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Natural history museums and the specimen collections they curate are vital

scientific infrastructure, a fact as true today as it was when biologists began

collecting and preserving specimens over 200 years ago. The importance

of museum specimens in studies of taxonomy, systematics, ecology and

evolutionary biology is evidenced by a rich and abundant literature, yet

creative and novel uses of specimens are constantly broadening the impact

of natural history collections on biodiversity science and global sustainabil-

ity. Excellent examples of the critical importance of specimens come from

their use in documenting the consequences of environmental change,

which is particularly relevant considering the alarming rate at which we

now modify our planet in the Anthropocene. In this review, we highlight

the important role of bird, mammal and amphibian specimens in document-

ing the Anthropocene and provide examples that underscore the need for

continued collection of museum specimens.

This article is part of the theme issue ‘Biological collections for

understanding biodiversity in the Anthropocene’.

1. Introduction
Abundant evidence of human-driven environmental change supports the desig-

nation the Anthropocene as a new geological epoch [1]. Notable signatures of the

Anthropocene include precipitous increases in global temperature and temperature

anomalies (i.e. climate change) [2,3], contamination [4–6], emergence of infectious

diseases [7], species’ declines [8] and many others [1]. Prominent among indicators

of environmental change are specimens curated in natural history museums [9–11].

Museum specimens are a particularlypowerful resource for documenting change in

the environment because they offer scientists snapshots of the Earth across spatial,

temporal and taxonomic scales [12–16]. In this paper, we highlight the use of

museum specimens of birds, mammals and amphibians as sensitive indicators of

environmental change in the Anthropocene, reviewing exemplary studies that

have employed museum specimens to document changes in emergent diseases,

contamination, isotope/hormone ecology and climate. Central to our argument is

the view that a well-curated museum specimen represents a multidimensional

snapshot of the environment at a specific time and place in the past (figure 1,

[17]). Ample evidence now exists to show that natural history museum specimens

can be used for diverse applications of value to society, yet continued support of

museums by funding agencies and dedication to specimen collection by museums

are needed to build and maintain this critical scientific resource moving forward.
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Figure 1. Vertebrate museum specimens as historical snapshots of the total environment. Diverse data types stemming from museum specimens (left of the figure)
provide historical data that can be compared to data sampled from contemporary specimens or samples (right of the figure). Together these temporal datasets can
shed light on how anthropogenic change (stippled bar at the centre of figure) drives diverse physiological, morphological, genetic and behavioural changes in
vertebrate populations.
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2. Museum specimens document the origin and
spread of emergent infectious diseases

One characteristic of the Anthropocene is an acceleration in

the emergence of infectious diseases [7]. Emergent diseases

in natural populations are now increasing consistently [18]

and will pose challenges for wildlife populations, humans

and our domesticated or crop species in the near future

[19–21]. Museum collections, including biorepositories of

frozen vertebrate tissue, have played a central role in the

discovery of previously unknown pathogens in the past 25

years [22–24]. That role is sure to increase in the future if

we build the temporal, spatial and taxonomic breadth of

these collections through continued fieldwork [25]. Through

retrospective screening of museum samples, new insights in

pathobiology include the rapid identification of key attri-

butes of newly emergent pathogens, such as taxonomic

identity, temporal dynamics and critical aspects related to

spatial distribution [26,27]. In aggregate, museum collections

often provide the detailed sampling of vertebrate hosts

necessary to refine the potential spatial distribution of a

pathogen and to confirm whether a pathogen is narrowly

confined to a single host or instead ranges widely across

multiple hosts [28,29]. These critical diagnostic features

allow investigators to predict conditions associated with

emergence [30], and also to design effective public health

response efforts. More detailed assessments, using phylo-

geographic perspectives, for example, allow us to probe

the dynamics of the historical association of both the patho-

gen and host. Importantly, because up to 75% of the

emerging pathogens responsible for the most serious

human disease outbreaks are zoonotic in origin [31],

museum collections can play a critical role in public health

[32], but only if this critical resource continues to be devel-

oped so it can serve as a temporal and spatial database of

potential human diseases in animal hosts.
(a) Documenting fungal pathogens in declining
amphibian populations

One of the best examples of the use of museum collections

in documenting the spread of epizootics is the tracking the

origin and spread of the chytrid fungus Batrachochytrium
dendrobatidis (Bd), the cause of devastating declines in

amphibian populations globally. Chytrid was first brought

to the attention of the international community as a possible

cause of global amphibian declines owing to chytridiomyco-

sis in 1998 [33], over a decade after the first reports of

amphibian declines in the mid-1980s [34]. Typically, amphi-

bians and reptile specimens are stored in formalin and

transferred to ethanol for long-term curation. These speci-

mens are ideal for histology or dissection-based diagnostic

tests; however, given the detrimental effects of formalin on

the long-term quality of DNA [35], retrieving DNA

sequences from formalin-fixed specimens has been a chal-

lenge. Recent advances in DNA extraction methods and

next-generation sequencing have overcome significant

obstacles to molecular analysis of amphibian specimens in

museum collections [35–38]. Thus, museum collections

proved critical in establishing Bd as the causative agent in

amphibian declines and in tracing the routes by which

this pathogen spread across the globe, both through mor-

phological and genetic analyses of historical amphibian

samples across diverse localities and habitats [26–28].

Soon after the discovery of the emergence of Bd, research-

ers turned to archived museum collections to better

understand the origins, transmission and spread of the patho-

gen. These specimens yielded diverse types of useful data,

such as multilocus genotypes of chytrid from skin swabs of

diverse frog species and populations [39,40]; quantitative

PCR measurement of pathogen levels [41]; and whole

genome sequences of Bd isolates [42,43]. Bd has been

retrieved from museum specimens collected in the late
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nineteenth [26] and early twentieth centuries [44] and has

been documented on multiple continents with the aid of

museum collections [45,46]. The most recent surveys using

whole genome sequencing, aided by museum collections,

suggest substantial diversity of Bd in the Korean peninsula,

suggesting that East Asia may have been the source of the

ongoing epizootic and that international trade facilitated its

spread [43].

A newly described chytrid fungus, Batrachochytrium sala-
mandrivorans (Bsal), infecting primarily newts (salamanders

in the family Salamandridae) has also emerged from Asia

and is now threatening salamanders in western Europe and

the New World [47,48]. The global scale of transport that

characterizes the Anthropocene makes it likely that this patho-

gen will continue to spread to areas where native salamanders

exist and have never been exposed to this pathogen before. To

date, this newly emergent chytrid has been identified in

museum specimens and natural populations from Asia

[48,49], but has not been detected elsewhere, confirming that

we are faced with an invasive emergent pathogen. As with

frogs in the Bd invasion, salamander specimens in natural his-

tory collections will be a baseline for diagnoses of pathogen

presence and absence for this newly emerging pathogen.
(b) Characterizing the Sin Nombre hantavirus
Museum collections and museum-based fieldwork played a

central role in identifying, tracking and mitigating the deadly

Sin Nombre hantavirus (Hantaviridae: Order Bunyavirales).

The Sin Nombre virus [50] emerged in the Four Corners

region of the American Southwest in the spring of 1993, killing

27 people that year. Because the virus was previously

unknown, this emergence challenged our public health

system, with local clinics and healthcare providers unable to

diagnose, treat or in some cases even admit suspected cases

[22]. Speculation about the origin of this pulmonary illness

ranged wildly [51] but the availability of frozen archives of tis-

sues from wild rodents with known collection dates and

localities at the Museum of Southwestern Biology (MSB)

allowed investigators from the Centers for Disease Control

and University of New Mexico Hospital to quickly identify

the pathogen as a hantavirus with a wild reservoir traced to

the common deer mouse (Peromyscus maniculatus). In addition

to identifying Sin Nombre as a hantavirus and demonstrating its

zoonotic source, historic specimens also showed that this virus

had been circulating in deer mouse populations since at least

the earliest collections archived a decade earlier [22].

Since the identification of Sin Nombre virus in the early

1990s, our knowledge of this group of pathogens has been radi-

cally reshaped thanks to progress stimulated by access to

extensive frozen (now more than 138 000 rodents, each with

multiple tissues at MSB) and ethanol-preserved samples in

museums [52]. More than 25 additional hantaviruses have

been described in the Western Hemisphere in the past 25

years [52–55], some of which lead to high mortality in

humans [23,24]. Further research based on intensive field

surveys has also detected hantaviruses in mammals other

than rodents [52,56,57], including moles (Talpidae), shrews

(Soricidae) and bats (Nycteridae, Vespertilionidae, Pteropodi-

dae). The discovery of diverse new hosts radically changes

the way we think about these potentially zoonotic viruses

[58], especially because some host species are commensal

with humans and pose a critical public health issue [59,60].
Additionally, comprehensive phylogenetic analyses have clari-

fied the evolutionary relationships of hantaviruses [61,62], and

a growing number of cases of co-circulation of multiple hanta-

viruses opens the possibility of rapid virus evolution owing to

reassortment among their tri-partite genomes.

Importantly, in response to the emergence of chytrid and

hantavirus, several museum collections facilitated productive

collaborations among public health agencies, virologists,

evolutionary biologists and conservation biologists that

have reshaped interdisciplinary approaches to pathogen dis-

covery [32,43,52,63]. Temporally deep and taxonomically

diverse biorepositories of vertebrates and their tissues allow

scientists to search for and discover novel pathogens, essen-

tially providing basic infrastructure for rapid and efficient

assessment, prevention and mitigation of emerging diseases.

Moving forward, we need to recognize that biorepositories

and associated databases are critical infrastructure in patho-

biology research [63]. Biorepositories have the potential to

reveal key aspects of the biology of newly emergent diseases

and their hosts, including some that could reduce the impact

of catastrophic events [64].
3. Tracking the spread of contaminants across
time and space

Environmental contamination is one of the most pervasive

anthropogenic impacts and has obvious implications for

ecosystem and human health. Museum specimens are a

powerful and increasingly used resource for documenting

anthropogenic contamination in the environment [65–72].

Vertebrates accumulate contaminants in their integument,

feathers and organs, through physical contact with the

environment and also through bioaccumulation of pollutants

in their diet [73]. Many of these contaminants remain as

traces in host tissues, sometimes for decades or centuries [74].

Accordingly, the amount of contamination on museum speci-

mens or in associated tissue samples provides a sensitive

index of ongoing contamination and a timeline of historical

trends in the presence and concentration of particular contami-

nants in the environment. Importantly, collection data of

museum specimens are spatially and temporally explicit,

allowing researchers to investigate contamination in a geogra-

phical and temporal context. Two recent studies [75,76]

demonstrate how temporally well-sampled museum speci-

mens of birds are sensitive indicators of anthropogenic

emissions of black carbon and mercury.

(a) Trends in black carbon pollution measured from bird
specimens

Black carbon, or soot, is an atmospheric pollutant that arises

from the inefficient combustion of fossil fuels and has nega-

tive impacts on human health and climate change [77–81].

Birds accumulate black carbon on their feathers, rendering

otherwise white feathers a sooty grey colour. For example,

a bird’s plumage can become soiled by black carbon through

physical contact with substrates where black carbon has pre-

cipitated from the air. The yearly replacement of a bird’s

plumage, or moulting, adds to the sensitivity of bird speci-

mens as indicators of change because pollutant deposition

on or within a feather provides an environmental snapshot

from the specific year in which the specimen was collected
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Figure 2. Black carbon soiling of museum specimens (black line) closely tracks previous estimates of black carbon emissions ( purple line) [78] between 1880 and
2015. Estimates of black carbon decouple from coal consumption in the United States following progressive clean air legislation. Figure used with permission from
DuBay & Fuldner [75]. BC, black carbon; BTUs, British thermal units. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20170387

4

[75]. Although ornithologists have long been aware of the

existence of sooty bird specimens in natural history

museums, only recently have these specimens been examined

in detail. DuBay & Fuldner [75] used scanning electron

microscopy to confirm that the feathers of sooty specimens

from the US Manufacturing Belt (Wisconsin, Illinois, Michi-

gan, Indiana, Ohio and Pennsylvania) are covered in black

carbon particulates, while melanin pigments in feathers are

similar. This demonstrated that the variation in plumage of

birds was a result of black carbon soilage rather than adap-

tive increases in melanin pigmentation such as in cases of

industrial melanism. Using a time series of 1347 bird speci-

mens collected between 1880 and 2015, the authors

quantified the reflectance of breast and belly feathers as a

relative measure of the amount of black carbon deposition

on each specimen. They discovered that the amount of

black carbon deposited on feathers decreased through time,

closely tracking the implementation of environmental pol-

icies over that time period (figure 2). In addition, DuBay &

Fuldner [75] showed that models of black carbon from the

late 1880s [78] likely underestimate black carbon levels,

underscoring the utility of museum specimens as inventories

of environmental contaminants.
(b) Museum specimens track organic mercury
contamination

Mercury is a significant environmental pollutant and an

anthropogenic increase of mercury in the environment is a

well-established trend that results directly from human

discharge of mercury into the Earth’s ecosystems [5,6].

Although IHg (inorganic mercury) is the predominant form

of mercury pollution in the environment, it is converted into

organic or methyl mercury (MeHg) by sulfate-reducing

bacteria [82]. MeHg is an environmental toxin that bioaccumu-

lates through food webs and builds up in animal tissues,

including bird feathers [83,84]. Few studies have investigated

whether anthropogenic increases in IHg have resulted in

increased bioaccumulation of MeHg, much less the potential
effects of increased MeHg on avian communities or physi-

ology [85]. Novel studies have used museum specimens to

demonstrate increases in the amount of MeHg deposited in tis-

sues of fish [65], birds [67–71,86] and bats [87]. One recent

study used museum specimens to document MeHg contami-

nation in black-footed albatross (Phoebastria nigripes), a

seabird formerly designated as vulnerable and now near-

threatened [88]. Vo et al. [76] measured both IHg and MeHg

in the feathers of P. nigripes specimens collected in the Pacific

Ocean across a 120-year period and documented a statistically

significant increase in MeHg. Crucially, unlike most previous

studies, the authors were able to distinguish between curator-

mediated IHg and environmentally accumulated MeHg

through creative use of control populations and by using a

gas chromatography inductively coupled plasma mass spec-

trometry (GC-ICP-MS) approach, which can chemically

distinguish between IHg and MeHg. Furthermore, Vo et al.
[76] showed that a significant number of specimens collected

after 1990 had MeHg concentrations above thresholds con-

sidered by the EPA to be adverse, highlighting the severity of

mercury contamination in the Pacific Ocean. Museum speci-

mens of birds and other vertebrates will undoubtedly have

a prominent role in further documenting mercury and other

contaminants across the planet’s ecosystems, a critical first

step in mitigating our impact on the environment.
4. Museum specimens record historical changes
in diet, migration routes, environmental stress
and morphology

In addition to providing detailed records of environmental pol-

lutants, museum specimens can be used as sensitive indicators

of changes in organisms’ diet, changing migratory routes and

stress as a result of changing environments [72]. These insights

stem from the fact that stable isotopes [89,90] and hormones

[91,92] remain relatively inert in museum specimens and can

be detected reliably over periods of decades or centuries.

Stable isotopes have been used to trace evolving diets of fish
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[93], mammals [94–96] and birds [89,97–99], with ratios of iso-

topic nitrogen and carbon, in particular, providing insight into

shifts in dietary regime over the past several decades. Isotopes

can also be used to create ‘isoscapes’, maps of isotope isoclines

across the landscape, allowing researchers to connect breeding

and wintering ranges of migratory species [100], among other

inferences such as elevational migration [101]. For example,

Hobson et al. [100] used museum specimens to identify a

migratory divide between western and eastern populations

of rusty blackbird (Euphagus carolinus). Levels of corticosterone,

an indicator of stress in natural populations, are increasingly

being used to assess the activity of the hypothalamic–

pituitary–adrenal axis, a measure of organisms’ response to

environmental pollutants and other stressors [98]. In addition,

multiple studies have documented consistent trends in

morphological traits such as body size and wing-pointedness,

often in response to anthropogenic change [102] and increasing

habitat patchiness [103], although the precise drivers are

still debated [104]. Although detection of such trends is not

without biases in terms of location or temporal period

sampled, museum specimens are providing unprecedented

windows into organisms’ responses to environmental

change, without which we would know far less about the

impact of anthropogenic change on natural populations.
5. Measuring the effects of climate change on
ecological communities using museum
specimens

Understanding the current and future impact of climate change

on Earth’s ecosystems is a fundamental challenge for humanity

[105–107]. One critical goal is predicting how organisms and

ecosystems will shift across landscapes in response to climate

change. In general, climate change is linked to significant

range shifts [108–110], extinctions [111] and potentially commu-

nity reorganization [112]; however, the predictive power of

models is often hampered by uncertainties in climate change tra-

jectories [113] as well as limited knowledge of the distributions

of species prior to the Anthropocene. Museum collections span

the onset of rapid climate change, and thus have the potential to

increase the resolution of climate change studies with precise

records of where and when organisms occurred in the past as

well as demographic information such as age distributions

[114]. Furthermore, museum specimens and associated tissue

samples provide opportunities to study both morphological

and genetic responses to climate and habitat change [115].

(a) Museum specimens of small mammals reveal
climate-associated range shifts

One of the best examples of the potential of museum collec-

tions to document climate change is the Grinnell Resurvey

Project. From 1904 to 1940, Joseph Grinnell and colleagues

from the Museum of Vertebrate Zoology (MVZ) at the Uni-

versity of California, Berkeley, collected and thoroughly

surveyed the terrestrial ecosystems of California and the wes-

tern United States to document vertebrate diversity in time

and space. Their legacy of specimens, meticulous field notes

and photographs are a veritable ‘gold mine for investigations

of species’ responses to climate change, changes in human

land use and other stressors’ [116]. Grinnell and colleagues
knew that their efforts would establish a baseline for future

studies, although it would be nearly a century before the

power of their work would be fully realized. In the early

2000s, the Grinnell Resurvey Project (GRP) was started by

MVZ researchers and collaborators who set out to follow in

Grinnell’s footsteps by collecting and resurveying sites that

had been visited in the early twentieth century. As of

today, the GRP has produced many publications and

resources that illustrate the importance of scientific specimens

in documenting climate change [109,117–120].

One influential study resulting from the GRP investigated

distributional changes of small-mammals across a 3000 m ele-

vational gradient in California’s Sierra Nevada Mountains.

Moritz et al. [109] minimized the confounding effects of land-

use change on small-mammal distributions over time by

repeating Grinnell’s surveys and collecting efforts across Yose-

mite National Park, a protected and pristine landscape

established in 1890. Furthermore, standardized field protocols

and detailed field notes from historical and contemporary

surveys allowed the researchers to robustly estimate species’

absences through occupancy models. On average, the ranges

of 14 species shifted 500 m upwards across the Yosemite trans-

ect over nearly a century. The shift in species’ ranges was

consistent with a 38C increase in temperature recorded

between historical and contemporary surveys, with high-

elevation species exhibiting range contractions and low-

elevation species exhibiting range expansions. Overall, the

observed pattern of upslope range increases and associated

range contractions does not bode well for high-elevation

species whose distributions may become highly fragmented

or potentially ‘pushed’ off of mountain tops [121,122].

The genetic consequences of such historic range contrac-

tions have been revealed in spectacular detail owing to

methodological and technological innovations over the past

20 years in extracting and sequencing highly degraded DNA

from historical specimens [123]. A salient example of the use

of specimens and novel next-generation sequencing in docu-

menting the impacts of climate change is a study of alpine

chipmunks (Tamias alpinus) [117], a species that has

experienced significant range contractions since the surveys

of Grinnell and colleagues in the early 1900s [109]. Using a

novel exon capture protocol and robust bioinformatic pipelines,

Bi et al. [117] investigated the impact of range contractions on

the genetic diversity and population structure of T. alpinus.

Following extensive data filtering and DNA damage correc-

tions of single nucleotide polymorphisms from 10 583 exons,

the authors [117] found no change in genetic diversity between

historic samples collected by Grinnell and colleagues and

modern samples collected by the GRP; however, they uncov-

ered newly arisen population subdivision as a result of

range retractions, a pattern also found in other alpine species

[124]. Such studies illustrate how museum specimens and

their associated tissue samples are invaluable resources for

documenting climate change and its impacts on biodiversity.
6. Discussion
(a) Maximizing the utility of vertebrate specimens for

the Anthropocene
We have reviewed exemplary studies that use museum speci-

mens to document anthropogenic change and conclude by
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discussing the importance of continued collecting of speci-

mens, as well as best practices for museum scientists moving

forward. Although it is widely accepted that existing speci-

mens curated in natural history museums document the past,

continued dedication to collecting new specimens is often cri-

ticized and overlooked as an invaluable investment in the

future [125]. We argue that continued collection of new speci-

mens is a necessity without which future scientists will be

severely limited in their abilities to document and predict the

impact of climate change and other rapidly intensifying

anthropogenic pressures on biodiversity and the environment

[15,126]. It is imperative that biodiversity scientists continue to

direct their efforts to collect specimens across time, space and

taxonomic diversity with sufficient sample sizes, metadata

and breadth so as to ensure maximum impact across multiple

disciplines [13,14].

A concerted effort to maximize the potential of museum

collections to document the changing planet will depend

critically on greater collaboration between field ecologists,

government permitting agencies, citizen and museum scien-

tists. Different questions and goals for documenting the

Anthropocene will require different breadths and intensities

of sampling and different modes of preservation. For example,

the National Ecological Observatory Network (NEON) gives

unprecedented opportunities to provide snapshots of

continent-wide ecosystems via the collection of animal popu-

lations [127,128], and there is ongoing discussion about what

to collect and how best to preserve it [25,129]. Collection of ver-

tebrate populations has always been challenging in terms of the

labour, cost and museum space required to document diversity

adequately. These challenges are exacerbated because we do

not know what types of specimens and samples will allow us

to monitor future change in multiple dimensions, and because

infrastructural constraints place limits on the breadth of

samples that can be collected from any given specimen. To

the extent that it can be accommodated by the museum com-

munity, the ‘total specimen’ [130]—one that maximizes the

preservation and availability of the phenotypic and genotypic

variation in lineages across space and time—is our best option

for providing an ongoing record of biodiversity on a rapidly

changing planet.

It is already clear that in order to maximize specimen

value for tracking environmental change, extensive re-collect-

ing of high quality, data-rich specimens will be necessary,

such as envisioned by the Global Genome Initiative [131].

Best practices for museums moving forward include preser-

ving high-quality tissue samples, associated parasites and

multi-part specimens [130]. First, we encourage museums to

preserve tissue samples capable of yielding high-molecular-

weight DNA for whole-genome sequencing. Similarly, we

recommend that RNA-quality tissues of multiple organs be

preserved for transcriptomic and epigenomics studies [132].

Parasites associated with host specimens should also be pre-

served to foster integration across diverse sets of questions,

such as whether hosts and parasites respond concordantly to

anthropogenic change [25]. We also advocate preserving

diverse voucher specimens per individual, such as skeletons

and skins from the same individual, spread-wings and other

non-traditional vouchers [133] or fluid-preserved specimens

commonplace in herpetological collections; such specimens

have tremendous potential to be analysed with modern scan-

ning technologies [134,135]. Ongoing salvage will continue to

be a mainstay for vertebrate collections, but ultimately active,
research-grade collections will prove the most valuable.

Finally, we stress that online access to original specimen

data linked to research data subsequently derived from each

specimen (e.g. gene sequences, CT scans, photographs,

sound recordings, etc.) provides a powerful nexus for integrat-

ing diverse investigations [74,136–138]. The responsibility for

reporting the detailed provenance of and metadata associated

with specimens used in scientific research falls equally on

researchers, museum curators, authors, reviewers and most cri-

tically on the editors of journals that publish the research. The

reporting of many types of data archiving, such as DNA

sequences and phylogenetic trees, is now standard across

many journals in the biological sciences, but the reporting of

original specimen information from such data, or links to

them, is haphazard and inconsistent at best.
(b) The role of the public and the evolving perception
of museums

Paramount in the effort to document changing biodiversity

through time is the involvement of the general public, which

often grossly misunderstands the intent behind vertebrate col-

lections and their value to society [139]. It is often challenging

for the public to separate the negative consequences for indi-

vidual animals incurred by collecting from the often

imperceptible impact at the population level. Not only the gen-

eral public but also often scientists and wildlife managers

themselves oppose continued collecting, often owing to mis-

conceptions about the perceived negative impact of museum

collecting on vertebrate populations [140,141]. Involvement

of the public through citizen science in ongoing specimen-

based documentation of biodiversity, for example, through

‘BioBlitzes’, and in decision making as to what to collect, will

be essential [142]. Specimens and associated data can readily

be incorporated into educational enterprises and provide

powerful opportunities for student-led, inquiry-driven lessons

about diverse aspects of our natural world, including climate

change and the Anthropocene [136,143,144].

The public and non-museum research communities often

have the mistaken perception that museum specimens are

collected for a narrow range of uses in the fields of taxonomy,

systematics and biogeography, or perhaps that specimens col-

lected for such these fields will have little use outside them.

By highlighting the utility of both historical and modern

museum specimens in documenting change in the environ-

ment, we showcase uses of museum collections in research

and teaching that may be less well known outside the

museum community. The examples presented here illustrate

how museum specimens are a powerful, albeit underutilized

resource for documenting the Anthropocene—the emergence

and spread of zoonotic diseases, environmental contami-

nation, environmental stressors and climate change—among

other assaults to our planet and its inhabitants. The contin-

ued collection of museum specimens will ensure detailed

documentation of the Anthropocene and its myriad effects

[145,146]. With the long time-scales they represent, museum

specimens will play an even more important role in future

studies of environmental change as preservation methods

improve, novel technologies are developed, and creative

thinking is applied to unlock their as yet unrealized potential.
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