
rsob.royalsocietypublishing.org
Review
Cite this article: Lozano G, Francisco-Velilla

R, Martinez-Salas E. 2018 Deconstructing

internal ribosome entry site elements: an

update of structural motifs and functional

divergences. Open Biol. 8: 180155.

http://dx.doi.org/10.1098/rsob.180155
Received: 30 August 2018

Accepted: 30 October 2018
Subject Area:
molecular biology/microbiology

Keywords:
translation control, IRES elements,

RNA structure
Author for correspondence:
Encarnacion Martinez-Salas

e-mail: emartinez@cbm.csic.es
& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Deconstructing internal ribosome entry
site elements: an update of structural
motifs and functional divergences

Gloria Lozano, Rosario Francisco-Velilla and Encarnacion Martinez-Salas

Centro de Biologı́a Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientı́ficas—Universidad
Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain

EM-S, 0000-0002-8432-5587

Beyond the general cap-dependent translation initiation, eukaryotic organisms

use alternative mechanisms to initiate protein synthesis. Internal ribosome

entry site (IRES) elements are cis-acting RNA regions that promote internal

initiation of translation using a cap-independent mechanism. However, their

lack of primary sequence and secondary RNA structure conservation, as

well as the diversity of host factor requirement to recruit the ribosomal

subunits, suggest distinct types of IRES elements. In spite of this heterogeneity,

conserved motifs preserve sequences impacting on RNA structure and RNA–

protein interactions important for IRES-driven translation. This conservation

brings the question of whether IRES elements could consist of basic building

blocks, which upon evolutionary selection result in functional elements with

different properties. Although RNA-binding proteins (RBPs) perform a crucial

role in the assembly of ribonucleoprotein complexes, the versatility and plas-

ticity of RNA molecules, together with their high flexibility and dynamism,

determines formation of macromolecular complexes in response to different

signals. These properties rely on the presence of short RNA motifs, which

operate as modular entities, and suggest that decomposition of IRES elements

in short modules could help to understand the different mechanisms driven by

these regulatory elements. Here we will review evidence suggesting that

model IRES elements consist of the combination of short modules, providing

sites of interaction for ribosome subunits, eIFs and RBPs, with implications

for definition of criteria to identify novel IRES-like elements genome wide.
1. RNA structural elements and gene expression
regulation

In recent years, the impact of RNA structure in multiple steps affecting gene

expression control has become increasingly evident. Key to understanding

the relevance of RNA in biological processes has been the development of

RNA structure-related methodologies, which has shown the flexible confor-

mation of RNA, and also the modular nature of RNA three-dimensional (3D)

architecture [1]. In particular, the advent of highly potent techniques, such as

cryo-EM, provided critical insights into the 3D structure of reconstituted ribo-

some–RNA complexes [2,3]. In addition, implementation of novel techniques

to analyse the RNA structure of ribonucleoprotein (RNP) macromolecules at

the level of nucleotide resolution in vitro and also inside cells by selective

20OH acylation analysed by primer extension (SHAPE) has revolutionized the

field [4,5]. In this methodology, the availability of distinct probing reagents

has been aided by the development of faster, reliable methods of analysis

either via capillary electrophoresis or next-generation sequencing [6].

The molecular basis of RNA conformational flexibility has been extensively

studied in viral RNAs. Generally, SHAPE models largely recapitulate RNA

structures predicted by other methods, but also allow identifying unpredicted
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Figure 1. (a) Switch from cap-dependent to cap-independent translation. (b) Main features and secondary structure of the picornavirus type II IRES, the HCV IRES,
and the dicistrovirus intergenic region (IGR) are represented. The location of domains referred to in the text is indicated. Green stars denote the location of sequences
with modified conformational flexibility upon IRES incubation with ribosomal subunits. For type II IRES, the binding site of PTB, PCBP2 and eIF4G are indicated,
while for HCV the binding site of eIF3 and the 40S recognition site are depicted.
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structural elements, with novel regulatory properties [7–9].

This type of study is instrumental to explore new RNA

motifs in RNA viruses, which despite apparent similar geno-

mic architecture are divergent structurally. RNA structural

elements, and their interactions with RNA-binding proteins

(RBPs) and other ligands, control many stages of virus life

cycle [10–13]. Along this line, structural studies combined

with covariation analysis provided strong evidence suggesting

selection pressures for functional elements in RNA viruses,

designated internal ribosome entry site (IRES) elements,

usually located in untranslated regions (UTR) of the mRNA

[14,15]. However, evidence for structural elements within the

open-reading frame (ORF) of viral RNAs has also been

reported [16,17]. Conversely, structural divergence during

evolution can generate new functional features, such as those

shaping interactions with the host immune system or co-

evolving with viral proteins [18]. Thus, although several

RNA elements critical for the viral life cycle have been exper-

imentally determined, the structure–function relationship of

RNA motifs still remains to be understood.

Here we will focus on RNA motifs conserved in model

IRES elements and how this information can be crucial to

understand the modular organization of these RNAs, even-

tually contributing to the accurate prediction of IRES-like

motifs in genomes. More detailed information on non-canonical

and cap-independent translation mechanisms can be found in

previous reviews [19,20].
2. Translation control. Evidence for cap-
independent translation mechanisms

In all organisms, translation control is a key step in

gene expression regulation. Eukaryotic mRNAs usually contain

the m7G(50)ppp(50)N modification (or cap) at the 50 end

(figure 1a). This structure mediates initiation of translation via
the so-called cap-dependent mechanism that involves the binding

of the translation initiation factor (eIF)-4E in a complex with eIF4G

and eIF4A to the 50 end of mRNAs [21]. This complex recruits the

40S ribosomal subunit, in turn bound to the multimeric factor

eIF3, eIF2 and the initiator met-tRNAi, scanning the 50 UTR

until an AUG triplet is found in the appropriate context to start

protein synthesis. Joining of the 60S ribosomal subunit follows

this step, producing a translation competent complex. It is well

documented that strong cellular stresses (such as apoptosis,

nutrient deprivation or oxidative stress) severely compromise

cap-dependent translation [22]. However, under adverse situ-

ations specific subsets of cellular mRNAs remain associated to

polysomes achieving efficient translation [23,24].

Viral mRNAs have developed distinct strategies to over-

come the shut-off of cap-dependent protein synthesis

induced in virus-infected cells [25]. Hence, although the

cap-dependent mechanism was considered the predominant

manner to initiate translation, several alternatives have been

documented explaining selective translation of specific subsets

of mRNAs [26]. In addition to RNA modification by methyl-

ation [27], selective translation of mRNAs enabling initiation

at downstream codons encoding small ORFs in some cases

bypassing upstream open-reading frames (uORFs), as in circu-

lar mRNAs and long non-coding RNAs, would rely on

cap-independent mechanisms [28,29]. Moreover, while the

monocistronic nature of eukaryotic mRNAs was historically

considered the main source of protein coding genes, an increas-

ing number of reports provided evidence for the expression of

more than one ORF from a single transcriptional unit [30]. The

presence of polycistronic RNAs is particularly evident in

Drosophila melanogaster [31,32]. Therefore, as the annotation of

genes in higher eukaryotes gains completeness and accuracy,

initiation of protein synthesis using cap-independent

mechanisms is becoming more frequent than initially thought.

Alternative manners to initiate translation received support

from experimental evidence for distinct ribosome composition
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within the large population of ribosomal particles [33,34], also

consistent with changes in the protein pattern detected by bi-

dimensional gel electrophoresis in yeast with altered levels of

the stalk proteins [35]. Specifically, analysis of the composition

of ribosomal particles demonstrated the involvement of

RACK1-containing ribosomes in the stimulation of translation

promoted by two different viral IRES, hepatitis C virus (HCV)

and cricket paralysis virus (CrPV) [36]. In agreement with the

role of RACK1 in selective translation, this protein interacts

with eIF3j, a peripheral subunit of eIF3 present in sub-stoichio-

metric quantities and subjected to post-translational

modifications. More recently, implementation of improved

hybrid mass spectrometry methods, in conjunction with

advanced high-resolution cryo-EM, demonstrated that chloro-

plastic 70S and human 40S and 60S ribosomal particles are

heterogeneous both in protein association and post-transla-

tional modification [37]. The heterogeneity of the human

ribosomal particles influences their differential association to

prototype viral IRES elements. Indeed, experiments conducted

with conditional knock-down ribosomal stalk proteins, P1 and

P2, revealed enhanced activity of the picornavirus foot-and-

mouth disease virus (FMDV) IRES, but had no significant

effect on the HCV IRES function [38]. Hence, it may be envi-

sioned that the heterogeneous composition of ribosomes

would also affect cellular IRES activity. Furthermore, not only

modification of the ribosomal proteins but also modification

of the ribosomal RNA impacts on the translation capacity of

ribosomes [39]. Conversely, post-transcriptional modification

of the mRNA has contributed to propose the need for distinct

translation initiation mechanisms as well [27,40]. In these

cases, the use of mRNA harbouring IRES elements has been

instrumental to illustrate the differences between conventional

and alternative mechanisms of protein synthesis initiation.
3. Viral IRES elements: impact of RNA
structure on IRES activity

The pioneering work performed 30 years ago with picornavirus

RNAs, which are naturally uncapped, provided the foun-

dations for mRNA regions termed IRES elements (figure 1b).

Picornavirus RNAs contain long, highly structured 50 UTRs

able to recruit the 40S subunit using a cap-independent mech-

anism [41,42]. This property was later extended to other RNA

viruses [43]. Cumulative data obtained over the last decade

by different laboratories provided evidence for the relationship

between RNA structure and function of viral IRES elements

[15,44]. Notwithstanding, IRES elements lack conserved

primary sequence, secondary RNA structure, and host factor

requirement to recruit the ribosomal subunits. This heterogen-

eity opens the question of how such a variety of diverse RNA

regions perform the same function. This issue has been studied

at the molecular level in prototype viral IRES elements.

Currently, there is experimental evidence for different mechan-

isms to initiate translation internally. The simplest one operates

in the dicistrovirus intergenic region (IGR) and involves direct

interaction of the IRES with the 40S subunit. A more complex

mechanism relies on the recognition of the IRES by translation

initiation factors, which mediate the recruitment of the 40S

ribosomal subunit. Representative members of the latter

group are the HCV IRES and the diverse IRES elements present

in the RNA genome of picornaviruses. Yet there are important

differences among them, which will be discussed below.
The secondary structure and protein interactions of picor-

navirus IRES elements have been extensively analysed

although high-resolution 3D structures are still lacking.

Because of their heterogeneity, picornavirus IRES elements

are classified into different types, such that each type har-

bours a common RNA structure core maintained by

evolutionary conserved covariant substitutions. Due to their

high efficiency and complex requirement of factors, type I

and II IRES are prototypes to study internal initiation mech-

anisms. Type I IRES occurs in enterovirus (poliovirus, PV),

and type II IRES in cardiovirus (encephalomyocarditis

virus, EMCV) and aphthovirus (FMDV) (figure 1b). Both

types I and II are independent of eIF4E but require the C-

terminal region of eIF4G, eIF4A, eIF2 and eIF3 to assemble

48S initiation complexes [45]. Specifically, type II IRES

elements are arranged in modular domains designated 2 to

5, or H to L, in FMDV and EMCV, respectively [46].

Domain 2 contains a conserved pyrimidine tract at the tip

of a hairpin that provides a binding site for the polypyrimi-

dine-binding protein (PTB) protein [47,48]. Domain 3 is a

self-folding cruciform structure; the apical region of this

domain harbours a conserved and essential GNRA tetraloop

that mediates tertiary interactions [49,50]. Domain 4 is

arranged in two hairpin loops held by a conserved stem

and an A-rich bulge, which contain the binding site for

eIF4G [51,52]. Domain 5 consists of a conserved hairpin,

followed by a conserved pyrimidine tract and a variable

single-stranded stretch of nucleotides at its 30 end [53]. This

domain provides the binding site for eIF4B and PTB [54],

besides other RBPs such as Gemin5 and G3BP1 [55,56].

In further support of the modular organization of picor-

navirus IRES elements, structural analysis of the region of

type II IRES interacting with eIF4G revealed that the con-

served A-pentaloop serves as a docking site for base-pair

receptors that requires the concerted action of all subdo-

mains, since subtle changes in the orientation abrogate the

interaction with eIF4G [57]. Interestingly, the configuration

of the A-pentaloop resembles the GNRA tetraloop [58],

where the G is substituted by A-A dinucleotide. The simi-

larity of the RNA structure of these essential motifs, present

in two different RNA domains [52], raises the possibility

that they could be derived from RNA modules subjected to

evolutionary changes to acquire novel functions.

The HCV 50 UTR (figure 1b) contains conserved

sequences and stem-loops controlling viral RNA translation,

replication and stability [43,59–61]. Specifically, the HCV

IRES consists of three domains (II, III and IV) [62]. Domain

II is involved in eIF5-induced GTP hydrolysis of eIF2, while

domain III binds eIF3 and the 40S subunit using two distinct

subdomains, IIIabc and IIId, respectively [63]. A distinctive

feature of the HCV IRES is the lack of eIF4G need for function

[64]. In addition, the HCV IRES 3D structure includes a pseu-

doknot, besides a series of stem-loops connected by 3- and

4-way junctions [3]. Remarkably, this IRES element adopts

a flexible RNA structure in solution, composed of an ensem-

ble of conformers made of rigid parts that can move relative

to each other [65].

The structure–function relationship of the HCV IRES has

been studied in great detail using transcripts corresponding

to the IRES region alone, in RNA replicons or inserted into

artificial constructs within reporter genes [66]. However, in

the context of the viral genome, HCV IRES activity is influ-

enced by far downstream sequences involving long-distant
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interactions [67]. Concerning upstream sequences, recent data

showed that the liver-specific microRNA-122 (miR-122),

which is complementary to two adjacent sequences in the

spacer between domains I and II [68], assists the folding of

the IRES by suppressing energetically favourable alternative

secondary structures involving the miR-122 binding region

adjacent to the IRES region [69]. Interestingly, coevolution

between miR122 and HCV-related viruses affecting cattle

with liver tropism and miR122 binding sites have been

reported [70], suggesting that this could be a widespread

feature of the hepacivirus group.

Various RNA viruses have been described to contain

HCV-like IRES elements that, however, display subtle differ-

ences in their RNA conformation, as illustrated by pestivirus,

hepacivirus, and type IV picornavirus IRES elements [71–74].

Moreover, the advent of massive sequencing methodologies,

and therefore the discovery of novel RNA viruses worldwide,

greatly increased the so-called HCV-like IRES. For instance,

the IRES reported in the 50 UTR of the Equine non-primate

hepacivirus (EHcV) RNA consists of three domains which

are homologous to domains I, II and III of HCV, albeit struc-

tural differences on domain III correlate with a lower IRES

activity [75].

Contrary to hepacivirus and picornavirus, whose positive-

strand RNA genome encodes a single long polyprotein, the

genome of dicistroviruses is a natural dicistronic mRNA, in

which translation of each ORF is governed by distinct IRES

with different RNA structure organization and mode of

action [76]. Activity of the 50 IRES depends upon eIF3, resem-

bling the HCV IRES. In contrast, the IGR adopts a 3D

structure consisting of a triple-pseudoknot (PK I, II, and III)

that functionally substitutes for the initiator met-tRNAi

directing translation initiation at a non-AUG triplet [14]

(figure 1b). The 3D structure of the IGR-ribosome shows that

PKI resembles a tRNA/mRNA interaction in the decoding

centre of the A site, mimicking a pre-translocation rather than

the initiation state of the ribosome [2]. Pseudo-translocation

of the IGR by elongation factor 2 (eEF2) in the absence of pep-

tide bond formation brings the first codon of the mRNA into

the A site to start translation. Remarkably, structural studies

of the IGR–ribosome complex have shown the active role

of the IRES in manipulating the ribosome. Indeed, the

inchworm-like movement of the IGR suggests that this

mRNA suffers cyclic conformational changes coupled with

ribosomal inter-subunit rotation and 40S head swivel [77].

IRES activity was also suggested to mediate initiation of

translation of some retroviral mRNAs such as HIV-1 gag

mRNA [78,79]. Again, it is worth noting the diversity of

sequences, secondary structures and mechanisms promoting

translation initiation in retroviral RNAs [80,81]. Not sur-

prisingly, this diversity challenges the criteria by which

IRES elements are defined. However, during evolution dis-

tinct types of RNA elements have been selected in nature

to promote initiation of protein synthesis not only in dicistro-

nic but also in polycistronic RNA viruses [82]. In fact, the

implementation of potent sequencing methodologies is

allowing the identification of novel viruses infecting

all type of organisms, thereby increasing the number of

different gene expression systems. This is also the case for

RNA viruses infecting plants, which promote initiation of

translation by cap-independent mechanisms, in many cases

depending upon sequences located on the 30 end of the

viral RNA [83].
4. Conformational flexibility of IRES
domains: building blocks for ribosome
interaction

Very soon after the discovery of IRES elements, functional

analysis showed that RNA structure determines the function

of the vast majority of viral IRES [14,15,62]. Indeed, IRES

elements harbour distinct secondary structure motifs con-

nected by junctions that play an essential role in RNA

folding [3]. Both the sequence of motifs exposed on loops

and the junctions are conserved in the IRES region of field

isolates of highly variable RNA viruses [84–86], implying

that the secondary structure is evolutionary constrained to

deliver its function. Fully consistent with the biological rel-

evance of the flexibility of IRES elements, perturbation of

the local flexibility of specific IRES domains by RNA ligands

inhibits RNA translation [87,88].

Although the presence of stable stem-loops in IRES

elements has been determined by several RNA probing meth-

odologies [89], the nucleotides involved in the dynamic folding

and in tertiary interactions of IRES elements remain poorly

known, presumably due to the inherent flexibility of the mol-

ecules and the lack of easy-to-use reliable methods to detect

weak transient interactions. Notwithstanding, identification

of RNA junctions is a key step in the structural characterization

of flexible RNA molecules [3,50,90,91]. In this regard, the

development of novel di-metallic chemical compounds,

based on di-ruthenium, allowed the identification of four-

way and three-way junctions within the FMDV (figure 2a)

and HCV IRES conformation in solution [92], which were con-

sistent with results derived from independent experimental

approaches [65]. Therefore, di-metallic chemical reagents

offer a new tool to determine regions controlling the folding

of flexible RNA molecules.

The function of RNA molecules depends on their 3D struc-

ture and their ability to acquire distinct conformations [93].

Conversely, in response to specific signals conformational

transitions could be spatially and temporally tuned, enabling

the assembly of RNP complexes in a hierarchical ordered

manner [94]. As such, the RNA reactivity towards slow- and

fast-reacting SHAPE compounds can provide information on

nucleotides that undergo local conformational changes on

long timescales and those involved in tertiary interactions,

respectively [95,96]. In this regard, differential SHAPE analysis

on the free FMDV IRES showed that nucleotides reaching the

final conformation on long time scales are placed on domains

4–5 upstream of the start codon, while nucleotides candidate

to be involved in tertiary interactions are placed on the apical

region of domain 3 [97]. Subsequent analysis of the IRES con-

formational flexibility conducted in the presence of various

ribosomal fractions illustrated two key features of the IRES

region: ribosomes free of factors (salt-washed) modified the

conformational flexibility of domains 2 and 3 of the IRES

element (figure 2b), while native ribosomes induced additional

structural changes within domains 4 and 5 on long timescales

(figure 2c). Furthermore, supplementing salt-washed ribo-

somes with soluble factors, including eIFs and RBPs, restored

the RNA conformation of the IRES incubated with native ribo-

somes [97], reinforcing the role of host factors in mediating

IRES function [98–100]. Therefore, individual structural mod-

ules of the IRES could perform a different role in the

recruitment of ribosomes and host factors.
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Experimental data accumulated over the years from many

different laboratories have provided strong evidence for the

involvement of RBPs on IRES function [101,102]. One of the

putative roles played by RBPs on IRES activity is RNA cha-

peroning, stabilizing specific RNA conformations and thus

allowing the interaction of eIFs with the IRES, as shown for

PTB and Ebp1 on type II IRES elements [100]. In other

cases, RBPs contribute to IRES activity removing RNA sec-

ondary structure near or at the start codon [103], or titrating

IRES ligands as shown for Far upstream element-binding

protein 1 (FBP1) [104], FBP2 [105] or SRp20 [106]. This is con-

sistent with the fact that viruses inactivate the function of

factors required for translation of the cellular mRNA compe-

titors [107–109], as well as to inactivate negative regulators of

IRES activity [110,111].
The conformational flexibility changes observed by differ-

ential SHAPE raise the possibility that the type II IRES

contain separate sites for ribosome interaction and eIF binding.

In support of this, direct interactions between 40S subunit and

the EMCV IRES have been described [112]. These interactions

are consistent with predicted base pairing between the HCV

IRES and the 18S ribosomal RNA [113,114]. Interestingly, disso-

ciated 40S and 60S ribosomal subunits, prepared from cells,

induced fast structural changes within domain 2 (figure 2d)

and the apical region of domain 3 of the FMDV IRES element

in vitro. The presence of the FMDV IRES in mRNA expressed

in living cells enhanced its association to the ribosomal subunits

relative to a cap-mRNA. The enhanced IRES–ribosome associ-

ation was observed both in normal conditions [97], and also

upon stress induced by siRNA targeting eIF5B or poly-I:C
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treatment (figure 3), consistent with the capacity of the FMDV

IRES to operate in normal cells but also upon strong stresses

inhibitory for cap-dependent translation [25,101,102].

Therefore, taking into account that short conserved motifs

within the type II IRES harbour the capacity to interact with

the ribosomal particles, it could be concluded that RNA

motifs present in domains 2 and 3 could define a functional

building block responsible for the recruitment of ribosomal

subunits. The remaining domains 4 and 5 would be mainly

responsible for providing the binding sites for eIFs and

RBPs, in agreement with previous reports [51,52,57,115].

Based on this data, we suggest that IRES elements could be

derived from the association of distinct building blocks

with specific features, such as those containing RNA motifs

able to contact the ribosomal subunits. This module alone

would not be sufficient to promote IRES activity, unless it

is linked to other motifs facilitating the interaction with eIFs

and RBPs. Individually, none of these building blocks contain

full IRES activity, consistent with the observation that viral

IRES elements function as single entities [116,117].

The finding that conserved RNA modules can provide

direct IRES–ribosome interaction suggests that it could be

possible to design synthetic RNAs with novel functional fea-

tures, built from a combination of conserved building blocks

connected via linker sequences to RNA motifs able to recruit

transacting factors. These building blocks, however, should

operate in concerted action to provide the correct and

hierarchical orientation of the RNA motifs involved in ribo-

some and trans-acting factors recruitment. In support of the

possibility to design synthetic RNAs behaving as IRES-like

elements, it is worth mentioning synthetic RNA nano-

structures recently designed by relying on the hierarchical

formation of recurrent sequence-dependent networks of

tertiary interactions [118]. These networks could specify

RNA structural modules enabling orientation and topological

control of helices to form larger self-folding domains.

Attempts to generate artificial IRES-like elements were

previously reported [119,120]. In the first case, RNAs contain-

ing multiple copies of the motif carrying variations of the

sequence (CCU)(n) function as artificial internal ribosome

entry segments (AIRESs) in the presence of PTB. A different

example of an artificial engineered RNA carrying five

copies of a 9-nt motif (CCGGCGGGU) promoted cap-

independent translation [120]. This motif, present in the cellu-

lar Gtx and RBM3 RNAs, was proposed to recruit ribosomes

by binding directly to ribosomal proteins [121], using a
mechanism similar to hepacivirus and pestivirus IRES

elements [64,122].
5. Cellular and viral IRES elements: similar
RNA motifs with different regulatory
functions?

Not surprisingly, the existence of cellular IRES elements is

expected from the observation that novel mechanisms

initially discovered in viruses have been invariably extended

to the host cells. Hence, IRES activity has been claimed for a

subset of cellular mRNAs [123,124]. Beyond atypical mRNAs

characterized by having long and highly structured 5-UTRs,

exhibiting translation under repressive conditions for general

protein synthesis, the IRES elements of HOX cellular mRNAs

were upregulated in different steps of embryonic develop-

ment [23], therefore suggesting a role in normal gene

expression programmes. This is also the case of the cofilin

RNA, which is involved in the regulation of the axonal

growth cone extension and turning [125]. Remarkably, the

presence of distinct mechanisms to initiate translation could

be instrumental to generate tools for therapeutic intervention,

as illustrated by the treatment of spinocerebellar ataxia type

6, targeting the CACNA1A IRES element [126].

Yet the number of cellular IRES elements is rather reduced

[127], especially relative to the potential ORFs in the genomes

of high eukaryotic organisms. The lack of well-defined criteria

to identify functional IRES elements in mRNAs promoting

cap-independent translation could be due to several reasons.

IRES-like elements may remain undetectable in genomes due

to the lack of reliable tools and accurate methods to predict

them [128,129], but also due to the difficulties to measure

their activity, which might be detectable only under certain

conditions. This was illustrated in a recent study focused to

identify the RNA partners of eIF3, which allowed the identifi-

cation of a selective group of cellular mRNAs translated in

eIF3-depending manner [130]. In addition, identification of

IRES elements in newly sequenced genomes of distinct

organisms and their pathogens depend on the accurate

annotation of coding genes, beyond the development of

high-throughput methods to detect IRES activity. For instance,

functional IRES elements were identified in viruses infecting

filamentous fungi using a luciferase dual reporter system,

including positive-sense RNA viruses belonging to the picor-

navirus-like group, non-segmented and tetra-segmented

dsRNA viruses [131].

Worth mentioning are the efforts to implement specific

methods for the computational search of sequences in

mRNAs promoting cap-independent translation [132–134].

Early works to identify IRES elements widespread in cellular

mRNAs took advantage of highly active viral proteases,

which cleave eIF4G, and thus induce the shut-off of cap-

dependent translation [135,136]. Likewise, the proteolytic

activity of caspases in apoptotic cells provided a useful

tool for the identification of mRNAs translated in a cap-

independent manner [137]. In recent years researchers took

advantage of mRNA display, a cell-free system for covalently

linking newly translated proteins to their encoding RNA mess-

age [138]. Another study exploited the expression of bicistronic

RNAs containing a combinatorial library of human sequences

on the intercistronic space, followed by flow cytometry
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separation of cells expressing tagged fluorescent proteins and

deep sequencing of the mRNAs present in the fluorescent

selected cells [139]. While these high-throughput works have

tried to validate the accuracy of the method with a short list

of the RNAs identified, there is still a long way to go to fix

the criteria defining functional IRES elements.

A follow-up work aimed to develop methodologies for

genome-wide computational prediction of IRES elements,

which relied on the sequences shared by cap-independent

translated mRNAs [139], resulted in the identification of very

short motifs (C/U k-mers, 4 nt long) [134], thereby unlikely to

be unique predictors for IRES elements given the size of mam-

malian mRNAs and the expected frequency of 4-nt motifs.

These pyrimidine-rich motifs presumably provide binding

sites for PTB and poly(rC)-binding protein 2 (PCBP2), fre-

quently found interacting with viral IRES elements albeit with

different functional relevance for IRES activity [98,99,115,140–

142] (figure 1b). Moreover, a number of cellular 50 UTRs that

harbour (CCU)n sequences were reported to contain PTB-

dependent IRES elements, raising the possibility that PTB or

its interacting protein partners could provide a bridge between

the IRES and the ribosome [119]. As such, it could be proposed

that identification of RNA-binding sites for proteins involved in

IRES function could be a clue to predict novel IRES-like motifs.

Yet it is well established that various RBPs interact in a con-

certed manner with IRES elements, such that binding of one

factor is not enough to promote IRES activity [143–145].

Hence, more work needs to be done to understand the function

and structural organization of the diverse catalogue of IRES

elements to better define the criteria in order to improve the

accuracy for genome-wide prediction of IRES-like motifs.
6. Conclusion
Recent studies on IRES–ribosome complex formation have

shown the active role of the IRES RNA in manipulating the

ribosome. However, the ongoing IRES research is challenging

mostly due to the structural diversity of the established viral

IRES. In turn, the heterogeneity of IRES elements points to

different strategies developed by viruses to exploit the host

translation machinery. Data reported over the years have pro-

vided insights for different IRES-driven mechanisms to

initiate translation. The simplest one involves direct recruit-

ment of the ribosomal subunits mimicking features of the

translation machinery, such as tRNAmeti. However, the

vast majority of IRES elements use more complex strategies

involving the concerted action of eIFs and distinct RBPs to

capture the 40S subunit, followed by the assembly of the

60S subunit. We would like to propose that complex IRES

elements share conserved motifs which could behave as

building blocks, enabling interaction with the ribosome.

Eventually assisted by eIFs and RBPs, these motifs could con-

tribute to assemble ribosomal subunits in a translationally

active complex. Given that RNA is a versatile molecule in

structure and function, the presence of distinct conserved

motifs opens new avenues for designing engineered IRES

elements with novel translation regulation features.
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