including spatial structures such as biofilms. The effects
of the immune response, nutrients, protective effects of biofilm formation and quorum sensing are
effectively described in terms of the interaction parameters and the carrying capacities (table 1). The
above model describes the interactions between the bacterial species and the host minimally where the
LV interaction parameters provide a clear description of the inter- and intra-species interactions
between the co-infecting bacterial species. These effects can vary from host to host giving rise to host-
dependent values of the effective parameters; therefore, we consider host—host variations of the model
parameters ({a;}, {K;}). As the NTHi and Mcat replication rates are approximately 1 h™!, it is
reasonable to assume that in a time scale of days the kinetics in equation (4.1) reaches a steady state, i.e.

rgp)Nip)(K;p)_a(lrl))Nip) _ a(lg)Nép)) -0
(4.2)
and PNP KD D NP~ NP — 0.
The steady-state equations (equation (4.2)) help reduce the number of parameters in determining
populations of NTHi and Mcat.

NP - NP — o) =0 } "

and NP 1-af' NP — o NP) = 0.

We defined aEJP) = aEJP) / Kfp) in equation (4.3). Thus, the dependences of the carrying capacities {K;} are

effectively contained in the scaled variables {aij}. The LV interaction parameters ag}i), ag), ag), a(zfz))



determine the bacterial abundances at the steady state (or the stable fixed points) The above equat1ons [ 14 |
produce four f1xed po1nts (N1 =0, N 0) (N NP =1 / a(zg) ), (Ni =1 / 11 , =0) and
(NP = ([aP] )y + [@®] ')y, N. <P) = ([a®] ")y + ([ Pl )ss), where, a® and [a <P>] " denote the
matrix, {allp)} and its inverse. The stability of the fixed points is determined by the linear stability
analysis (electronic supplementary material, §53). We consider only the stable fixed points, where
NP >0 and NP > 0. The parameter values yielding any other type of solutions (e.g.
Nlp) :N =0, NP <0 or N <0, Nip) — 00 Or N;p) — o0) are assumed not to occur in the
bacterial kinetics. Thus, we consider the solutions,

P[] )y + [P )y,
and NP =[] )y + ([aP] )y,

when they are stable and are ositive. Next, we estimated the LV interaction parameters {a { } from the
bacterial loads (N andN ) for an individual animal (indexed by p) For a measured value of
N§ and N2 , it is not possible to estimate the four parameters { 0‘1 } uniquely using the above
equations. Therefore, we developed a MaxEnt-based inference scheme to estimate the parameters in
the chinchilla population using the measured bacterial loads. The MaxEnt-based method estimates
parameters based on the measured data without any additional prior assumption. This also implies
that MaxEnt estimates the ‘flattest” distribution that is consistent with the measured data. A recent
work [34] used maximum caliber inference, which is an extension of MaxEnt for analysing time-
dependent data [15,17], to estimate parameters in a gene regulatory reaction network. Parameter
estimation in gene regulatory reaction networks using sparse time-dependent data represents a
problem of similar spirit as the problem investigated here. First, we estimated the probability
distribution function of Ny and N,, p(Ni, N»), in the chinchilla population using MaxEnt (electronic
supplementary material, figure S1). Then, we estimated the joint probability distribution function
g({eij}) in the interaction parameters {a;} using the estimated p(Ni, N2) by applying MaxEnt the
second time (electronic supplementary material, figures S2-S3). The details regarding the
implementation of the method for the in vivo data are provided below and in the electronic
supplementary material, §S2.

(4.4)
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4.2.2. MaxEnt estimation of p(N;, N)

The bacterial loads for wild-type strains of NTHi and Mcat in 10 adult chinchillas (10 x 2 ears = 20
samples) were used to calculated the mean bacterial loads (E(N;) and E(N»)), variances (6*(N;) and
*(N,)) and the covariance, Cov(N;, Na). p(N1, N») was estimated using a MaxEnt procedure where
the space in Ny and N, was discretized on an equally spaced 81 x 81 lattice ({I, J}). The ranges of
N; and N, were 0-530 x 10° CFUs and 0-7 x 10° CFUs, respectively. The MaxEnt method
involved maximizing Shannon entropy [16,17], S = Zl p(N )l [p(N , )] sub]ect to the
constraints, E(N1) = z N (N é”x BN = 3, Ny, 55, N > =5, NONO RN,

NY), P(N2) =3, /N, (N V) and Cov(Nl, Nz) = 2, | <‘> Vp(NY, NI, The solut1on that
maximizes S is given by p( ]2) ) o< exp( /\1N + )\2N +/\3N N() + Aq N(])N + A5 N(I)N ). The
five Lagrange’s multipliers ()\1,..., As) were calculated by solving the constraint equations in
Matlab usmg the built-in function fsolve. We will denote the discrete probability distribution,
l“(Nl , ) by p(Ni, N»), hereafter, to keep the notation simple.

4.2.3. Estimation of §({a;})

We estimated §({«;j}) using p(Ny, N2) by applying the MaxEnt inference the second time. We discretize
the four-dimensional space spanned by a;1, 12, az1 and ap; on a grid. a;; and ay, assume only positive
real values, and ap; and «j; can assume both positive and negative real values. Specifically, we
discretized a;; from 0.027 to 2 x 10° CFU and a,, from 18.9189 to 1400 x 10° CFU into 74 bins each.
We discretized a;, from —2000 to 50 x 10° CFU and a»; from —50 to 1 x 10° CFU into 201 bins each.
We have varied the bounds and the lattice sizes of the grids and there was no change in the
qualitative results (electronic supplementary material, figure S5). In this case, the Shannon’s entropy
[16,17], So= —> {aijy 9{a;j})In[g({e;})] was maximized subject to the constraint that the estimated



q({eij}) should reproduce p(Ni, N»), i.e.
p(N1, N2) = > g({eij})- (4.5)

{aijlequation(4.4) and stability conditions}

The stability conditions (electronic supplementary material, §53) make sure that the fixed points in
equation (4.4) are stable solutions. Equation (4.5) was inverted to obtain §({«;}). The solution is given
by Das et al. [14],

P(N1({aij}), Na({aij}))
k({ai}) ’
k({a;j}) in the above equations denotes the degeneracy factor or the number of distinct points in the «

space that produce the same value of N; and N,. We calculated «({«;}) numerically by counting the
number of lattice points in the « space that map to the same lattice point in the N-space.

q({ay}) = (4.6)

4.3. Determination of the role (x = weak or x = strong) of the mutant strain
in co-infection kinetics

Our framework to evaluate the role of the mutant strain is divided into two main steps as outlined in the
main text. Step 1. We estimated §({c;j}) using the reference dataset ,D, as described in §4.2. We used
d({wij}) to generate models that belong to the weak or the strong category. The details regarding how
these models were generated are given below. Weak models: A specific mutant strain is hypothesized
to possess loss or gain of phenotype(s) at the design stage of the co-infection experiments (see table 1
for details). The hypothesized changes in the specific phenotypes for the mutant strain will result in
changes in a subset of LV interaction parameters pertaining to the co-infection kinetics of the
populations of the mutant strain and another bacterial species within the chinchilla host. This subset
of LV interaction parameters is denoted by {a,,} C {ay}, where p=1i and q=j for each ;; in {a,}.
E.g. for the co-infection with NTHi (wt) + Mcat (mcaB), the mcaB mutant strain increases the value of
@y, thus the set {a,,} contains only one parameter a,;, whereas for co-infection with NTHi (wt) +
Mcat (dtgt), the dtgt mutant strain increases both ay; and az, and {a,,} will contain two parameters,
a1 and agp. The models in the weak category are defined by the probability distribution function of
the interactions parameters (j,,(e;a)) in the models. The weak models are parametrized by {a;} which
quantifies the extent by which each of the interaction parameters in {«,,} is perturbed in §({e;}) to
generate q,(a;a), i.e.

gu(e; a) = 4({a}) [ ] Olar, ), (4.7)
kek

where K = {(p, q)}. O(a,, o) denotes the Heaviside theta function O(a;— o) or O(ay,y — ar). Oar — o)
is chosen when the mutation decreases the value of «,, such that the values «,, > a; are absent in the
mutant, or &y, — ax) is chosen when the mutation increases the values of a,, such that the lower
values @, <a; are absent in the mutant. To illustrate, the weak model for the co-infection
NTHi (wt) + Mcat (mcaB) is parametrized by a; and is generated using gu(a; a1) = §({a;}) Oz — a1).
Strong models: The models in the strong category considered unanticipated changes in the LV
interaction parameters for co-infection kinetics where a wild-type strain is replaced by a mutant strain.
If a mutant strain in a co-infection is hypothesized to change a subset of LV interaction parameters
{apg}, then the strong models consider changes in {a,,} and additional LV interactions (or
unanticipated changes) outside of {a,,}. Similar to the weak models, the strong models are defined
by the probability distribution function of the interactions parameters (gs(e; a)) and are parametrized
by {ax} which quantifies the extent by which each of the interaction parameters is perturbed in
q({aij}) to generate g4(a; a), i.e.

gs(e; @) = E]({O‘ij}) H O(ay, apq) H Oay, ayy). (4.8)

keK heH

In the above equations, H C {a;}\K, where H defines the set of LV interactions outside {a}.
For example, the strong models for co-infection NTHi (wt) + Mcat (mcaB) were generated from in total
six types of models: three types that vary pairs of interactions simultaneously, namely,
gs(a; ay, a2) = g({eij}) Ol — a1)O(any, a2),  gs(a; ay, a3) = §({ij}) O — a1) a2, a3),  qs(a; ay, ag) =
g({aij}) O(an1 — a1)O(az, a4), and three types that vary a triplet of interactions simultaneously, namely,
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gs(a; a1, az, a3) = §({aij}) Oaor — a1) Aeur, a2) Oz, a3), gs(e; ay, az, as) = §({aij}) Oy — a1)O

(0(11, az)@(azz, 614) and qs(a; ay, as, a4) = Q({aij})@(a21 — 611)@(0(12, a3)@(a22, a4). Note, in each of the six
types of models ay; is always included and varied in the same way (increasing as;). We consider
changes up to the triplet of LV interactions for generating the strong models.

Step 2. The models g,(a; a) and gs(a; a) were used to generate means of bacterial populations
(6uss = {N1({ax}), No({a}) }p)s = {6L /s/ & /s}) in the hosts using the steady-state equations (equation
(4.1)). We assumed that each of the t samples of the test dataset (fll,)Dx. ., f,t/)Dx) is distributed as a
bivariate normal distribution,

P(3/Dy; 1, g, 31, 30) = Aexp(=)2), (4.9)
where
, _ 1y _ 2y
(;)Xz — [ n/z N +n [1o n/z N ) (4.10)
12 and 3, can be estimated from 511,)Dx S, ,(f,)Dx as,
Py IR i1 N 1¢ i) 2
I'LIZ?ZH,DX’ I'LZZ?ZH’DX’
i—1 i—1
2 I~ <2 N0y
21_¥En’Dx 22:¥ n’Dx
i=1 i=1

Note the j index in the superscript of S/)D’,'c denotes the j™ element of the set S,)Dx and should not be
confused as a power. We demand that the means of the bacterial populations in the models describe
the means in P(ff,)Dx; M, Mo, 21, 20), 1e.

Hw/S({ak})l = M1, gzcv/S({ak})z = M- (4.11)

Next, we determined the parameters ({a;}) by minimizing Py (or maximizing the corresponding
likelihood),

B 2 : 2
. 6L, — (l/)Dll [, — (l/)DZ]
(i) — w/s n =x + " w/s n =x 412
Xas 23?2 232 (*.12)
and then computed AIC for the ith sample of the test dataset after the minimization as,
(i)AICw/s = _2(i>X2(I~L = Aw/s)) +g(K)/ (4'13)

where 6, /s is the mean bacterial population in the model evaluated at the {a;} values that minimized
equation (4.10), and K is the number of parameters in {a;}. We used g(K) = 2K for our calculations.

43.1. Evaluation of the Condorcet winner

We made head-to-head comparisons for all possible pairwise combinations of models using AIC values
as the metric. For a given pair, the winning model was the one which had a lower AIC value for a
majority of the t samples. The model that won all of its head-to-head comparisons was declared the
overall winner; this model is also known as the Condorcet winner, because it is preferred more than
all others in pairwise comparisons. Throughout our study, both for the in silico and in vivo portions,
we always found a Condorcet winner. The category under which the Condorcet winning model fell
(weak or strong) was then assigned to x.

4.4, Generation of the synthetic data

The purpose of the synthetic data was to evaluate the framework with data that mimics in vivo data but
has known levels of mutation strength and host immune response. In addition to the reference dataset,
we generated 36 total in silico mutation datasets. Specifically, we generated a mutation on each of the four
parameters (o1, aqo, 021, @22); @ mutation had one of three levels of severity (low, moderate, large), and
was paired with one of three levels of host’s immune response (none, weak, strong). Below, we outline
how each was generated.
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4.4.1. The reference set ,D,

We first created a reference dataset analogous to a NTHi (wt) + Mcat (wt) co-infection experiment. Using
the simplified LV two-species model (equation (4.4)), we set the following ranges for each of the
interaction parameters: a4y € [2.74 x 1072, 0.2], a;2€[—200,5], as; €[5, 0.1] and s €[1.89189, 140].
These ranges were guided by the values observed from the in vivo data so that the in silico reference
set was roughly similar to in vivo data. To calculate a single data point of a (N;, Np) pair of
abundances, we randomly drew a value for each parameter (assuming a uniform distribution) and
calculated the steady-state abundances using equation (4.4). For all the datasets, we generated n = 10°
points per dataset. The reference dataset ,D, was calculated by collating all the (N3, N;) pairs obtained
by drawing the a parameters from random distributions as described above.

4.4.2. Mutation sets

All ‘mutations” of the reference dataset were done by increasing the value of exactly one interaction
parameter; specifically, by raising the minimum value in the parameter’s range. The three levels of the
mutation indicated the severity of the increase. A low level ay; mutation has aq; €[0.027, 0.2]; at
moderate severity: aq; €[0.1, 0.2] and at large severity: a;;€[0.18, 0.2]. The ranges for all twelve
possibilities are shown in electronic supplementary material, figures S9-S12.

We also aimed to evaluate the framework with respect to different levels of a host’s immune
response. In cases with no host response, we use the above method. For a non-zero immune response,
we used a simplified model wherein only N, induces the immune response, and only Nj is affected
(detrimentally). Specifically, we introduced a Michaelis—Menten term to the first ODE in the standard
LV two-species model:

dN(P) N(P)
“ar = NP O-aNP - BN ke NP
(4.14)
AN ey @) )
and dt sz (1- ‘121;1) Nlp - aZg sz )-

In that term, K, is the amount of N, necessary for the immune response to be at half-max. The
susceptibility of N; to an immune attack is governed by the k; parameter. So, with no immune
response, we set k; = 0. For a weak immune response k; € [0,1]. For a strong immune response, k€
[0,10]. As before, when choosing a value for k;, we assumed a uniform distribution.

Animal ethics. All chinchilla infections were performed according to the protocols approved by the Wake Forest Animal
Care and Use Committee. This study was conducted according to the guidelines outlined by National Science
Foundation Animal Welfare Requirements and the Public Health Service Policy on the Humane Care and Use of
Laboratory Animals. The Institutional Animal Care and Use Committees (IACUC) at Wake Forest School of
Medicine approved these animal studies. Wake Forest’s IACUC oversees the welfare, well-being and proper care and
use of all vertebrate animals used for research and educational purposes at Wake Forest School of Medicine. The
approved protocol number for the project is A13-140 and the Wake Forest School of Medicine animal welfare
Assurance Number is D16-00248.

Data accessibility. The in vivo datasets and the Matlab code used to analyse the data are available at Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.j89d064 [35].
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