Skip to main content
Evidence-based Complementary and Alternative Medicine : eCAM logoLink to Evidence-based Complementary and Alternative Medicine : eCAM
. 2018 Nov 22;2018:4089541. doi: 10.1155/2018/4089541

African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment

Mary Gulumian 1,2,, Ewura Seidu Yahaya 3,4, Vanessa Steenkamp 3
PMCID: PMC6282146  PMID: 30595712

Abstract

The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.

1. Introduction

Human cells are continuously exposed to exogenous oxidants as well as to those produced endogenously during normal physiological processes. Antioxidants form part of protective mechanisms that exist in human cells to scavenge and neutralize these oxidants. Oxidants such as the reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in several diseases [1, 2]. Antioxidant defenses are defective in these diseases and therefore it is possible to limit oxidative damage and ameliorate disease progression with antioxidant supplementation [3].

With reference to wounds, antioxidants play pivotal roles that consequently restore normalcy to injured skin. Basal levels of ROS and other free radicals are essential in almost all phases of the wound healing process (Figure 1) [4]. During haemostasis, ROS regulates the constriction of blood vessels to limit loss of blood. Furthermore, ROS facilitates the migration of neutrophils and monocytes from surrounding blood vessels towards the injury site. The presence of ROS and other free radicals in the wound vicinity during the inflammatory phase of the healing process is also required for infection control and general maintenance of sterility. Finally, ROS promotes the proliferation of keratinocytes, endothelial cells, and fibroblasts, thereby enhancing angiogenesis and collagen deposition. However, uncontrolled release of ROS could cause oxidative stress, resulting in cellular and tissue damage, thereby causing delayed healing [1].

Figure 1.

Figure 1

Role of reactive oxygen species (ROS) in the wound healing process.

To keep ROS within physiological levels, antioxidants serve as electron donors, thereby preventing them from capturing electrons from other molecules which ultimately leads to their destruction [4]. Both nonenzymatic antioxidants such as glutathione, ascorbic acid, and α-tocopherol, as well as enzymatic antioxidants like catalase and peroxiredoxin, have shown potential to normalize high ROS levels and thus stimulate healing [4]. By normalizing ROS, antioxidants can enhance their physiological roles and thereby accelerate the wound healing process. Naturally occurring antioxidants are generally favoured over their synthetic counterparts, as the latter are suspected to cause or promote negative health effects [5]. This has resulted in the restricted use of synthetic antioxidants in several countries [6].

This review provides a comprehensive list of African medicinal plants and isolated compounds with antioxidant activities, with the aim of highlighting the continent's rich herbal resource base for possible management of wounds and allied conditions. Previous reviews have listed a number of these African medicinal plants with antioxidant properties [79]. The present work has therefore aimed to expand the list to include medicinal plant species with antioxidant properties that are used in different African countries including those from Madagascar and Mauritius. For the sake of inclusivity, plants that have been shown to contain compounds that hold the potential of being novel antioxidants are also considered. In addition, those with anti-inflammatory properties were also included due to an earlier observation that the anti-inflammatory activities of the same extracts could be explained, at least in part, by their antioxidant properties [10]. Additional efforts were also made to include information, where available, on their vernacular names, their regional distribution, and medicinal use and plant parts used for these preparations or for the isolation of the antioxidant ingredient(s). Table 1 lists medicinal plants that have been investigated and have confirmed antioxidant and/or anti-inflammatory activity and that contain compounds which are known to have such activities. Table 2 on the other hand lists medicinal plants that have confirmed antioxidant activity but the compounds responsible for their antioxidant property have not yet been identified.

Table 1.

Medicinal plants with confirmed antioxidant activity, shown to contain compounds that are known to have such activity.

Family and plant name Vernacular name Plant part Country/area Medicinal use and/or experimental validation Compounds isolated Reference
Aloaceae

Aloe barbadensis Mill. Burn plant,
siber, sbar/essouktouri /mar, sbar
Leaf exudate Algeria, Morocco, Tunisia Antioxidant activity.
Used as laxative, purgative, diuretic, asthma, baldness, cuts, bounds, skin rash.
Flavonoids, two dihydrocoumarin derivatives and two flavone glycosides [3234]

Aloe claviflora  Burch. Kraal aloe Leaf exudate South Africa Radical scavenging activity and moderate activity in the lipid peroxidation assay Chromone glycoside [35, 36]

A. saponaria (Ait.) Haw. Mpelu
Mnemvu
Soap aloe, African aloe
Leaf exudate South Africa Radical scavenging activity and moderate activity in the lipid peroxidation assay Chromone glycoside [35, 37]

A. thraskii  Baker Dune aloe, ikhala, umhlaba Leaf exudate  South Africa Radical scavenging activity and moderate activity in the lipid peroxidation assay Chromone glycoside [35, 36]

Amaranthaceae

Amaranthus caudatus L. Tassel flower Seed;
Young shoots
Ethiopia Antioxidant properties Tocopherols, phenolic acids [3840]

Anacardiaceae

Anacardium occidentale L. Not signalized Stem-bark Nigeria Anti-inflammatory properties. Agathisflavone, quercetin 3-O-rutinoside, quercetin 3-O-rhamnoside [41, 42]

Lannea edulis Engl. Wild Grape Root-bark Zimbabwe Semipolar extracts high activity both as radical scavengers and lipoxygenase inhibitors. Lipophilic extracts inhibitor of 15-lipoxygenase.
Used for painful menstruation, urogenital infection, sexually transmitted diseases.
Two alkylphenols (cardonol 7 and cordonol 13) and three dihydroalkylhexenones [4345]

Lannea velutina A. Rich Bemmbeyi
Raisinier velu, Lannéa velouté
Leaves, bark, root  Mali Antioxidant properties Proanthocyanidins [46, 47]

Mangifera indica L. Mango
Mangoro
Leaves, seeds,
stem-bark
Benin
Burkina Faso
Anti-inflammatory, analgesic, and hypoglycemic effects.
Used to treat urogenital infection, tonic, diarrhoea, tooth ache, gingivitis, liver disease, diabetes.
Polyphenolics, flavonoids [12, 13, 46, 47]

Apiaceae

Centella asiatica (L.) Urb. Gotu kola Leaves  South Africa Antioxidant and anti-inflammatory activities.
Used for wound healing. Protection against radiation-induced injury.
Cardio protective effect.
Oral treatment increased antioxidant enzymes.
Quercetin and tetrandrine [4855]

Apocynaceae

Alstonia boonei De Wild. Awun,
Egbu
Stem-bark
Root-bark
Nigeria
Ghana
Anti-inflammatory activity.
Used for its analgesic and anti-inflammatory properties.
Rutin, Quercetin robinobioside,
Kaempferol-3-O-rutinoside, Kaempferol-3-O-robinobioside
[5659]

Catharanthus roseus
 (L.) G. Don
Madagascar
periwinkle
kaka poul, karaktè dezosm blan, zèb sosyé
Whole plant Madagascar Antioxidant activity and ability to increase antioxidant enzymes.
Used for conjunctivitis.
Phenols [60]

Arecaceae

Elaeis guineensis Jacq. Ori Nuts Ghana
 Nigeria
Anti-inflammatory activity.
Used to treat rheumatoid arthritis.
3,4 hydroxybenzaldehyde, p-hydroxybenzoic acid, vanillic acid, syringic acid, ferulic acid, carotenoids, α-tocopherol [12, 61]

Asclepiadaceae

Secamone afzelii Rhoem. Ahaban
Kroratima
Stem Central Africa Antioxidant and anti-inflammatory properties.
Used for wound healing.
Flavonoids, caffeic acid derivatives and α-tocopherol. [6264]

Asphodelaceae

Bulbine capitata Poelln. Scented grass bulbine Roots
Aerial parts
South Africa Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities.
Knipholone as a selective inhibitor of leukotriene metabolism.
Used as a mild purgative and to cure gonorrhoeal infections.
Anthraquinone Knipholone [6573]

Bulbine frutescens Willd. Snake flower, cat's tail,
burn jelly plant
Leaf juice
Roots
 South Africa Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities.
Knipholone is a selective inhibitor of leukotriene metabolism.
Used to treat burns, rashes, blisters, insect bites, cracked lips, acne, cold sores, mouth ulcers and areas of cracked skin.
Phenylanthraquinones,
Isofuranonaphthoquinones,
Gaboroquinones A and B and 4′-O-demethylknipholone-4′-O-beta-D-glucopyranoside, and Knipholone (anthroquinone)
[65, 67, 70, 74, 75]

Kniphofia foliosa Hochst. Red-not-peker  Kenya Anti-inflammatory and weak antioxidant and free radical scavenging and lipid peroxidation inhibition activities. Knipholone as a selective inhibitor of leukotriene metabolism.
Used for abdominal cramps, wound healing
Anthraquinone: Knipholone [65, 7678]

Asteraceae

Artemisia abyssinica Sch.Bip. Chikugn (Amharic)
Arrtta bera (Or)
Whole plant Ethiopia Radical scavenging and antioxidant activities.
Used for stomach pain and wound healing.
Essential oils and flavonoids [7982]

A. afra Jacq.
 ex Willd.
African wormwood
Wild wormwood
Roots, stems and leaves Ethiopia
South Africa
Radical scavenging and antioxidant activities.
Used for stomach pain, coughs, colds, fever, loss of appetite, colic, headache, earache, intestinal worms to malaria.
Essential oils and flavonoids [79, 8284]

A. arvensis L. Mugwort
Wormwood
Whole plant  Algeria Radical scavenging and antioxidant activities. Phenolic compounds and flavonoids. [85]

A. campestris L. Field sagewort 
 Field wormwood
Whole plant  Algeria Radical scavenging and antioxidant activities.
Used to treat insomnia
Phenolic compounds and flavonoids. [8587]

Bidens pilosa L. Black jack Leaves
Roots
South Africa Antioxidant and anti-inflammatory, antibacterial, antihypertensive activities.
Used to treat diabetes and backache.
Phenolic compounds: quercetin 3-O-rabinobioside, quercetin 3-O-rutinoside.
Two novel methoxylated flavone glycosides: quercetin 3,3′-dimethyl ether 7-
O-c¢-L-rhamnopyranosyl-(1 ~ 6)-fl-D-glucopyranoside and the known quercetin 3,3′-dimethyl ether 7-O-fl-D-
glucopyranoside
[19, 8891]

Cynara scolymus L. Globe
artichoke
Leaves Ethiopia Antioxidative and lipid-lowering properties and eNOS up-regulating ability.
Used to treat chronic liver and gall bladder diseases, jaundice, hepatitis and atherosclerosis.
Polyphenolic flavonoid compounds [14, 15, 92, 93]

Helichrysum dasyanthum Sweet Afrikaans common name of kooigoed (bedding material) Leaves South Africa Antioxidant, radical scavenging and anti-inflammatory activities.
Used to treat wounds, infections, respiratory conditions.
Essential oils [9496]

H. petiolare Hilliard & B.L. Burtt. Everlasting, Imphepho Leaves  South Africa Antioxidant, radical scavenging and anti-inflammatory activities.
Used to treat wounds, infections, respiratory conditions, asthma, chest problems and high blood pressure
Essential oils [9496]

Tagetes minuta L. Khaki bush
stinking roger
muster John Henry, wild marigold
Leaves  Madagascar Antimicrobial and antioxidant activity.
Used as anthelmintic, antispasmodic, purgative and for the treatment of gastritis, indigestion and internal worms.
Essential oils. [23, 97]

Balanophoraceae

Thonningia sanguinea Vahl. Nkomango Roots  Ghana Antioxidative and radical scavenging activities and lipid peroxidation inhibitory activity.
Used for bronchial asthma, rheumatoid arthritis, atherosclerosis and diabetes.
Ellagitannins: Thonningianin A and B [98103]

Balanitaceae

Balanites aegyptiaca (L.) Delile Hausa: aduwa
Desert date
Bark and roots East Africa Antioxidant properties in vitro confirmed.
The bark and roots are used as laxatives, and for colic. The bark is used for sore throats, and as a remedy for sterility, mental diseases, epilepsy, yellow fever, syphilis, and tooth aches.
Coumarins, flavonoids, saponins (Balanin 1 (3β,12β,14β,16β) cholest-5-ene-3,16-diyl bis (β-d -glucopyranoside)- 12-sulphate, a new sterol sulfonated and Balanin 2 (3β,20S,22R,25R)-26-hydroxy-22-acetoxyfurost-5-en-3- yl-rhamnopyranosyl-(1→2)-glucopyranoside, a novel furostanol saponin) [11, 104106]

Bignoniaceae

Jacaranda mimosaefolia D.Don. Sharpleaf Jacaranda Leaves
Stem-bark
 Nigeria Shown to have antimicrobial activity and used to treat infections Phenylethanoid glucoside, jacaranone [107109]

Spathodea campanulata P.Beauv. African tulip Stem-bark Nigeria, Ghana,
Cameroon (Yaounde region)
Anti-inflammatory, antioxidant, hypoglycemic, anticomplement and anti-HIV activities.
Used to treat itching, arthritis, and diabetes.
Flavonoids and caffeic acid derivatives [63, 110]

Tecoma stans (L.)
H.B. & K.
Yellow
trumpet bush
Leaves
Stem-bark
 Nigeria Anti-diabetic activity is shown. 4-O-E-caffeoyl-alpha-L-rhamnopyranosyl-(1′→ 3)-alpha/beta-D-glucopyranose, E/Z-acetoside, isoacetoside [107, 111]

Capparaceae

Cleome arabica L. Cleome efeina Leaves Egypt Antioxidant activity, inhibited lipoxygenase activity and calcium ionophore-stimulated LTB4 synthesis in human neutrophils.
Used to treat wounds and prevent inflammation
Rutin and quercetin. [112, 113]

Clusiaceae

Garcinia kola Heckel Bitter cola/aku ilu, agbu ilu.
Nigeria
Hausa:
Góórò pl. gwârráá or gòòràrràkáí
Seeds  Nigeria Inhibit lipid peroxidation and protective against H2O2-induced DNA strand breaks and oxidized bases.
Used for laryngitis, coughs, liver disease, bronchitis and throat infections. Inhibits Aflatoxin B1 induced genotoxicity.
Biflavonoid: kolaviron [114120]

Harungana madagascariensis Poir. Otori Stem-bark  Eastern Nigeria Significant antioxidant activity.
Used to treat skin diseases.
Prenylated Anthronoids: harunmadagascarin A [8,9-dihydroxy-4,4-bis-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone], harunganol B [121123]

Hypericum carinatum Griseb. Not signalized Leaves Egypt Antioxidant and radical scavenging activities. Benzophenones: cariphenone A (6-benzoyl-5,7-dihydroxy-2,2,8-trimethyl-2H-chromene) and cariphenone B (8-benzoyl-5,7-dihydroxy-2,2,6-trimethyl-2H-chromene). [124, 125]

H. perforatum L. Common St.-Johns' wort Whole plant  Egypt Anti-inflammatory and anti-oxidant activities. Free radical scavenging, metal-chelation, and reactive oxygen quenching activities. Protective against scopolamine-induced altered brain oxidative stress status and amnesia in rats. Ability to suppress the activities of 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2), key enzymes in the formation of proinflammatory eicosanoids from arachidonic acid (AA).
Analgesic, antiseptic, antispasmodic, digestive, diuretic and sedative.
Flavonoids: Rutin, hyperoside, isoquercitrin, avicularin, quercitrin, and quercetin. [124, 126131]

Cochlospermaceae

Cochlospermum tinctorium A.Rich. N'tiribara Roots Sudan, Uganda
West Africa
Antioxidant activity.
Used for malaria, jaundice.
Polyphenols: gallotannins and ferulic acids [35]

Combretaceae

Combretum woodii Drum. Large-leaved forest bushwillow Leaf South Africa Antioxidant and antibacterial activities. Also tannins showed inhibitory effect on Fe2+-induced lipid peroxidation and radical scavenger activity.
Used for pneumonia, syphilis, abdominal pain and conjunctivitis.
Polyphenols: Combretastatin B5 (2′,3′4-trihydroxyl,3,5,4′-trimethoxybibenzyl).
Tannins.
[132137]

Combretum imberbe Not signified South Africa Combretum species are widely used for treating abdominal disorders (e.g. abdominal pains, diarrhea) backache, bilharziasis, chest coughs, colds, conjunctivitis, dysmenorrhoea, earache, fattening babies, fever, headache 1α,3β-dihydroxy-12-oleanen-29-oic, 1-hydroxy-12-olean-30-oic acid, 3,30-dihydroxyl-12-oleanen-22-one, and 1,3,24-trihydroxyl-12-olean-29-oic acid, a new pentacyclic triterpenoid (1α,23-dihydroxy-12-oleanen-29-oic acid-3β-O-2,4-di-acetyl-l-rhamnopyranoside) [138]

Guiera senegalensis J.F.Gmel. N'kundjè Leaf Western Africa Antioxidant and radical scavenging activities.
Used to treat dysentery, diarrhoea, gastro-intestinal pains and disorders, rheumatism, diabetes and fever.
Flavonol aglycones, flavonol glycosides and flavonoids (catechin, myricitrin, rutin and quercetin) as well as tannins (galloylquinic acids (hydrolysable tannins). [139143]

Terminalia sericea Burch. ex DC. Silver cluster-leaf Bark South Africa Radical scavenging and antioxidant activities.
Used to treat diabetes and pneumonia and to relieve colic
Pentacyclic triterpenoids
Anolignan B
[21, 136, 144]

Commelinaceae

Commelina diffusa Burm.f. Wandering Jew
Climbing day flower
Leaves Ghanna Anti-inflammatory and antioxidant properties.
Used to treat fever and is diuretic
Flavonoids [63, 145]

Palisota hirsuta K.Schum., Not signified Aqueous leaf extracts Nigeria Anti-inflammatory effects against carrageenan induced hind paw oedema Not identified [146, 147]

Crassulaceae

Bryophyllum
pinnatum
 (Lam.) Oken
Synonym: Kalanchoe pinnata (Lam.) Pers.
Ufu ivo Leaves Nigeria, South Africa Anti-inflammatory properties.
Used for earache.
Flavonoids, polyphenols, triterpenoids [12, 148, 149]

Cupressaceae

Juniperus procera
 Hochst ex. Endl.
African Juniper Young twigs and buds Ethiopia Antioxidant and free radical scavenging activities.
Used to relieve stomach pain.
Essental oils [79, 150, 151]

Dioscoreaceae

Dioscorea dumetorum (Kunth) pax Yam Tubers  Nigeria Antioxidant activity to modify serum lipid and anti-inflammatory activity.
Used to treat diabetes.
Dioscorea and Dioscoretine [152154]

Drosera madagascariensis
 (DC.)
D. ramentacea Burchell
Sundew Roots and flowers  Madagascar Anti-inflammatory effects.
Used to treat coughs and asthma
Flavonoids: hyperoside, quercetin and isoquercitrin [155, 156]

Drosera rotundifolia L. Round-leaf Sundew Roots and flowers  Madagascar Anti-inflammatory effects.
Used to treat coughs and asthma
Flavonoids: hyperoside, quercetin and isoquercitrin [155, 157]

Euphorbiaceae

Alchornea laxiflora (Benth) Pax & K. Hoffm. Wild banana Leaf and root  Nigeria Antioxidant and anti-microbial activity.
Used to treat jaundice and liver disorders. Also used in food preservation.
Quercetin-7,4′-disulphate, quercetin, quercetin-3′,4′-disulphate, quercetin-3,4′-diacetate, rutin and quercetrin [158161]

Bridelia ferruginea Benth. Ora Leaves, stem
and bark
West Africa
Democratic republic of Congo, Nigeria
Anti-inflammatory.
Used to treat diarrhea, dysentery, gastro-intestinal disorders, gynecological disorders (including sterility), and rheumatic pains.
A bioflavonoid: Gallocatechin-(4′→O →7)-Epigallocatechin. [12, 57, 162166]

Mallotus oppositifolius (Geiseler) Muell. Arg. Jororo
Káfàr mútúwàà
Senampendi
Mvundza jembe
Leaves, roots  West Africa
Nigeria
Antioxidant, anti-inflammatory and antimicrobial activities.
Used for abortion.
Flavonoids: quercetin and quercitrin. [167172]

Fabaceae

Aspalathus linearis (Brum. F.) R. Dahlgr. Rooibos Leaves South Africa Radical Scavenging Capacity
Used to treat stomach cramps, insomnia, and to reduce stress.
Phenolic Fractions, Tannins and monomeric flavonoids aspalathin, nothofagin, quercetin, rutin, isoquercitrin, orientin, isoorientin, luteolin, vitexin, isovitexin, and chrysoeriol. [1621, 173, 174]

Burkea africana Hook Wild Syringa Bark Mali and Sub-Saharan Africa Antioxidant and radical scavenging activity.
Used to treat coughs, colds, stomach obstruction, infusions against gonorrhoea and syphilis.
Proanthocyanidins; fisetinidol-(4alpha- >8)-catechin 3-gallate and bis-fisetinidol-(4alpha- >6, 4alpha- >8)-catechin 3-gallate, with smaller amounts of flavan-3-ols (catechin, epicatechin and fisetinidol) [175, 176]

Crotalaria podocarpa DC. Crotalaria Roots South Africa Anti-inflammatory activity.
Used for the treatment of sore-eyes and boils.
Expectorant.
Flavonoids [67, 177]

Cyclopia intermedia
 E. Mey. and C. subternata Vog.
Honeybush Leaves and stem  South Africa Antioxidant activity.
Used as tonic for colds, catarrh and tuberculosis.
Pinitol, shikimic acid, p-coumaric acid, 4-glucosyltyrosol, epigallocatechin gallate, the isoflavone orobol, the flavanones hesperedin, narirutin and eriocitrin, a glycosylated flavan, the flavones luteolin, 5-deoxyluteolin and scolymoside, the xanthone mangiferin and the flavonol C-6-glucosylkaempferol.
Phenolic content: tyrosol and a methoxy analogue, 2-[4-[O-alpha-apiofuranosyl-(1′′→6′)-beta-d-glucopyranosyloxy] phenyl]ethanol, 4-[O-alpha-apiofuranosyl-(1′′→2′)-beta-d-glucopyranosyloxy]benzaldehyde, five glycosylated flavonols, two isoflavones, four flavanones, two isoflavones, and two flavones
[19, 21, 178181]

Eriosema robustum Twigs Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda, Democratic Republic of Congo and Cameroon Used traditionally for the treatment of coughs in East Africa and skin diseases in Central Africa 2′,3′,5′,5,7-pentahydroxy-3,40-dimethoxyflavone,
2′,3,5′,5,7-pentahydroxy-4′-methoxyflavone
[182, 183]

Erythrina latissima
 E. Mey.
Broad-leaved coral tree Stem Wood
Root wood
Seeds
South Africa
Botswana
Antimicrobial activity and weak radical scavenging properties.
Purgative.
Flavonoids and isoflavonoids.
Isoflavones: erylatissin A and B. Flavanone: erylatissin C
and flavonoids and
Isoflavone glycosides: 4′-hydroxyisoflavone-7-O-beta-D-glucopyranoside (compound 1); 4′-hydroxyisoflavone-7-O-alpha-L-rhamnosyl (1→6)-beta-D-glucopyranoside (compound 2); and a new compound 4′, 8-dimethoxy isoflavone-7-O-alpha-L-rhamnosyl (1→6) glucopyranoside (8-O-methylretusin-7-O-alpha-L-rhamnosyl (1-6)-beta-D-glucopyranoside) (compound 3) Isoflavonoids: 5,7-dihydroxy-2′,4′,5′-trimethoxyisoflavanone.
[67, 184186]

E. lysistemon
 Hutch.
Common coral tree; lucky bean tree Bark South Africa Mild antioxidant activity.
Used to treat sores, wounds, abscesses and arthritis.
Three prenylated flavonoid derivatives; 5,7,4′-trihydroxy-8-(3′′′-methylbut-2′′′-enyl)-6-(2′′-hydroxy-3′′-methylbut-3′′ enyl) isoflavone (isoerysenegalensein E), 5,7,2′-trihydroxy-4′-methoxy-5′-(3′′-methylbut-2′′-enyl) isoflavanone (lysisteisoflavanone), 5, 4′-dihydroxy-6-(3′′′-methylbut-2′′′-enyl)-2′′-hydroxyisopropyl dihydrofurano [4′′,5′′:8,7] isoflavone (isosenegalensin), together with the four known flavonoids abyssinone V-4′-methylether, alpinumisoflavone, wighteone and burttinone [187190]

Melilotus elegans
 Salzm. ex Ser.
(syn. M.
abyssinica Baker)
Egug, Gugi, Yemen berri
Elegant sweet clover
Leaves Ethiopia Anti-inflammatory properties.
Used for asthma, haemorrhoid, wounds, excavated sore, piles, ulcers mouth infection, lacerated wounds,
haemorrhoids, bronchial asthma (personal
communication)
Flavonoids: kaempferol [191194]

Millettia griffoniana
Baill.
Not signalized Root-bark and
seeds
Cameroon Anti-inflammatory activity.
Used as an antimalarial.
Coumarin: 4-hydroxy-3-(3′,4′-methylenedioxyphenyl)-5,6,7-trimethoxycoumarin, durmillone, odorantin, 7-methoxyebenosin, calopogonium isoflavone B and 7,2′-dimethoxy-4′,5′-methylenedioxy isoflavone maximaisoflavone G (5) and 7-hydroxy-6-methoxy-3′,4′-methylenedioxyisoflavone and new prenylated isoflavonoids griffonianones A, B, C, D and E.Griffonianone D ((7E)-(6′′,7′′-dihydroxy-3′′,7′′-dimethyloct-2′′-enyl)oxy-4′-methoxyisoflavone), an isoflavone. [195202]

Parkia biglobosa
 (Jacq.) Benth
African Locust Bean
Nèrè
Ojinyi
Bark
Seeds
Mali
Sudan
Ivory Coast
Anti-inflammatory activity.
Used as antiseptic and to treat coughs, chest pain, and wound healing
Tocopherol, ascorbic acid (Seeds) [12, 33, 34, 3639, 4353, 55, 64, 6672, 118, 119, 121, 138, 159, 182, 195, 203235]

Peltophorum africanum Sond. Weeping wttle Root and bark South Africa Antioxidant and antibacterial activities
Used to treat diarrhoea, dysentery, sore throat, wounds, back and joint pains, HIV-AIDS, venereal diseases and infertility.
Flavonol glycosides and flavonol glucoside gallates [236238]

Piliostigma thonningii
 (Schum.) Milne- Redh
Camel's foot tree, Monkey Bread
Niama (Mali).
Abefe
Kalgo
Okpoatu
Omepa
Root, bark, pods, leaves Nigeria, Ethiopia Botswana, Kenya, Namibia, Senegal, South Africa, Sudan, Tanzania, Uganda, Zambia Anti-oxidant and anti-inflammatory properties.
Used to treat wounds, chronic ulcers, cough, respiratory disorders and toothache, gum inflammation, arthritis, headache, backache, and
antioxidant supplement.
Proanthocyanidins epicatechin, catechin trimers and oligomers, flavonoids, polyphenolics,
C-methylflavonols (in the leaf extract)
[12, 58, 239245]

Sutherlandia frutescens R.Br. Cancerbush
Phetola
Leaves South Africa Superoxide and hydrogen peroxide scavenging activities.
Used as tonic to boost the immune system.
Canavanine, pinitol [246248]

Trigonella foenumgraecum L. Fenugreek Seeds Ethiopia, Morocco Protective effect against Oxidative stress during ischemia-reperfusion.
It is hypolipidemic, and is also used to treat boils and to improve appetite.
Free phenolics and Vit C. [2628, 249, 250]

Humiriaceae

Sacoglottis gabonensis Urb. Cherry tree, ozouga Stem-bark  West Africa Antioxidant activity. Bergenin [251254]

Hypoxidaceae

Hypoxis hemerocallidea Fisch. & C.A. Mey. African potato Corms South Africa Antioxidant activity.
Used to treat tuberculosis, cancer, bladder disorders, benign prostatic hyperplasia.
Rooperol [188, 255257]

Lamiaceae

Ocimum basilicum L. Mükandu
Basil
Leaves Burkina Faso
Ethiopia
Intermediate antioxidant activity and high antibacterial activity.
Used in Ethiopia to treat Conjunctivitis and in
Kenya to treat colds and stomacheache.
Linalool basil oil
Methyl chavicol, eugenol, (E)-methyl cinnamate, thymol, linalool
[23, 258]

Ocimum gratissimum L. Tea bush, Scent leaf/Nchuanwu.
Ujuju okpevu
Basil
Leaves Popular republic of Congo (ex Brazaville Congo)
Eastern Nigeria
Antioxidant activity
Popular republic of Congo it is used as a laxative, purgative, and to treat snakebite, diabetes, tooth ache, gingivitis.
Xanthomicrol, cirsimaritin, rutin, kaempferol 3-O-rutinoside and vicenin-2 were identified as the major flavonoids, whereas luteolin 5-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, vitexin, isovitexin, quercetin 3-O-glucoside and isothymusin were detected as minor constituents. [12, 58, 258262]

Lauraceae

Cinnamomum zeylanicum Breyne Cinnamon leaf Leaves  Madagascar
Ethiopia
Very high antioxidant and high antimicrobial activities.
Used to treat diarrhoea, rheumatism, colds and hypertension
Cinnamaldehyde, eugenol and eugenyl acetate to be the main constituents of cinnamon oil. [2224, 263]

Ocotea bullata (Burch.) Baill. Black stinkwood
Unukane (Zulu)
Bark  South Africa Anti-inflammatory, cyclooxygenase inhibitory activity.
Urinary disorders, headaches.
Monoterpenoids [188, 264]

Ravensara aromatica Sonn. Nutmeg
havozo
Bark
Leaf
 Madagascar Low antioxidant and antimicrobial activity.
Useful for chronic respiratory conditions, and sometimes helpful in cases of asthma.
Essential oils, principally composed of the monoterpene hydrocarbons a-pinene, sabinene, myrcene, limonene, & the azulene: iso-ledene. In barks, estragole (methyl chavicol) but leaves contain b-myrcene, 1,8-cineole, linalool, and carotol. [23, 25, 265]

Malvaceae

Hibiscus sabdariffa L. Red tea,
sorelle
Rosella
Flowers Nigeria
South Africa
Antimutagenic activity and free radical scavenging effects on active oxygen species
Used against insomnia, colic.
Flavonol glucoside hibiscitrin
Anthocyanins. Such as cyanidin 3-O-β-D-glucopyranoside, cyanidin 3-O-(2-O-β-D-xylopyranosyl)-β-D-glucopyranoside, delphinidin 3-O-β-D-glucopyranoside and delphinidin 3-O-(2-O-β-D-xylopyranosyl)-β-D-glucopyranoside.
[19, 21, 266269]

Meliaceae

Trichilia roka
 Chiov.
Soulafinzan
Root Tropical Africa Mali Significantly protective against CCl4-induced liver damage and prevented perisinusoidal fibrosis.
Used to treat malaria, abdominal pain and dermatitis.
Polyphenols [270, 271]

Menispermaceae

Sphenocentrum jollyanum Pierre Akerejupon
ajo
Fruit
Root
 West Africa Anti-inflammatory activity.
Used to treat inflammatory-based diseases
Furanoditerpenes: columbin, isocolumbin.
Flavonoids-rich fraction.
[272274]

Tinospora bakis Whole plant Sudan Anti-inflammatory activity. To treat headache and rheumatism A diterpenoid furanolactone, columbin [275]

Moraceae

Dorstenia barteri
 var. subtriangularis (Engler)
M.E.E.Hijman & C.C.Berg
Contrayerva Twigs/leaves Cameroon Antioxidant properties account for the anti-inflammatory action of these extracts
Used to treat arthritis, rheumatism, gout, headache and other forms of body pains.
Prenylated flavonoids: Three diprenylated chalcones: bartericins A (-)-3-(3,3-dimethylallyl)-5′-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, bartericins B (+)-3-(3,3-dimethylallyl)-4′,5′-[2′′′-(1-hydroxy-1-methylethyl)-dihydrofurano]-4,2′-dihydroxychalcone and bartericins C 3,4-(6′′,6′′-dimethyldihydropyrano)-4′,5′-[2′′′,-(1-hydroxy-1-methylethyl)-dihydrofurano]-2′-hydroxychalcone and also two novel diprenylated chalcones: 3,5′-di-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, 3, 4-(2,2-dimethylpyrano)-3′-(2-hydroxy-3-methylbut-3-enyl)-2′,4′-dihydroxychalcone, 4,2′, 4′-trihydoxy-3′-prenylchalcone and 4,2′,4′-trihydoxy-3, 3′-diprenylchalcone; and 5,7,4′-trihydoxy-8-prenylflavone.
Other known compounds such as stipulin, 4-hydroxylonchocarpin, kanzonol B, 3′-(2-Hydroxy-3-methylbut-3-enyl)-5′-(3,3-dimethylallyl)-4,2′,4′-trihydroxychalcone, and dorstenone.
[67, 276281]

D. ciliata Engl. Contrayerva Aerial parts Cameroon
Central Africa
Antiradical and antioxidant activities.
Used as food additive.
phenolic compound (6-prenylapigenin)
Flavones: (ciliatin A) 5,4′-Dihydroxy-5′′-isopropenyldihydrfuranol[2′′,3′′:7,6]flavone
(ciliatin B) 7,4′-Dihydroxy-3′-methoxy-6′′,6′′-dimethyldihydropyranol[2′′,3′′:5,6].
[282284]

D. convexa De Wild. Contrayerva Twigs and
leaves
 Democratic Republic of the Congo Antioxidant properties account for the anti-inflammatory action of these extracts.
Used to treat arthritis, rheumatism, gout, headache and other forms of body pains.
Prenylated flavonoids [67, 276, 280]

D. mannii Hook.f. Contrayerva Twigs/leaves
Aerial parts
 Central Africa Antioxidant action against copper-induced LDL oxidation, this activity is like the non-prenylated flavonoid quercetin. Also, inhibition of platelet aggregation and influence of cyclooxygenase and lipoxygenase activity.
Used to treat rheumatism, stomach disorders.
Anti-trichomonal activity.
Grenylated and prenylated flavonoids and flavonones:
Flavonones: 6,8-diprenyl-5,7,3′4′-tetrahydroxyflavanone, 4-hydroxylonchocarpin, 4-methoxylonchocarpin, 6-prenylchrysoeriol, 6,8-diprenyleriodictyol, gancaonin P and Prenylated flavonoids: 6,8-diprenyleriodictyol, dorsmanin C 7,8-(2,2-Dimethylchromeno)-6-geranyl-3,5,3′,4′-tetrahydroxyflavone and dorsmanin D 6,8-Diprenyl-3,5,7,4′-tetrahydroxy-3′-methoxyflavone,
dorsmanins 1, J and 2′′-epimers of dorsmanins F (6,7-(2,2-dimethylpyrano)-8-prenyl-5,3′,4′-trihydroxyflavanone, G (6,7-(2,2-dimethyldihydro-pyrano)-8-prenyl-5,3′,4′-trihydroxflavanone). Also, dorsmanins F and G.
Four new prenylated flavanones, named dorsamine F (7,8-[2′′-(1-hydroxy-1-methylethyl)-dihydrofurano]-6-prenyl-5,3′,4′-trihydroxyflavanone), dorsmaine G (6,7-[2′′-(1-hydroxy-1-methylethyl)dihydrofurano]-8-prenyl-5,3′,4′-trihydroxyflavanone) and dorsamine H (6-prenyl-8-(2-hydroxy-3-methylbut-3-enyl)-5,7,3′,4′-tetrahydroxyflavanone).
[67, 187, 207, 285287]

D. poinsettifolia var. angusta Engl. Dingetenga Whole plant Cameroon Antiradical and antioxidant activities.
Used to treat infected wounds.
Grenylated and prenylated flavonoids. The unusual 4-phenyl-substituted dihydrocoumarin and the rare geranyl-and prenyl-substituted Chalcone. [207, 288, 289]

D. psilurus Welw. Dingetenga Roots  Cameroon Central Africa Antiradical and antioxidant activities.
Used against snakebite and to treat rheumatism, headache and stomach disorders.
Grenylated and prenylated flavonoids.
Three phenolic compounds: 6,8-diprenyl-3′ [O],4′-(2,2-dimethylpyrano)-3,5,7-trihydroxyflavone, 3,6-diprenyl-8-(2-hydroxy-3-methylbut-3-enyl)-5,7,2′,4′-tetrahydroxyflavone and an unusualB/C ring modified flavonoid derivative for which the names dorsilurins C, D and E, respectively, are proposed.
Two new flavones, dorsilurins A and B, and a new benzofuran derivative have been isolated from Dorstenia psilurus, together with three known phenylpropanoid derivatives, stearyl-p-coumarate [octadecanyl 3-(4-hydroxyphenyl)prop-2-enoate], stearyl ferulate [octadecanyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate] and psoralen.
[206, 282, 290292]

Myrtaceae

Eugenia elliptica Sm.
Syzygium smithii (Poir.) 
 Nied.
Lilly Pilly Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech [293, 294]

E. fasciculata Wall. Not signalized Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech.
procyanidin B2 dimer and (-)-epicatechin
[293]

E. orbiculata Lam. Not signalized Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech.
quercetin-3-O-rutinoside (rutin),
[293, 295]

E. pollicina
 J.Gueho & A.J.Scott
Not signalized Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), quercetin-3-O-glucoside (isoquercitrin), (+)-catech.
(-)-epicatechin gallate
[293, 296]

Monimiastrum acutisepalum
 J. Gueho & A.J. Scott.
Not signalized Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), and quercetin-3-O-glucoside (isoquercitrin).
(+)-catechin
[293295]

M. globosum
 J.Gueho & A.J.Scott
Not signalized Leaves Mauritius Modulate the expression of the antioxidant enzyme genes. Quercetin-3-O-galactoside (hyperoside), kaempferol-3-glucoside (astragalin), and quercetin-3-O-glucoside (isoquercitrin).
(-)-epicatechin gallate
[293]

Syzygium aromaticum (L.) 
 Merr. & L.M.Perry
Clove bud Dried flowers
Buds
Madagascar
Sudan
Antioxidant and antimicrobial activities.
Used to treat tooth ache and throat inflammation.
Eugenol
Methyleugenol
[23, 297, 298]

S. coriaceum
 J.Bosser & J.Guého
Bois de pomme  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes. Phenols and flavonoids: Quercetin-3-O-rutinoside, kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, procyanidin B1 dimer, (-)-epicatechin gallate [293]

S. glomeratum DC. Bois de pomme Leaves  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes.
Used to treat boils, abscesses, fever and wounds and as expectorant.
Phenols and flavonoids: kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), procyanidin B1 dimer, (-)-epicatechin gallate, chlorogenic acid, (-)-epicatechin [293]

S. guehoii Not signalized  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes. Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, chlorogenic acid, procyanidin B2 dimer [293]

S. mauritianum
 J.Gueho & A.J.Scott
Not signalized Leaves  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes. Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, chlorogenic acid [293]

S. petrinense
 J.Bosser & J.Guého
Not signalized  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes. Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), procyanidin B1 dimer, chlorogenic acid [293]

S. venosum (Lam.) 
 J.Gueho & A.J.Scott
Not signalized  Mauritius Abilities to modulate the expression of the antioxidant enzyme genes. Phenols and flavonoids: quercetin-3-O-rutinoside (rutin), kaempferol-3-glucoside (astragalin) and quercetin-3-O-glucoside (isoquercitrin), (+)-catechin, procyanidin B2 dimer [293, 295, 299]

Oleaceae

Olea europaea
 subsp africana (Mill.)P.S. Green
African wild olive Leaves  South Africa Potent antioxidant activity.
Used as eye lotions and tonics, lower blood pressure, improve kidney function and deal with sore throats. The early Cape settlers used the fruits to treat diarrhoea
Oleuafricein (mixture of oleanolic acid and ursolic acids), Triterpenoids and oleoropein. [84, 300, 301]

Pedaliaceae

Harpagophytum procumbens DC.
ex Meissner
Devil's claw Root South Africa
Native to the Kalahari Desert of southern Africa, Namibia and
Botswana.
Anti-inflammatory and ability to inhibit the expression of cyclooxygenase-2 and inducible nitric oxide by suppression of NF-kappaB activation.
Used for pain, muscular tension, osteoarthritis, degenerative rheumatism or painful arthrosis and tendonitis as well as tonic for loss of appetite and dyspeptic complaints.
Roots contain iridoid glycosides mainly harpagoside.
Other constituents are flavones and flavonols kaempferol, and luteolin.
[302312]

Piperaceae

Piper guineense
 Schum. & Thonn.
West African black pepper
Bush pepper
Ikom, Amana
kakwale iyeyeh ashoesie
taquale Meshoro
Fruit, seed and leaf Ghana, West Africa
Nigeria
Cameroon
Antioxidant activity. Volatile oil components-monoterpenes, sesquiterpenes, terpenoids, lignans and sterols. [313316]

Podocarpaceae

Podocarpus species
Podocarpus
elongates   Podocarpus
falcatus,
Podocarpus henkelii
and Podocarpus latifolius
Leaves and young stems Eastern and Southern Africa These species are used to treat fevers, asthma, coughs, cholera, chest complaints, arthritis, rheumatism, painful joints and venereal diseases Diterpenoids, bioflavonoids and Totarol [317]

Ranunculaceae

Nigella sativa L. Black cumin Seed African countries in the Mediterranean region Antioxidant potentials through scavenging ability of different free radicals including the superoxide anion radical, inhibition of lipid peroxidation, and protection of liver against carbon tetrachloride (CCl4)-induced liver fibrosis in rabbits
Used to treat diarrhoea, asthma, and as gastroprotective agent.
Oil: Thymoquinone [2931, 318, 319]

Rosaceae

Crataegus monogyna Jacq. Hawthorn, May Blossom, May Day Flower, White Thorn. Fresh vegetative and reproductive organs Mauritius, Northern Africa Antioxidant activities.
Used for its neuro- and cardiosedative actions.
Polyphenols: (proanthocyanidin, flavonoid, anthocyanin, (-)-epicatechin, procyanidin B2, chlorogenic acid).
Flavonoids:quercetin and quercetrin, glycosides, proanthocyanidins, anthocynaidins, saponins, tannins, and cratetegin
Also, Vitamin C.
[320323]

Leucosidea sericea Leaf, bark and roots Southern Africa Antimicrobial and anti-inflammatory properties Phenolics, alkaloids and saponins [210]

Pygeum africanum Hook. f. African plum tree
Red Stinkwood
Bark South Africa Anti-inflammatory.
Used to treat against benign prostatic hyperplasia, prostatitis
14% triterpenes (urolic acids, oleanolic acid, crataegolic acid), 0.5% n-docosanol
Phytosterol (β-sitosterol, β-sitosterone, Campesterol
[188, 324327]

Rubiaceae

Crossopteryx febrifuga Benth. Roger Blench
“rima jogoo-hi/je”
Seeds
Leaf and roots
Mali
Nigeria
Radical scavenging and lipoxygenase inhibition activities.
Used to treat fever and various respiratory diseases
Flavonoids [328330]

Rutaceae

Agathosma betulina (Berg.) Pillans. Round-leaf buchu Leaves,
stems
 South Africa Hydroxyl radical ion scavenging ability.
Used for stomach problems, kidney and urinary track diseases.
Essential oils and flavonoids [188, 331, 332]

A. crenulata (L.) 
 Pillans
Oval-leaf 
 buchu
Leaves,
stems
 South Africa Anti-inflammatory activity.
Used to treat benign prostatic hyperplasia, prostatitis, diabetes, inflammation of the colon, gums, and mucous membranes. Leaves chewed to relieve stomach complaints.
Essential oils and flavonoids [84, 188, 331, 332]

Fagara zanthoxyloides Lam. xeti, xe
Roots, root-bark Cameroon, Uganda Antioxidant activity.
Used to treat gingivitis, toothache, urinary and venereal diseases, rheumatism and lumbago, malaria and other infections.
Phenylethanoid derivative, lignans and fagaronine [333336]

Sapindaceae

Dodonaea viscosa
 Jacq.
 Synonyms: Dodonaea angustifolia L. f.;
Ptelea viscosa L.
Umusasa Leaves Rwanda Anti-inflammatory activity by inhibiting the synthesis of prostaglandin (PG) E(2).
Used to treat rheumatism, skin infections, diarrhea, stomachaches, pains of hepatic and splenic origin, uterine colic. It is also used as an antipruritic in skin rashes and for the treatment of some throat, dermatitis and hemorrhoids.
Quercetin, isorhamnetin [337341]

Xanthorrhoeaceae

Aloe ferox Mill. Bitter aloe or Cape aloe Leaves South Africa, Lesotho A. ferox gel contains at least 130 medicinal agents with anti-inflammatory, analgesic, calming, antiseptic, antiviral, antiparasitic and anticancer effects Chromones, anthraquinones, anthrone, anthrone-C-glycosides, and other phenolic compounds
Barbaloin
[9]

Zingiberaceae

Siphonochilus aethiopicus (Schweinf.) B.L. Burtt. Wild ginger
Natal ginger
African Ginger
Rhizome South Africa Anti-inflammatory activity through cyclooxygenase inhibitory (prostaglandin-synthetase inhibition), activity.
Used to treat Coughs, colds, asthma.
Sesquiterpenoid [188, 264, 342]

Table 2.

Medicinal plants with confirmed antioxidant activity or medicinal plants that contain compounds that are not known to have antioxidant activity.

Family and plant name Vernacular name Plant part Country/area Medicinal use and/or experimental validation Compounds isolated Reference
Acanthaceae

Barleria species
 B. albostellata,
 B. greenii,
B. prionitis
Leaves, twigs and roots South Africa Anti-inflammatory and antioxidant activities Not identified [212, 213]

Hypoestes rosea Decne. Not signalized Leaf extract Nigeria Anti-inflammatory activity due in part to its ability to inhibit NF-kappaB activation through direct inhibition of IkappaB kinase (IKK). Diterpene: Hypoestoxide (a bicyclo [9,3,1] pentadecane) [380, 381]

Aizoaceae

Glinus lotoides L. “Mettere”
Hairy carpet -weed
Seeds Cameroon
Ethiopia, Sudan, Uganda, Egypt.
Used to treat cardiovascular and gastrointestinal system. Three flavonoids: apigenin-7-O-glucoside, isovitexin, and luteolin-7-O-glucoside
Three isoflavonoids:
5,7,2′,4′-tetrahydroxy-6-(3,3-dimethylallyl)isoflavone,
5,7,4′-trihydroxy -6,3′-di-(3,3-dimethylallyl)isoflavone, and 5,7,2′,4′-tetrahydroxy-6,3′-di-(3,3-dimethylallyl) isoflavone.
[290, 382386]

G. oppositifolius (L.) Aug. DC. Balasa Whole plant Mali Antioxidant and radical scavenging abilities. kaempferol 3-O-galactopyranoside [387, 388]

Aloaceae

Aloe claviflora Burch. Kraal aloe South Africa Free radical scavenging and moderate inhibition in lipid peroxidation.
Used as a purgative.
Not identified [35]

A. maculata
 Forssk.
(=A. saponaria)
“Yellow Form”
Tiger Aloe, Soap Aloe
South Africa Free radical scavenging and moderate inhibition in lipid peroxidation.
Used as a purgative.
Not identified [35]

A. thraskii Baker Dune aloe South Africa Free radical scavenging and moderate inhibition in lipid peroxidation.
Used as a purgative.
Not identified [35]

Anacardiaceae

Sclerocarya birrea (A.Rich.) Hochst Marula Stem-bark Anti-inflammatory activity.
Used to treat diabetes, tonsillitis, snake bite and also diarrhoea.
Not identified [389]

Annonaceae

Enantia chlorantha Oliver Erenbavbogo, Mföl Muamba Root, stem-bark Nigeria Anti-inflammatory activity.
Used to treat ulcers and leprous spots wounds. Bark sap is taken as decoction against diarrhoea.
Not identified [390393]

Uvaria afzelii Sc. Elliot Pareho-houon, Bahie oulin Leaves, roots and stem-bark Ivory Coast Used as for its antiparasitic activity Anthocyanins and other flavonoids [394396]

U. chamae P.Beauv. Okandii
Anweda tsoGa
Stem, bark
Leaves, root
Ivory Coast Nigeria
Used for its antiplasmodial activity. Polyphenols [12, 397, 398]

Apocynaceae

Picralima nitida Th. & H. Dur. Ghana: Kpetepetetso, Kanwini,
Kanwinu
Cameroon: motoko-toko
Seeds Stem-bark Ghana Anti-inflammatory activity.
Used for its analgesic and anti-inflammatory properties.
Not identified [168, 399402]

Rauvolfia vomitoria Afzel. Asofeyeje, adapopo
Mwanje
Root-bark Ghana Anti-inflammatory activity.
Used for its analgesic, antipyretic and anti-inflammatory activities. Also to treat scabies, high blood pressure, fever and snakebites.
Not identified [56]

Araliaceae

Cussonia barteri Seem. Cabbage tree Leaves
Roots
Nigeria, Mali Antioxidant and radical scavenging abilities. Inhibitory activity on 5-lipoxygenase and cyclooxygenase-1. Not identified [357, 403]

Arecaceae

Hyphaene thebaica Mart. Not signalized Shell Niger Antioxidant activity Not identified [11]

Asclepiadaceae

Calotropis procera (Aiton)
W.T.Aiton
African milk weed
Sodom apple/Giant milkweed/
Latex Ethiopia Anti-inflammatory and antioxidant activities. Not identified [404]
Swallow-wort/Auricula tree. Sudan Used to control dermal fungal infections and for pain relief. Latex used against scorpion stings and roots for jaundice.

Gongronema latifolium Benth. Not signalized Leaves Nigeria Antioxidant activity Not identified [405407]

Leptadenia hastata Decne. Not signalized Leaves Niger Antioxidant activity Not identified [11]

Pachycarpus rigidus E. Mey. Not signalized Bark South Africa Antioxidant activity.
Used to treat pain in the joints
Not identified [188]

Asparagaceae

Asparagus virgatus Baker
Refug. Bot. (Saunders)
Broom asparagus Bark South Africa Antioxidant activity.
Used to treat syphilis, anthelmintic
Not identified [35]

Asteraceae

Ageratum conyzoides L. Inkuruba
Herbe à bouc
Whole plant Central Africa, Rwanda Ethiopia Antioxidant and anti-inflammatory properties.
Used to treat mastitis and urogenital infections and to dress wounds. Also as a gastroprotective.
Not identified [12, 408, 409]

Artemisia herba-alba Desert wormwood, shih Aerial parts Algeria, Tunisia, Israel, Morocco Herbal tea from A. herba-alba has been used as analgesic, antibacterial, antispasmodic, and hemostatic agents in folk medicines Camphor (17–33%), α-thujone (7–28%), and chrysanthenone (4–19%) [9]

Artemisia judaica L. Wormwood Leaves Egypt Used for gastrointestinal disorders Flavonoids with antioxidant activities. [410]

Callilepis laureola
 DC.
Ox-eye daisy, Impila Tuber South Africa Antioxidant and radical scavenging activities.
Used to induce fertility, impotence, tapeworm infestations but induces hepatic and renal tubular necrosis.
Not identified [188, 411, 412]

Psiadia punctulata (DC) Vatke Mwendathigo Leaf exudate Kenya, East Africa Used to treat colds, fevers and abdominals pains. Flavones: 5,7-dihydroxy-2′,3′,4′,5′-tetramethoxyflavone, 5,4′-dihydroxy-7,2′,3′,5′-tetramethoxyflavone, 5,7,4′-trihydroxy-2′,3′,5′-trimethoxyflavone, 5-hydroxy-7,2′,3′,4′,5′-pentamethoxyflavone and 5,7,3′-trihydroxy-2′,4′,5′-trimethoxyflavone. [359, 413]

Vernonia kotschyana Sch. Bip. ex Walp. Buaye Leaves, roots Mali Anti-inflammatory activity.
Used to treat gastritis, gastro duodenal ulcers, as an aid to ameliorate digestion and as a wound healing remedy. Immunomodulating activities.
Not identified [187, 414]

Bignoniaceae

Kigelia pinnata DC. Suasage tree,
Cucumber tree
Root
fruit
Egypt Used as dressing for ulcers and used to treat rheumatism
Anti-inflammatory activity
Naphthoquinones: kigelinone, isopinnatal, dehydro-alpha-lapachone, and lapachol and the phenylpropanoids: p-coumaric acid, ferulic acid (root), kigelinone and caffeic acid (fruits). [415, 416]

Tabebuia rosea (Bertol.) DC. Pink tecoma
Pink trumpet tree
Leaves
Stem-bark
Nigeria Used to treat arthritis. Tannins, flavonoids, alkaloids, quinones and traces of saponins [107]

Crescentia cujete L. Calabash
Gourd tree
Leaves
Stem-bark
Nigeria Used as purgative and to treat coughs. Tannins, flavonoids, alkaloids, quinones and traces of saponins [107]

Bombacaceae

Bombax costatum Pellegrin & Vuillet Not signalized Fruit Niger Antioxidant activity Not identified [11]

Boraginaceae

Heliotropium
indicum L.
Nonsikou Leaves Mali Moderate antioxidant activity.
Used for wound healing and for ocular infection.
Not identified [417419]

Buddlejaceae

Buddleja
madagascariensis Lam.
Butterfly-bush Leaves Egypt Used to treat coughs, asthma, and bronchitis. Flavonoids triglycosides: hesperetin and diosmetin 7-O (2′′,6′′- di-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosides [420]

Caesalpiniaceae

Cassia fistula L. Golden shower tree Fruit Mauritius Laxative. Phenolics and flavonoids [368]

Canellaceae

Warburgia salutaris (Bertol F.) Chiov. Pepper-bark tree
Isibaha
Bark South Africa Antioxidant and radical scavenging activities.
Used to treat coughs, stomach ulcers, malaria, rheumatism, liver and venereal diseases
Not identified [188]

W. ugandensis Sprague Fever tree Stem-bark
Leaves
Kenya
Ethiopia
Used to treat stomach ache, chest pains, malaria, toothache and coughs. Flavonol glycoside Kaempferol, kaempferol 3-rhamnoside, kaempferol
3-Rhamnoside-7,4′-digalactoside and Quercetin: 3-Rhamnosyl(1→6[glucosyl(1→2)glucoside]-7-rhamnoside, kaempferide 3-O-beta-xylosyl (1→2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4′-di-O-beta-galactoside, kaempferol 3,7,4′-tri-O-beta-glucoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4′-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside.
[421424]

Capparaceae

Boscia senegalensis (Pers.) Lam. ex Poiret Senegal Boscia Fruit hull
Roots and leaf
Mali
Niger
Antioxidant activity.
Used to treat diarrhoea, cholera, tachycardia, pectoral pain.
Not identified [12]

Gynandropsis gynandra Merr. Not signalized Leaves Niger Antioxidant activity Not identified [11]

Celastraceae

Salacia leptoclada Tul. Lemon rope Root South Africa Antioxidant activity.
Used as an aphrodisiac.
Not identified [188]

Chenopodiaceae

Salsola somalensis N.E.Br. Dingetegna Roots Ethiopia Used as taenicide. Nine new isoflavones, 5,3′-dihydroxy-6,7,2′-trimethoxy isoflavone, 5,8,3′-trihydroxy-7,2′-dimethoxyisoflavone, 8,3′-dihydroxy-5,7,2′-trimethoxyisoflavone, 5,6,3′-trihydroxy-7,2′-dimethoxyisoflavone, 6,7,3′ -trihydroxy-5,2′-dimethoxyisoflavone, 5,8,3′-trihydroxy -2′-methoxy-6,7-methylenedioxyisoflavone, or 5,6,3′-trihydroxy-2′-methoxy-7,8-methylenedioxyisoflavone, 3′-hydroxy-5,6,7,2′-tetramethoxyisoflavone, 7,3′-dihydroxy -5,6,2′-trimethoxyisoflavone and 6,3′-dihydroxy-5,7,2′-trimethoxyisoflavone. [425]

Clusiaceae

Psorospermum guineense Hochr. Karidjakouma Leaves Mali Antioxidant activity.
Used as diuretic and febrifuge.
Not identified

Combretaceae

Pteleopsis suberosa Engl. & Diels. Girga Stem-bark Mali Antioxidant properties.
Used to treat gastric and duodenal ulcers.
Not identified [329, 426]

Dioscoreaceae

Dioscorea dumetorum Th.Dur.et Schinz Cluster yam
African bitter yam
Trifoliate yam
Tubers Nigeria
Tropical West Africa
Antioxidant and hypolipidemic activities.
Used to treat diabetes.
Not identified [152, 153, 427]

Ebenaceae

Diospyros abyssinica (Hiern) F. White Giant diospyros Leaves, roots
Root-bark
Mali Radical scavengers and lipoxygenase inhibitors. Not identified [357]

Euclea divinorum Hiern Diamond-leaved euclea
Magic guarri
Roots Ethiopia Used to treat venereal diseases, chest pains, pneumonia, internal body pains, stomach-ache and diarrhea. Chewed roots ease toothache. Flavonoids [428]

Euphorbiaceae

Acalypha hispida Burm. f. Chenille plant
Red-hot cattail
Leaves
Flowers
Nigeria Used as anti-bacterial agent. Gallic acid and Quercetin 3-O-rutinoside and kaempferol 3-O-rutinoside
The main anthocyanin is the known cyanidind 3-O-(2-O-galloylgalactose, but a minor pigment (5%) is the new cyanidin Cy 3-O-(2-O-galloyl-6-O-rhamnosylgalactoside
[228, 429]

A. wilkesiana
 Müll. Arg.
Copper leaf Leaves Nigeria Used to treat ailments of microbial origin Gallic acid and Quercetin 3-O-rutinoside and kaempferol 3-O-rutinoside [430]

Croton gratissimus Burch. Lavender fever-berry Bark South Africa Used as purgative for abdominal disorders, fever. The charred and powdered bark is used to treat bleeding gums Flavonoids. [188]

Euphorbia hirta L. Kasandasanda
Ufu idire
Whole plant
Leaves
Ethiopia Used to treat diarrhoea and asthma. Flavonoid: quercitrin
Flavonol: Euphorbianin (3-(6′′′-Acetylglucosyl) (1→3)galactoside)
[12, 431433]

Fabaceae

Acacia caffra (Thunb.) Wild. Hook-thorn
Cat-thorn
Bark South Africa Used to treat diarrhoea and as emetics. Proanthocyanidins: oritin-(4alpha→5)-epioritin-4beta-ol, ent-epioritin-(4alpha→5)-epioritin-4beta-ol and epioritin-(4beta→5)-epioritin-4alpha-ol and ent-oritin-(4beta→5)-epioritin-4alpha-ol. [434436]

A. galpinii Burtt Davy. Monkey-thorn Bark South Africa Used to treat diarrhoea. Proanthocyanidins: oritin-(4alpha→5)-epioritin-4beta-ol, ent-epioritin-(4alpha→5)-epioritin-4beta-ol and epioritin-(4beta→5)-epioritin-4alpha-ol and ent-oritin-(4beta→5)-epioritin-4alpha-ol. [434, 435]

Afzelia bella
 Harms
Pretty Afzelia Stem-bark Ivory Coast Used to treat skin diseases and cough. An acylated dihydroflavonol glycoside identified as 2R,3R-trans-aromadendrin-7-O-beta-D-glucopyranoside-6′′-(4′′-hydroxy-2′′-m ethylene flavonoids:butanoate), along with five known flavonoids and the lignan glycoside (+)-isolariciresinol 9-O-xyloside. [437]

Bolusanthus speciosus
 Harms
Tree Wisteria Root
Stem-bark
South Africa, Botswana, Mozambique, Zimbabwe, Zambia. Used to treat abdominal pains, emetism and tuberculosis. Three new flavonoids from the root: 5,7,4′-trihydroxy-6-[1-hydroxy-2-methylbuten-2-yl]isoflavone (isogancaonin C), 7,2′-dihydroxy-4′-methoxyisoflav-3-ene (bolusanthin III), 6,6′-dihydroxy-4′-methoxy-2-arylbenzofuran (bolusanthin IV) in addition to eight known derrone, medicarpan, genistein, wighteone, lupiwighteone, gancaonin C, 7-hydroxy-4′-methoxyisoflavone and 7,3′-dihydroxy-4′-methoxyisoflavone flavonoids
2R,3R-Aromadendrin 7-(6-[4-hydroxy-2-methylenebutanoyl]glucoside).
Two new isoflavonoids from the combined ethyl acetate/methanolic extracts of the stem bark of Bolusanthus speciosus have been established as 4,7,2′-trihydroxy-4′methoxyisoflavanol (1) and 5,7,3′,4′-tetrahydroxy-5′-(2-epoxy-3-methylbutyl)isoflavanone (2). Five other known isoflavonoids, 5,7,3′-trihydroxy-4′-methoxy-5′-γ, γ-dimethylallyisoflavanone, 5,7,2′trihydroxy-4′-methoxy-6,5′-di(γ, γ-dimethyla)isoflavanone, 5,7,2′,4′-tetrahydroxy-8,5′-di(γ, γ-dimethylallyl)isoflavanone, 5,7,2′,4′-tetrahydroxy-8,3′-di(γ, γ-dimethylallyl)-isoflavanone, and derrone.
[67, 358, 438]

Crotalaria lanceolata E. Mey. Lanceleaf rattlebox Root South Africa Antioxidant activity.
Used to treat coughs.
Not identified [188]

Derris trifoliata Lour. Common derris Root-bark.
Stem-bark. Seeds.
Kenya Used for prevention of cancer.
Entire plant is used as stimulant, antispasmodic. Bark is used as an alternative in rheumatism.
An isoflavonoid derivative, named 7a-O-methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isoflavonoids (the sub-class is here named as rotenoloid). In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol. In addition, two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone).
In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. Also one new rotenoid, 6-alpha,12-alpha-12a-hydroxyelliptone.
[438441]

Entada africana Guill. & Perr. Samanere Leaves Mali
Niger
Antioxidant properties.
Protective against carbon tetrachloride-induced liver damage.
Used to treat fever and various respiratory diseases.
Not identified [329, 357, 442, 443]

Erythrina abyssinica Lam. Red hot poker tree Stem bark
Root bark
Kenya Used to treat malaria. New isoflav-3-ene [7,4′-dihydroxy-2′,5′-dimethoxyisoflav-3-ene] in addition to the known compounds erycristagallin, licoagrochalcone A, octacosyl ferulate and triacontyl 4-hydroxycinnamate were identified. A new chalcone, 2′,3,4,4′-tetrahydroxy-5-prenylchalcone (trivial name 5-prenylbutein) and a new flavanone, 4′,7-dihydroxy-3′-methoxy-5′-prenylflavanone (trivial name, 5-deoxyabyssinin II) along with known flavonoids [444, 445]

E. burttii Baker f. Not signalized Stem-bark
Root-bark
Kenya Used as antifungal and antibacterial agent. Two new flavanones: 5,7-
dihydroxy-4′-methoxy-3′,5′-di-(3-methylbut-2-enyl)flavanone (trivial name, abyssinone V-4′-methyl ether) and 5,7-dihydroxy-4′-methoxy-3′-(3-hydroxy-3-methylbut-1-enyl)-5′-(3-methylbut-2-enyl)favanone (trivial name, burttinone). A new isoflavone, 5,2′,4′-trihydroxy-7-methoxy-6-(3-methylbut-2-enyl)isoflavone (trivial name, 7-O-methylluteone) and a new flavanone, 5,7-dihydroxy-4′-methoxy-3′-(3-methylbutadienyl)-5′-(3-methylbut-2-enyl)flavanone, 3 isoflavonoids (8-prenylluteone, 3-O-methylcalopocarpin and genistein)
Three isoflav-3-enes, 7,4′-dihydroxy-2′-methoxy-6-(1′′,1′′-dimethylallyl)isoflav-3-ene (trivial name, burttinol-A), 4′-hydroxy-2′-methoxy-2′′,2′′-dimethylpyrano[5′′,6′′:8,7]isoflav-3-ene (trivial name, burttinol-B), 7,4′-dihydroxy-2′-methoxy-8-(3′′,3′′-dimethylallyl)isoflav-3-ene (trivial name, burttinol-C), and 2-arylbenzofuran, 6,4′-dihydroxy-2′-methoxy-5-(1′′,1′′-dimethylallyl)-2-arylbenzofuran (trivial name, burttinol-D).
[446449]

E. eriotricha Harms. Not signalized Root-bark Cameroon Anti-microbial activity A novel isoflavanone, named eriotrichin B, one new prenylated flavanone, named sigmoidin L, one flavanone (sigmoidin A), four isoflavones (scandenone, 6,8-diprenylgenistein), flemiphilippinin B and 8-prenyldaidzein [450, 451]

E. sacleuxii Hua Kinyarwanda Bark Kenya Used to treat fever, malaria and leprosy.
Two new isoflavanones, (R)-5,7-dihydroxy-2′,4′,5′-trimethoxyisoflavanone (trivial name, (R)-2,3-dihydro-7-demethylrobustigenin) and (R)-5-hydroxy-2′,4′,5′-trimethoxy-2′′,2′′-dimethylpyrano[5′′,6′′:6,7]isoflavan one (trivial name, (R)-saclenone) [452, 453]

Millettia ferruginea
 (Hochst.) Baker
Birbira
Sotallo
Sari
Bark Ethiopia Used for skin disorders. O-Geranylated and O-prenylated flavonoids, C-prenylated isoflavones
Geranylated and prenylated flavonoids
[199]

M. dura Dunn. Runyankore Uumuyogoro Stem-bark Rwanda
Uganda
Used for blood parasitism Flavonoids: A new isoflavone (7,3′-dimethoxy-4′,5′-methylenedioxyisoflavone) and three known isoflavones [isoerythrinin A 4′-(3-methylbut-2-enyl) ether, isojamaicin and nordurlettone]. [454, 455]

Ostryoderris stuhlmannii (Taub.) Dunn ex Harms Mnyinga Leaves Mali Antioxidant activity.
Used to treat painful menstruation, peritonitis, gastritis, colitis and gingivitis.
Not identified [357]

Piliostigma reticulatum (DC.) Hochst Kalga Leaves
Bark
Nigeria High antioxidant activity.
Used to treat wounds, bronchitis, malaria, sterility (leaves) and diarrhoea and dysentery (bark).
Not identified [240]

Sesbania pachycarpa DC. Not signalized Leaves Niger Antioxidant activity Not identified [11]

Tephrosia polyphylla (Chiov.) J.B. Gillett Hoary pea Aerial part Kenya Flavonoids [456]

T. deflexa Baker Hoary pea Aerial part Senegal Flavonoids: Rutin 1 – quercetine 3-O-a-L-rhamnopyrannosyl (1-6) glucopyrannose – and morin 2 – 3,5,7,2′,4′-pentahydroxyflavone. [457]

T. albifoliolis
 A.Nongonierma & T.Sarr
Hoary pea Aerial part Senegal Flavonoids: Rutin 1 – quercetine 3-O-a-L-rhamnopyrannosyl (1-6) glucopyrannose – and morin 2 – 3,5,7,2′,4′-pentahydroxyflavone. [457]

Taverniera abyssinica A.
Rich.
Dingetegna Root Ethiopia Used to treat fever, discomfort and pain, stomach ache. Four isoflavonoids [290, 458, 459]

Flacourtiaceae

Flacourtia flavescens Willd. Not signalized Leaves Mali Antioxidant activity. Not identified [357]

Geraniaceae

Pelargonium reniforme Spreng. Xhosa (Umckaloabo) Root Southern Africa Used to treat liver disorders, laxative, purgative, cancer, and pulmonary disorders Polyphenols: catechol (3′4′-dihydroxy) element in the B-ring, which possesses higher antioxidant activity than ascorbic acid. [362, 460, 461]

Gunneraceae

Gunnera perpensa L. River pumpkin
Ugobho
Root
Leaves and stem.
South Africa Decreased lucigenin enhanced chemiluminescence.
Used to treat wounds and psoriasis.
Not identified [21, 462]

Irvingiaceae

Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. Bush mango
Ono
Seeds Nigeria
Cameroon
Antioxidant activity.
Used as laxative and for stomach and kidney pain. Shown to lower total cholesterol.
Not identified [12, 313, 463]

Lamiaceae

Leonotis leonurus (L.)R.Br. Wild dagga Leaves South Africa Anti-inflammatory properties.
Used to treat headaches, dysentery, coughs and colds.
Not identified [13]

Salvia stenophylla Burch. ex Benth. Sage Leaves South Africa Solvent extracts: antioxidant activity but poor anti-inflammatory properties.
Essential oils: anti-inflammatory activity but poor anti-oxidant activity.
Used against fever and digestive disorders.
Not identified [360]

S. repens Burch.
ex Benth.
Not signalized Leaves South Africa Solvent extracts: antioxidant activity but poor anti-inflammatory properties.
Essential oils: anti-inflammatory activity but poor anti-oxidant activity.
Used for fevers and digestive disorders.
Not identified [360]

S. runcinata L.f. Not signalized Leaves South Africa Solvent extracts: antioxidant activity but poor anti-inflammatory properties.
Essential oils: anti-inflammatory activity but poor anti-oxidant activity.
Used against fever and digestive disorders.
Not identified [360]

Loranthaceae

Tapinanthus globiferus Tiegh. Not signalized Leaves Niger Antioxidant activity Not identified [11]

Malvacea

Adansonia digitata (L.) English: baobab, Afrikaans: kremetart, Hausa: kuka, Sotho: seboi, Tswana: mowana, Tsonga: shimuwu, Venda: muvhuyu, Arabic: tabladi Leaves, root, bark and fruits All over Africa, but limited trees in Central Africa Antioxidant, analgesic and anti-inflammatory properties of extracts L-ascorbic acid [36, 464]

Mimosaceae

Albizia lebbeck (L.) Benth. East Indian walnut, frywood, koko, lebbek, lebbek tree, rain tree, raom tree, silver raintree, siris rain tree, siris tree, soros-tree, woman's tongue. Leaves and bark Egypt Used to treat asthma and skin disorders (bark) and eye diseases and dysentery (leaves) Two new tri-O-glycoside flavonols: kaempferol and quercetin 3-O-alpha-rhamnopyranosyl(1→6)-beta-glucopyranosyl(1→6)-beta- galactopyranosides [465]

Moraceae

Dorstenia angusticornis Engl. Not signalized Twigs Cameroon Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain.
Two novel diprenylated chalcones: 3,5′-di-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone, 3, 4-(2,2-dimethylpyrano)-3′-(2-hydroxy-3-methylbut-3-enyl)-2′,4′-dihydroxych alcone and the known stipulin.
3-(2-Hydroxy-3-methylbut-3-enyl)-5′-(3,3-dimethylallyl)-4,2′,4′-trihydroxy chalcone and the known compounds: gancaonin Q, paratocarpins C, F, and lupeol.
[67, 278]

D. dinklagei Engl. Not signalized Twigs Cameroon Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain.
Three prenylated flavonoids, dinklagins A, B and C identified, respectively, as
(dinklagin B): (+)-5,4′,5′′ξ-Trihydroxy-6′′,6′′-dimethyldihydropyranol[2′′,3′′:7,6]flavone.
(dinklagin C): (+)-6-(2ξ-Hydroxy-3-methyl-3-butenyl)-5,7,4′-trihydroxyflavone
(-)-6-(3,3-dimethylallyl)-7-hydroxy-6′′′, 6′′′-dimethylchromeno-(4′,3′,2′′′,3′′′)-flavanone, (+)-5,4′,5′′ξ-trihydroxy-6′′,6′′-dimethylchromano-(7,6,2′′,3′′)-flavone and (+)6-(2ξ-hydroxy-3-methyl-3-butenyl)-5,7,4′-trihydroxyflavone.
6-prenylapigenin, 4-hydroxylonchocarpin, stipulin and 5,4′-dihydroxy-6′′,6′′-dimethylchromano-(7,6,2′′,3′′)-flavone.
[67, 226]

D. elliptica Bur. Not signalized Twigs Botswana Used to treat eye infection. Monoprenylated flavan [466]

D. Kameruniana. Engl. Not signalized Leaves Botswana Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain.
Two novel favonoids: 6,7-(2,2-dimethylchromano)-5,4′-dihydroxyfavone and 3,4-,4′,5′-bis-(2,2-dimethylchromano)-2′-hydroxychalcone together with the known 6-(3-methylbut-2-enyl)apigenin and two chalcones (E)-1-[2,4-dihydroxy-3-[3-methylbut-2-enyl]phenyl]-3-[4-hydroxyphenyl]-prop-2-en-1-one and (E)1-[2,4-dihydroxy-5-[3-methylbut-2-enyl]phenyl]-3-[4-hydroxy-3-[3-methylbut-2-enyl]phenyl]-prop-2-en-1-one. [467]

D. prorepens Engl. Not signalized Twigs Botswana Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. Digeranylated chalcone, 5,3′-(3,7-dimethyl-2,6-octadienyl)-3,4, 2′,4′-tetrahydroxychalcone.
4-Hydroxylonchocarpin
Chalcone: 3,4,2′,4′-Tetrahydroxy-5,3′-digeranylchalcone
[67, 468]

D. poinsettiifolia Engl. Not signalized Twigs Botswana Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain.
Grenylated and prenylated flavonoids. In addition, the flavone 5,7,4-trihydroxy-8-prenylflavone (licoflavone C), the chalcones 4,2′,4′-trihydroxy-3′-prenylchalcone (isobavachalcone) and isobavachromene, the triterpene butyrospermol, and the carotenoid lutein. [67, 206, 289]

D. zenkeri Engl. Not signalized Twigs Botswana Used for snakebite and to treat infection, rheumatism, headache, cough and stomach pain. 3′,4′-(3-hydroxy-2,2-dimethyldihydropyrano)-4,2′-dihydroxychalcone and a bichalcone.
4-Hydroxylonchocarpin.
p-hydroxybenzaldehyde, dorsmanin A, 4,2′,4′-trihydroxychalcone and 4,2′,4′-trihydroxy-3′-prenylchalcone
Chalcones: 4,2′,5′′-Trihydroxy-6′′,6′′-dimethyldihydropyranol[2′′,3′′:4′,3′]chalcone
[67, 468]

Moringaceae

Moringa oleifera Lam. Horse-radish tree
Drumstick
Moringo
Zakalanda
Root West Africa
Zimbabwe
Anti-inflammatory activity.
Used as aphrodisiac and to treat asthma, gout and rheumatism.
Not identified [469]

Myrtaceae

Eucalyptus camaldulensis Dehnh. Not signalized Leaves Egypt Antioxidant activity Not identified [470]

Polygonaceae

Polygonum senegalense
 Meisn.
Fotsimbarin'akoholahy Leaves Madagascar Flavonoids: quercetin, kaempferol and luteolin and their glycosides such as dihydrochalcone glucoside and quercetin glycosides. [413, 471]

Rumex abyssinicus Jacq. Mekmeko Leaves N. Africa - Ethiopia Anti-inflammatory properties
Used to treat itching, skin eczema and leprosy.
Flavonoids. [337, 472]

R. nervosus Vahl., Alcgango
Dengogo
Leaves Ethiopia Anti-inflammatory properties.
Used to treat acne, wounds, eczema, typhus and as an ophthalmic antiseptic.
Not identified [337]

Rubiaceae

Nauclea latifolia Smith Pin Cushion Tree
Ìgíyàà
Leaves and root Nigeria Used as anthelmintic and to treat malaria, fever, stomachache and liver diseases. Proanthocyanidins. [12, 58, 473475]

Solanaceae

Datura stramonium L. Thorn-apple rwiziringa Seeds South Africa Antioxidant activity.
Used to treat asthma, headaches and wounds.
Not identified [188]

Tiliaceae

Grewia occidentalis L. Cross-berry
Four-corner
Bark South Africa Antioxidant activity.
Used to treat bladder ailments, wounds, impotence and sterility, and to help in childbirth.
Not identified [188]

Vahliaceae

Vahlia capensis (L.f) Thunb. Vahlia of the Cape Zimbabwe Used to treat bacterial infections. Kaempferol, quercetin, afzelin, astragalin, quercitrin, isoquercitrin, rutin, gallic acid, chiro-inositol, dulcitol, and a novel biflavonoid, VC-15B (vahlia biflavone) [475]

Vitaceae

Cyphostemma natalitium (Szyszl.) J.v. d. Merwe Tick-berry bush Root South Africa Anti-inflammatory and anti-microbial agents with significant inhibition of COX-1 Not identified [374]

Rhoicissus digitata Gilg. & Brandt Wilde patatat Roots, stems and leaves South Africa At high concentrations possessed some prooxidative properties. Anti-inflammatory and anti-microbial agents with significant inhibition of COX-1.
Used to facilitate delivery.
Not identified [364, 374]

R. rhomboidea
 (E. Meyer ex Harvey) Planchon
Glossy forest grape Roots, stems and leaves South Africa
Mozambique
Radical scavenging activity, inhibitory effect on xanthine oxidase activity, prevention of lipid peroxidation and damage to DNA and ability to chelate iron. Anti-inflammatory through inhibition of COX-1. Not identified [364, 374]

R. tomentosa (Lam.)
Wild & R.B.Drum.
Wild grape Forest Grape, Monkey rope, Roots, stems and leaves South Africa Antioxidant and anti-inflammatory activities.
Anti-inflammatory through inhibition of COX-1.
Used to facilitate delivery.
Not identified [364, 374]

R. tridentata (L.f.) Wild & Drum. Bitter grape
Bushman's grape
Isinwazi
Roots, stems and leaves South Africa
: Venda
Radical scavenging activity, inhibitory effect on xanthine oxidase activity, prevention of lipid peroxidation and damage to DNA and ability to chelate iron. Anti-inflammatory through inhibition of COX-1.
Used to treat colds, infertility and stomach ailments.
Not identified [364, 374, 476]

Many edible and culinary herbs and condiments were also included in these two tables as they were used in certain instances as medicinal herbs to treat diseases. These included fruits and seeds of Balanites aegyptiaca, leaves of Boscia senegalensis, leaves of Entada africana and seeds of Parkia biglobosa, from Niger [11], also leaves, seeds, and stem-bark of Mangifera indica from Benin and Burkina Faso [12, 13], leaves of Cynara scolymus from Ethiopia [14, 15], leaves of Aspalathus linearis from South Africa [1621], leaves of Cinnamomum zeylanicum from Madagascar and Ethiopia [2224], essential oils from the bark and leaves of Ravensara aromatica from Madagascar [23, 25], buds of Syzygium aromaticum from Madagascar [23], seeds of Trigonella foenumgraecum from Ethiopia and Morocco [2628], and oils in seeds of Nigella sativa from African countries of the Mediterranean region [2931].

2. Tests Used to Assess Antioxidant Activities of African Medicinal Plant Extracts

A variety of test systems were employed to assess the antioxidant properties of the medicinal plant extracts and compounds listed in Tables 1 and 2. A comprehensive list of the methods used in antioxidant activity determination, as well as their merits and demerits, has already been published [343346]. The methods used in the determination of antioxidant activity of natural products and isolated compounds result in varied outcomes when the same samples are tested in different laboratories and by other researchers [347]. Furthermore, results of different methods cannot be correlated, as contradictory results are usually obtained. Hence, although several assays are available, none of them is capable of accurately and completely determining the antioxidant activity of a test substance because of the complex nature of the redox-antioxidant system in vivo (Figure 2). Based on this complexity, antioxidants are broadly classified as (i) inhibitors of free radical formation, (ii) free radical scavengers, (iii) cellular and tissue damage repairers, and (iv) signalling messengers [347].

Figure 2.

Figure 2

Mechanism of antioxidant action in wounds.

The inhibition of free radical formation could protect against oxidative damage by suppressing the formation of active ROS/RNS. This typically involves reduction or inhibition of substrates required for free radical formation such as metal ions like iron (Fe) and copper (Cu). The sequestration of these metal ions by antioxidant compounds like ellagic acid and glutathione is known to suppress formation of hydrogen peroxide (H2O2) and other free radicals [348, 349]. Furthermore, increasing evidence suggests a relationship between metal overload and several chronic diseases through the induction of oxidative stress [350]. Therefore, inhibition of free radical formation using metal ions as targets could be useful therapeutically. Antioxidant assays designed for this purpose include the cupric and ferric reducing antioxidant power (CUPRAC/FRAP). These methods measure the ability of antioxidants to reduce cupric (Cu2+) and ferric (Fe3+) ions, respectively.

Another mechanism by which antioxidants act is through the suppression of oxidative stress by directly scavenging active free radicals. Most commonly reported antioxidant assays such as 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2′-diphenyl-p-picrylhydrazyl radical (DPPH), oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC), total oxyradical scavenging capacity (TOSC), and total radical antioxidant parameter (TRAP) are focused on testing the ability to scavenge free radicals. Furthermore, there are diverse cellular antioxidant assays that assess the ability of antioxidant compounds and substances to protect cells against excessive free radical generation. Such assays involve the use of a fluorescent compound such as 2,7-dichlorofluoroscein to determine the ability of test samples to quench intracellularly generated free radicals and inhibit radical formation and lipid peroxidation [345].

There are also numerous reports of the ability of antioxidants to repair damaged tissues and improve healing. Topical application of kojic acid and deferiprone, two compounds with the ability to scavenge free radicals, enhanced healing of wounds in rats [351]. Also, the mitochondria-targeted antioxidant, 10-(6′-plastoquinonyl) decyltriphenylphosphonium, accelerated wound closure, stimulated epithelialization, granulation tissue formation, and vascularization, and lowered lipid peroxidation in mice [352]. Moreover, an antioxidant peptide (cathelicidin-OA1) promoted wound healing in a mouse model with full-thickness skin wounds, accelerated reepithelialization and granulation tissue formation by enhancing the recruitment of macrophages to the wound site, and induced cell proliferation and migration [353]. Some antioxidants have also been reported to contribute to healing by enhancing the activity of endogenous antioxidant compounds and enzymes. The induction of the nuclear factor E2-related factor 2-(Nrf2) mediated antioxidative pathway by a rhomboid family protein (RHBDF2) promoted healing of injured tissues, suggesting a relationship between antioxidant gene induction and healing [354]. Niconyl-peptide enhanced wound healing and protected against hydrogen peroxide-induced cell death by increasing the expression of Nrf2 expression in human keratinocytes [355].

The most common tests used to determine the antioxidant activity of samples included the assessment of the ability to scavenge free radicals such as DPPH, ABTS+ [16, 19, 35, 62, 85, 94, 98, 99, 139, 158, 175, 184, 187, 266, 282, 302, 356364], or the hydroxyl radicals [79, 188, 267, 365, 366], as well as the hydroperoxyl radicals by the Briggs-Rauscher reaction [104]. The ability of the extracts to chelate metal ions was also determined as further indication of their ability to contribute in the reduction of free radicals such as the hydroxyl radical [114]. In addition, assessment of the ability of these medicinal plant extracts to protect against lipid peroxidation was also included, which in turn was measured by the malondialdehyde-thiobarbituric acid (MDA) test [320, 367], the modified thiobarbituric acid reactive species (TBARS) assay [18, 22], or conjugated diene formation [367]. Moreover, lipid peroxidation was assessed using the fluorescent probe, diphenyl-1-pyrenylphosphine (DPPP) [188], or using the inhibition of Cu(2+)-mediated oxidation of human low-density lipoprotein (LDL) [187, 367]. The ability of extracts to protect against damage to DNA using the Comet assay was also employed [114, 188].

The antioxidant capacity of the medicinal plant extracts was determined using either the TEAC or FRAP assays [11, 85, 302, 313, 321, 368]. The ability of extracts to modulate the gene expression of the antioxidant enzymes, such as Cu, Zn-superoxide dismutase (Cu, Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase, and glutathione peroxidase (GPx), was also used as a measure of their antioxidant properties [293]. The photochemilumiescence (PLC) assay is a more recent antioxidant capacity assessment method and was employed for the evaluation of antioxidant capacity of baobab fruit pulp extracts [369].

Anti-inflammatory properties of these extracts were assessed by their ability to inhibit 5-lipoxygenases [94, 370, 371] or cyclooxygenase (COX-1 and COX-2) activities [65, 275, 317, 372, 373]. Using the former [374] and the latter [264, 331] methodologies, respectively, a great number of South African medicinal plant extracts were screened for their anti-inflammatory properties. The effect of medicinal extracts on the biosynthesis of different prostaglandins was assessed as a measure of their anti-inflammatory effect [239, 337, 375]. Extracts of Podocarpus species were shown to inhibit the activities of the COX enzymes [317]. Once again, using this test, the anti-inflammatory properties of the aqueous and ethanolic extracts of 39 plants used in traditional Zulu medicine were screened [376]. The Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) assay which utilizes the CAM's capillary system in bred hen eggs was also used to assess the anti-inflammatory activity through antiangiogenic effects of the ethanol and aqueous extracts of Drosera rotundifolia and D. madagascariensis [155].

The antioxidant and anti-inflammatory abilities of the herbal extracts were further assessed by evaluating their ability to control the production of ROS produced by oxidative burst in neutrophils stimulated with L-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) [21, 246]. The inhibition of neutrophils elastase was used as a measure of anti-inflammatory property and it was proposed that the presence of flavonoids such as hyperoside, quercetin, and isoquercitrin in D. rotundifolia [377] and five flavonoid compounds in two Polypodium species (P. decumanum and P. triseriale) [378] were thought to contribute to this anti-inflammatory activity. These and other in vitro tests were used to assess the antioxidant properties of three Ghanaian species: Spathodea campanulata, Commelina diffusa, and Secamone afzelii [63].

Inflammation is a complex mechanism with many pathways. Several extracts derived from medicinal plants have been shown to modulate or inhibit the activities of mediators of inflammation. For instance, kolaviron, a bioflavonoid compound isolated from the seeds of Garcinia kola, has been reported to possess anti-inflammatory and antioxidant activities via its effects on COX-2 and inducible nitric oxide synthase (iNOS) by inhibiting the expression of nuclear factor kappa B (NF-κB) [115]. Quercetin is a flavonoid molecule ubiquitous in nature and functions as an antioxidant and anti-inflammatory agent. Dose- and time-dependent effects of quercetin have been investigated on proinflammatory cytokine expression and iNOS, focusing on its effects on NF-κB signal transduction pathways in lipopolysaccharide-stimulated RAW 264.7 cells by using real time polymerase chain reaction (RT-PCR) and immunoblotting. Curcumin, a yellow pigment of turmeric, has been shown to exhibit anti-inflammatory activity. Curcumin has been found effective in the treatment or control of chronic inflammatory conditions such as rheumatism, atherosclerosis, type II diabetes, and cancer [203]. Calixto et al. reported that the anti-inflammatory action of active spice-derived components results from the disruption of the production of various inflammatory proteins (e.g., cytokines such as tumour necrosis factor-alpha (TNF-α), iNOS, and COX-2) [379].

Animal studies were also conducted to assess the antioxidant properties of several medicinal extracts. The antioxidant potential of Hypericum perforatum, containing many polyphenolic compounds, was evaluated on splanchnic artery occlusion (SAO) shock-mediated injury [477] and also against elevated brain oxidative status induced by amnestic dose of scopolamine in rats [126]. Some medicinal plant extracts were tested for their ability to protect against carbon tetrachloride-, 2-acetylaminofluorene- (2-AAF-), and galactosamine-induced liver as well as aflatoxin B1-(AFB1-)induced genotoxicity. Using this test, it was found that an extract of Garcinia kola seeds [116, 478, 479], a decoction of Trichilia roka root [270], extracts of Entada africana [442], and Thonningia sanguinea [98, 480] possessed protective abilities. The antioxidant properties of plant extracts against potassium bromate (KBrO(3))-induced kidney damage showed the ability of G. kola seed extract to protect the kidneys [481].

Animal studies were also used to assess the anti-inflammatory ability of a great number of medicinal plant extracts using the carrageenan-induced rat paw oedema model. Plants investigated include seed extracts of Picralima nitida [399], crude methanol extract of the root of Moringa oleifera [469], powdered leaves and root of Mallotus oppositifolium [167], methanolic extract of Picralima nitida fruit [400], hot water extract of Alstonia boonei root-bark, Rauvolfia vomitoria root-bark, and Elaeis guineensis nuts [56], secondary root aqueous extract of Harpagophytum procumbens [303], crude extracts of Sphenocentrum jollyanum [272], aqueous and methanolic extracts of Hypoxis hemerocallidea corm [482], aqueous and methanolic extracts of Sclerocarya birrea stem-bark [483], aqueous extract of Mangifera indica stem-bark [13], aqueous extracts of Leonotis leonurus leaves [484], leaf extracts of Bryophyllum pinnatum [148], methanol extracts of the stem-bark of Alstonia boonei [485], aerial parts of Amaranthus caudatus [486], methanolic extracts of Kigelia pinnata flower [415], and leaf and twig extracts of Dorstenia barteri [276]. In all of these studies, the anti-inflammatory effect against carrageenan-induced rat paw oedema was attributed to flavonoids and other polyphenolic compounds. Animal tests also employed to assess the anti-inflammatory effects of the medicinal plant extracts included inflammatory cell response such as neutrophil chemotaxis and degranulation [112, 487], antiatherosclerosis effects [486], and pain assessment in experimental animals [117].

The effect of the medicinal plants on the induction or inhibition of drug metabolizing enzymes was also studied in animals. The effect of the aqueous extract of Thonningia sanguinea on 7-ethoxyresorufin O-deethylase (EROD, CYP1A1), 7-pentoxyresorufin O-dealkylase (PROD, CYP2B1/2), 7-methoxyresorufin O-demethylase (MROD, CYP1A2), aniline hydroxylase (aniline, CYP2E1), p-nitrophenol hydroxylase (PNPH, CYP2E1), and erythromycin N-demethylase (ERDM, CYP3A1) in rat liver was found to selectively modulate CYP isoenzymes [100] and suppress CYP3A2 and CYP1A2 gene expression [101].

3. Compounds Isolated from African Medicinal Plant Extracts with Confirmed Antioxidant Activities

Several medicinal plant extracts were studied at research centres in African countries for their antioxidant properties. The major findings of these investigations have indicated that, in addition to known antioxidant compounds such as ascorbic acid in the seeds of Parkia biglobosa [204] and fruits pulp of Adansonia digitata [369], alpha-tocopherol in methanol extracts of the stems of Secamone afzelii [62] or from the seeds [38] and methanol extracts of leaves of Amaranthus caudatus [39], and apigenin and luteolin in aerial parts of Bulbine capitata [66], several other antioxidant compounds were identified. Although known antioxidant compounds such as ascorbic acid have been confirmed to promote wound healing, not all the newly identified compounds have been tested for such activity [488491].

The identified compounds included mainly flavonoids such as flavones and flavonols, flavone and flavonol glycosides, chalcones and dihydrochalcones, and flavonones, although some anthocyanins, proanthocyanidins, and anthrones were also isolated with antioxidant properties. A wide range of plant extracts investigated have been shown to contain flavonoids. Dorstenia species are rich in flavonoids some of which are unique to this genus [67, 205], namely, prenylated flavonoids as found in Dorstenia kameruniana and twigs of D. mannii [206, 207]. Earlier studies have shown that prenylated flavonoids had antioxidant properties, which protected human LDL from oxidation [208]. Those isolated from African medicinal plant extracts were also tested and their antioxidant properties confirmed. The antioxidant activities of three prenylated flavonoids from D. mannii (6,8-diprenyleriodictyol, dorsmanin C, 7,8-(2,2-dimethylchromeno)-6-geranyl-3,5,3′,4′-tetrahydroxyflavonol and dorsmanin F, (+)-7,8-[2′′-(1-hydroxy-1-methylethyl)-dihydrofurano]-6-prenyl-5,3′,4′-trihydroxyflavanone) against LDL oxidation and also their free radical scavenging activity have been indicated [187]. Similarly, a diprenylated chalcone, Bartericin A, present in D. barteri leaf and twig extracts was shown to have potent antioxidant properties. It was found that this and other prenylated and geranylated chalcones were as active as the prenylated flavones and may account for the anti-inflammatory action of these extracts [276]. Free radical scavenging activity was also confirmed for prenylated anthronoids isolated from the stem-bark of Harungana madagascariensis [121] and for proanthocyanidins isolated from the bark of Burkea africana [175]. The anti-inflammatory and antioxidant activities of kolaviron, a biflavonoid isolated from a Garcinia kola seed extract to scavenge free radicals, which protect against lipid peroxidation and H2O2-induced DNA strand breaks and oxidized bases, were also reported [114, 116119, 209]. In addition, the ability of free radical scavenging activity and ability to inhibit lipid peroxidation of Thonningianin A and Thonningianin B, ellagitannins, isolated from Thonningia sanguinea have been shown [99, 366]. The anti-inflammatory ability of Griffonianone D ((7E)-(6′′,7′′-dihydroxy-3′′,7′′-dimethyloct-2′′-enyl)oxy-4′-methoxyisoflavone), an isoflavone present in Millettia griffoniana, has been established [195]. Prenylated anthronoids, harunmadagascarins A (8,9-dihydroxy-4,4-bis-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone and B (8,9-dihydroxy-4,4,5-tris-(3,3-dimethylallyl)-6-methyl-2,3-(2,2-dimethylpyrano)anthrone), harunganol B, and harungin anthrone from the stem-bark of Harungana madagascariensis have exhibited significant antioxidant activity [121]. Saponins and isofuranonaphthoquinones isolated from different medicinal plant extracts showed antioxidant properties and include the saponin, Balanin 1 (3β,12β,14β,16β) cholest-5-ene-3,16-diyl bis (β-d-glucopyranoside)-12-sulphate, sterol sulfonated, Balanin 2 (3β,20S,22R,25R)-26-hydroxy-22-acetoxyfurost-5-en-3-yl-rhamnopyranosyl-(1→2)-glucopyranoside, and a furostanol saponin isolated from Balanites aegyptiaca [104]. Isofuranonaphthoquinones isolated from the roots of Bulbine capitata, 5,8-dihydroxy-1-tigloylmethylnaphtho[2,3-c]furan-4,9-dione, 1-acetoxymethyl-8-hydroxynaphtho [2,3-c]furan-4,9-dione, and 1-acetoxymethyl-5,8-dihydroxynaphtho[2,3-c]furan-4,9-dione possess antioxidant activities [68]. Though none of these antioxidant compounds has been directly assessed for wound healing potential, the enhanced wound closure observed with treatment of prenylated flavonoids such as genistein [492] and the demonstrated effect of chalcones on the inflammation process [493] attest to the potential of isolated antioxidants in wound management.

4. Crude Extracts of African Medicinal Plants with Confirmed Antioxidant Activities

The antioxidant properties of a larger proportion of African medicinal plants listed in Tables 1 and 2 were tested using either aqueous or organic plant extracts. After confirming antioxidant properties, a correlation was proposed between this property and the general groups of antioxidant compounds that are present in these extracts. No further attempts were made to isolate the specific compounds that may have contributed towards this property. Flavonoids in Aloe barbadensis [32], chromone glycosides in A. claviflora [35], essential oils in Artemisia abyssinica, and Juniperus procera [79] as well as Helichrysum dasyanthum, H. felinum, H. excisum, and H. petiolare [94], proanthocyanidins in Burkea africana bark [175], polyphenols in extracts of Crataegus monogyna [321], saponins, and alkaloids in extracts of Leucosidea sericea [210, 211] are all considered as major compounds that have contributed to the antioxidant properties of these plants. Reports on a number of Barleria species, which includes B. albostellata, B. greenii, and B. prionitis, have indicated their anti-inflammatory [212] and antioxidant capacities [213]. Unlike the isolated compounds, most of the plants listed for possessing antioxidant activity, including extracts of Agerantum conyzoides, Euphorbia hirta, Kigelia africana, and Nauclea latifolia, have been shown to possess wound healing ability [494496].

Furthermore, studies have focused on screening a vast number of plants, used in a specific region, so as to determine their antioxidant properties, Mali [357], South Africa [19, 188, 267, 364], Cameroon [182, 313], Algeria [85], Ghana [98], Burkina Faso [266], Madagascar [23], and Mauritius [293], and anti-inflammatory properties, South Africa [168, 264, 374, 376] and West Africa [400].

5. Discussion and Conclusion

The use of traditional herbal remedies as alternative medicine plays a significant role in Africa since it features extensively in primary health care. The search for natural antioxidants, especially from plant sources, as a potential intervention for treatment of free radical mediated diseases is an important research field, especially for those in developing countries. Many polyphenols, including phenolic acids, flavonoids (anthocyanins and anthoxanthins), tannins, and lignans, are known to act as antioxidants and protect against various pathological conditions such as coronary artery disease and wounds, in addition to their anti-inflammatory, antimicrobial, and anticancer activities [214216].

Flavonoids are a large group of compounds containing several hydroxyl groups on their ring structures and include isoflavonoids and isoflavonoid glycosides, flavones, and flavone glycosides, flavonols and flavonol glycosides, anthocyanins, chalcones and dihydrochalcones, aurones, flavonones and dihydroflavonols, and flavans and biflavonyls. To date, approximately 9000 different flavonoids have been identified from plant sources [217]. Great interest has been dedicated to the antioxidant properties of flavonoids that may function as potent free radical scavengers, reducing agents, and protectors against peroxidation of lipids [208, 218]. Reviews have been published documenting numerous studies on antioxidant efficacy of flavonoids and phenolic compounds as well as on the relationship between their antioxidant activities, as hydrogen donating free radical scavengers, in relation to their chemical structures. The importance of the unsaturation in the C ring of quercetin compared to catechin in the increased antioxidant activity of the former has been presented [216, 219223]. Also, the importance of the position and number of hydroxyl groups on the phenolic rings in increasing or decreasing the antioxidant properties of these compounds has been emphasized [216, 219223].

Although many flavonoids have been isolated from different African medicinal plant extracts, the structure-activity relationship of these compounds has not yet been investigated. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response [224]. Examples of these include the lipophilic flavones and flavonols 5,7-dihydroxy-2′,3′,4′,5′-tetramethoxyflavone, 5,4′-dihydroxy-7,2′,3′,5′-tetramethoxyflavone, and 5,7,4′-trihydroxy-2′,3′,5′-trimethoxyflavone isolated from Psiadia punctulata [225] and Dinklagin B and C isolated from Dorstenia dinklagei [226]. Isolated flavone and flavonol glycosides include kaempferide 3-O-beta-xylosyl (1→2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4′-di-O-beta-galactoside, kaempferol 3,7,4′-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1→6)] [beta-glucosyl (1→2)]-beta-glucoside-7-O-alpha-rhamnoside from Warburgia ugandensis, and quercetin-7,4′-disulphate from Alchornea laxiflora [159]. Flavanones and dihydroflavonols include dorsmanin I and J and epidorsmanin F and G isolated from Dorstenia mannii [227] and Dinklagins A, isolated from the twigs of Dorstenia dinklagei [226] and two flavones isolated from the twigs of Eriosema robustum [182] and 1α,3β-dihydroxy-12-oleanen-29-oic (1), 1-hydroxy-12-olean-30-oic acid (2), 3,30-dihydroxyl-12-oleanen-22-one (3), and 1,3,24-trihydroxyl-12-olean-29-oic acid (4), a new pentacyclic triterpenoid (1α, 23-dihydroxy-12-oleanen-29-oic acid-3β-O-2,4-di-acetyl-l-rhamnopyranoside) (5) from Combretum imberbe [138]. Anthocyanins isolated include the cyanidins 3-O-(2′′-galloyl-β-galactopyranoside) and 3-O-(2′′-galloyl-6′′-O-α-rhamnopyranosyl-β-galactopyranoside) from Acalypha hispida [228] and cyanidin 3-O-β-D-glucopyranoside and cyanidin 3-O-(2-O-β-D-xylopyranosyl)-β-D-glucopyranoside from Hibiscus sabdariffa [266]. When revising the literature, it became apparent that even though most of these medicinal plants and compounds have confirmed antioxidant activity, not many of them have been screened for wound healing potential. As there is an association between antioxidative therapy and wound healing, research in this direction is as imminent as it is important. Furthermore, structure-activity studies on the isolated compounds from African medicinal extracts will be of great interest.

Antioxidants may exert their protective effects via different mechanisms at different stages of the oxidation process. There are those that are able to inhibit the production of free radicals via their ability to chelate transition metal ions and those that are able to quench and stabilise free radicals [229, 230]. Additionally, they are further subdivided into categories according to their functions [230]. Such classification of the newly isolated antioxidant compounds from African medicinal plant extracts is warranted to better understand their antioxidant properties.

It should be noted that the antioxidant activity of the extracts and compounds listed in this review was mostly determined using either single assays or in vitro analysis. It is therefore possible that some of these extracts and compounds may not show antioxidant activity when alternative testing methods are used. Furthermore, although in vivo studies are encouraged, most studies cited used in vitro assays. As antioxidant activity in vitro does not necessarily translate to activity in vivo, due to pharmacokinetic and pharmacodynamic processes that occurs in vivo, it is possible that samples may not be active when tested in animals. Activity of such samples should therefore be confirmed using animal models.

Additionally, attempts should be made to identify the compounds responsible for the proven antioxidant properties where not yet done, and in cases where they have been isolated, their wound healing properties should be investigated. If the activity of the compounds and plants identified in this review is confirmed in vivo, they could serve as viable sources for the treatment of wounds in future.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  • 1.Dunnill C., Patton T., Brennan J., et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International Wound Journal. 2015;12(6):1–8. doi: 10.1111/iwj.12557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Moasser E., Azarpira N., Ghorbani dalini A., Shirazi B. Paraoxonase 1 (PON1) gene polymorphism and haplotype analysis in type 2 diabetes mellitus: a case–control study in the south Iranian population. International Journal of Diabetes in Developing Countries. 2018;38(1):62–68. doi: 10.1007/s13410-016-0544-z. [DOI] [Google Scholar]
  • 3.Benabbou A., Khaled M. B., Alchalabi A. S. Evaluation of the Efficiency of Combined and Separated Antioxidant Supplementation of Vitamin C and E on Semen Parameters in Strepto-zotocin-Induced Diabetic Male Wistar Rats. South Asian Journal of Experimental Biology. 2018;7(4):166–72. [Google Scholar]
  • 4.Kurahashi T., Fujii J. Roles of Antioxidative Enzymes in Wound Healing. Journal of Developmental Biology. 2015;3(2):57–70. doi: 10.3390/jdb3020057. [DOI] [Google Scholar]
  • 5.Calviello G., Filippi G. M., Toesca A., et al. Repeated exposure to pyrrolidine-dithiocarbamate induces peripheral nerve alterations in rats. Toxicology Letters. 2005;158(1):61–71. doi: 10.1016/j.toxlet.2005.02.008. [DOI] [PubMed] [Google Scholar]
  • 6.Poljsak B., Šuput D., Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity. 2013;2013:11. doi: 10.1155/2013/956792.956792 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Atawodi S. E. Antioxidant potential of African medicinal plants. African Journal of Biotechnology. 2005;4(2):128–133. [Google Scholar]
  • 8.Iwalewa E. O., McGaw L. J., Naidoo V., Eloff J. N. Inflammation: the foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. African Journal of Biotechnology. 2007;6(25):2868–2885. doi: 10.5897/AJB2007.000-2457. [DOI] [Google Scholar]
  • 9.Mahomoodally M. F. Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evidence-Based Complementary and Alternative Medicine. 2013;2013:14. doi: 10.1155/2013/617459.617459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Schinella G. R., Tournier H. A., Prieto J. M., de Buschiazzo P. M., Ríos J. L. Antioxidant activity of anti-inflammatory plant extracts. Life Sciences. 2002;70(9):1023–1033. doi: 10.1016/s0024-3205(01)01482-5. [DOI] [PubMed] [Google Scholar]
  • 11.Cook J. A., Vanderjagt D. J., Dasgupta A., et al. Use of the trolox assay to estimate the antioxidant content of seventeen edible wild plants of niger. Life Sciences. 1998;63(2):105–110. doi: 10.1016/S0024-3205(98)00245-8. [DOI] [PubMed] [Google Scholar]
  • 12.Igoli J., Ogaji O., Tor-Anyiin T., Igoli N. Traditional Medicine Practice amongst the Igede People of Nigeria. Part II. African Journal of Traditional, Complementary and Alternative Medicines. 2005;2(2) doi: 10.4314/ajtcam.v2i2.31112. [DOI] [Google Scholar]
  • 13.Ojewole J. Antiinflammatory, analgesic and hypoglycemic effects of Mangifera indica Linn. (Anacardiaceae) stem-bark aqueous extract. Methods and Findings in Experimental and Clinical Pharmacology. 2005;27(8):547–554. doi: 10.1358/mf.2005.27.8.928308. [DOI] [PubMed] [Google Scholar]
  • 14.Gebhardt R. Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicology and Applied Pharmacology. 1997;144(2):279–286. doi: 10.1006/taap.1997.8130. [DOI] [PubMed] [Google Scholar]
  • 15.Li H., Xia N., Brausch I., Yao Y., Förstermann U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. The Journal of Pharmacology and Experimental Therapeutics. 2004;310(3):926–932. doi: 10.1124/jpet.104.066639. [DOI] [PubMed] [Google Scholar]
  • 16.Bramati L., Aquilano F., Pietta P. Unfermented Rooibos Tea: Quantitative Characterization of Flavonoids by HPLC-UV and Determination of the Total Antioxidant Activity. Journal of Agricultural and Food Chemistry. 2003;51(25):7472–7474. doi: 10.1021/jf0347721. [DOI] [PubMed] [Google Scholar]
  • 17.Bramati L., Minoggio M., Gardana C., Simonetti P., Mauri P., Pietta P. Quantitative characterization of flavonoid compounds in Rooibos tea (Aspalathus linearis) by LC-UV/DAD. Journal of Agricultural and Food Chemistry. 2002;50(20):5513–5519. doi: 10.1021/jf025697h. [DOI] [PubMed] [Google Scholar]
  • 18.Inanami O., Asanuma T., Inukai N., et al. The suppression of age-related accumulation of lipid peroxides in rat brain by administration of Rooibos tea (Aspalathus linearis) Neuroscience Letters. 1995;196(1-2):85–88. doi: 10.1016/0304-3940(95)11853-O. [DOI] [PubMed] [Google Scholar]
  • 19.Lindsey K. L., Motsei M. L., Jäger A. K. Screening of South African food plants for antioxidant activity. Journal of Food Science. 2002;67(6):2129–2131. doi: 10.1111/j.1365-2621.2002.tb09514.x. [DOI] [Google Scholar]
  • 20.Rabe C., Steenkamp J. A., Joubert E., Burger J. F. W., Ferreira D. Phenolic metabolites from rooibos tea (Aspalathus linearis) Phytochemistry. 1994;35(6):1559–1565. doi: 10.1016/S0031-9422(00)86894-6. [DOI] [Google Scholar]
  • 21.Steenkamp V., Mathivha E., Gouws M. C., Van Rensburg C. E. J. Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. Journal of Ethnopharmacology. 2004;95(2-3):353–357. doi: 10.1016/j.jep.2004.08.020. [DOI] [PubMed] [Google Scholar]
  • 22.Baratta M. T., Dorman H. J. D., Deans S. G., Figueiredo A. C., Barroso J. G., Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and Fragrance Journal. 1998;13(4):235–244. doi: 10.1002/(sici)1099-1026(1998070)13:4<235::aid-ffj733>3.0.co;2-t. [DOI] [Google Scholar]
  • 23.Juliani Hector R., Simon J. E., Roland Ramboatiana M. M., Behra O., Garvey A. S., Raskin I. Malagasy aromatic plants: Essential oils, antioxidant and antimicrobial activities. Acta Horticulturae. 2004;629:77–81. doi: 10.17660/ActaHortic.2004.629.9. [DOI] [Google Scholar]
  • 24.Mancini-Filho J., Van-Koiij A., Mancini D. A. P., Cozzolino F. F., Torres R. P. Antioxidant activity of cinnamon (cinnamomum zeylanicum, breyne) extracts. Bollettino Chimico Farmaceutico. 1998;137(11):443–447. [PubMed] [Google Scholar]
  • 25.Möllenbeck S., König T., Schreier P., Schwab W., Rajaonarivony J., Ranarivelo L. Chemical composition and analyses of enantiomers of essential oils from Madagascar. Flavour and Fragrance Journal. 1997;12(2):63–69. doi: 10.1002/(SICI)1099-1026(199703)12:2<63::AID-FFJ614>3.3.CO;2-Q. [DOI] [Google Scholar]
  • 26.Dilsiz N., Sahaboglu A., Yildiz M. Z., Reichenbach A. Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefe's Archive for Clinical and Experimental Ophthalmology. 2006;244(5):627–633. doi: 10.1007/s00417-005-0084-6. [DOI] [PubMed] [Google Scholar]
  • 27.Randhir R., Lin Y.-T., Shetty K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pacific Journal of Clinical Nutrition. 2004;13(3):295–307. [PubMed] [Google Scholar]
  • 28.Srinivasan K., Sambaiah K., Chandrasekhara N. Spices as beneficial hypolipidemic food adjuncts: A review. Food Reviews International. 2004;20(2):187–220. doi: 10.1081/FRI-120037160. [DOI] [Google Scholar]
  • 29.Badary O. A., Taha R. A., Gamal El-Din A. M., Abdel-Wahab M. H. Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical Toxicology. 2003;26(2):87–98. doi: 10.1081/DCT-120020404. [DOI] [PubMed] [Google Scholar]
  • 30.Farah N., Benghuzzi H., Tucci M., Cason Z. The effects of isolated antioxidants from black seed on the cellular metabolism of A549 cells. Biomedical Sciences Instrumentation. 2005;41:211–216. [PubMed] [Google Scholar]
  • 31.Ramadan M. F., Kroh L. W., Mörsel J.-T. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. Journal of Agricultural and Food Chemistry. 2003;51(24):6961–6969. doi: 10.1021/jf0346713. [DOI] [PubMed] [Google Scholar]
  • 32.Lee S., Do S., Kim S. Y., Kim J., Jin Y., Lee C. H. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera (Aloe barbadensis Miller) in different growth stages. Journal of Agricultural and Food Chemistry. 2012;60(45):11222–11228. doi: 10.1021/jf3026309. [DOI] [PubMed] [Google Scholar]
  • 33.Zhang X.-f., Wang H.-m., Song Y.-l., et al. Isolation, structure elucidation, antioxidative and immunomodulatory properties of two novel dihydrocoumarins from Aloe vera. Bioorganic & medicinal chemistry letters. 2006;16(4):949–953. doi: 10.1016/j.bmcl.2005.10.096. [DOI] [PubMed] [Google Scholar]
  • 34.Moniruzzaman M., Rokeya B., Ahmed S., Bhowmik A., Khalil M. I., Gan S. H. In vitro antioxidant effects of aloe barbadensis miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules. 2012;17(11):12851–12867. doi: 10.3390/molecules171112851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lindsey K. L., Viljoen A. M., Jäger A. K. Screening of Aloe species for antioxidant activity. South African Journal of Botany. 2003;69(4):599–602. doi: 10.1016/S0254-6299(15)30302-1. [DOI] [Google Scholar]
  • 36.Amoo S. O., Aremu A. O., Van Staden J. Unraveling the medicinal potential of South African Aloe species. Journal of Ethnopharmacology. 2014;153(1):19–41. doi: 10.1016/j.jep.2014.01.036. [DOI] [PubMed] [Google Scholar]
  • 37.Zapata P. J., Navarro D., Guillén F., et al. Characterisation of gels from different Aloe spp. as antifungal treatment: Potential crops for industrial applications. Industrial Crops and Products. 2013;42(1):223–230. doi: 10.1016/j.indcrop.2012.06.002. [DOI] [Google Scholar]
  • 38.Bruni R., Guerrini A., Scalia S., Romagnoli C., Sacchetti G. Rapid techniques for the extraction of vitamin E isomers from Amaranthus caudatus seeds: ultrasonic and supercritical fluid extraction. Phytochemical Analysis. 2002;13(5):257–261. doi: 10.1002/pca.651. [DOI] [PubMed] [Google Scholar]
  • 39.Veeru P., Kishor M. P., Meenakshi M. Screening of medicinal plant extracts for antioxidant activity. Journal of Medicinal Plants Research. 2009;3(8):608–612. [Google Scholar]
  • 40.Jiménez-Aguilar D. M., Grusak M. A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. Journal of Food Composition and Analysis. 2017;58:33–39. doi: 10.1016/j.jfca.2017.01.005. [DOI] [Google Scholar]
  • 41.Ajileye O. O., Obuotor E. M., Akinkunmi E. O., Aderogba M. A. Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. Journal of King Saud University - Science. 2015;27(3):244–252. doi: 10.1016/j.jksus.2014.12.004. [DOI] [Google Scholar]
  • 42.Velagapudi R., Ajileye O. O., Okorji U., Jain P., Aderogba M. A., Olajide O. A. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1‐mediated neuroinflammation in BV2 microglia and neurotoxicity in APPS we‐transfected SH‐SY5Y cells. Phytotherapy Research. 2018;32(10):1957–1966. doi: 10.1002/ptr.6122. [DOI] [PubMed] [Google Scholar]
  • 43.Maroyi A. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. Journal of Ethnobiology and Ethnomedicne. 2011;9, article 31 doi: 10.1186/1746-4269-9-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Munodawafa T., Chagonda L. S., Moyo S. R. Antimicrobial and phytochemical screening of some Zimbabwean medicinal plants. Journal of Biologically Active Products from Nature. 2013;3(5-6):323–330. doi: 10.1080/22311866.2013.782759. [DOI] [Google Scholar]
  • 45.Queiroz E. F., Kuhl C., Terreaux C., Mavi S., Hostettmann K. New dihydroalkylhexenones from Lannea edulis. Journal of Natural Products. 2003;66(4):578–580. doi: 10.1021/np0202428. [DOI] [PubMed] [Google Scholar]
  • 46.Maiga A., Malterud K. E., Diallo D., Paulsen B. S. Antioxidant and 15-lipoxygenase inhibitory activities of the Malian medicinal plants Diospyros abyssinica (Hiern) F. White (Ebenaceae), Lannea velutina A. Rich (Anacardiaceae) and Crossopteryx febrifuga (Afzel) Benth. (Rubiaceae) Journal of Ethnopharmacology. 2006;104(1-2):132–137. doi: 10.1016/j.jep.2005.08.063. [DOI] [PubMed] [Google Scholar]
  • 47.Ouattara L., Koudou J., Zongo C., et al. Antioxidant and antibacterial activities of three species of Lannea from Burkina Faso. Journal of Applied Sciences. 2011;11(1):157–162. doi: 10.3923/jas.2011.157.162. [DOI] [Google Scholar]
  • 48.Arora R., Gupta D., Chawla R., et al. Radioprotection by plant products: present status and future prospects. Phytotherapy Research. 2005;19(1):1–22. doi: 10.1002/ptr.1605. [DOI] [PubMed] [Google Scholar]
  • 49.Chen Y.-J., Dai Y.-S., Chen B.-F., et al. The effect of tetrandrine and extracts of centella asiatica on acute radiation dermatitis in rats. Biological & Pharmaceutical Bulletin. 1999;22(7):703–706. doi: 10.1248/bpb.22.703. [DOI] [PubMed] [Google Scholar]
  • 50.Jayashree G., Kurup Muraleedhara G., Sudarslal S., Jacob V. B. Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia. 2003;74(5):431–434. doi: 10.1016/S0367-326X(03)00121-7. [DOI] [PubMed] [Google Scholar]
  • 51.MacKay D., Miller A. L. Nutritional support for wound healing. Alternative Medicine Review. 2003;8(4):359–377. [PubMed] [Google Scholar]
  • 52.Pittella F., Dutra R. C., Junior D. D., Lopes M. T. P., Barbosa N. R. Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. International Journal of Molecular Sciences. 2009;10(9):3713–3721. doi: 10.3390/ijms10093713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Sharma J., Sharma R. Radioprotection of Swiss Albino Mouse by Centella asiatica Extract. Phytotherapy Research. 2002;16(8):785–786. doi: 10.1002/ptr.1069. [DOI] [PubMed] [Google Scholar]
  • 54.Sharma R., Sharma J. Modification of gamma ray induced changes in the mouse hepatocytes by Centella asiatica extract: In vivo studies. Phytotherapy Research. 2005;19(7):605–611. doi: 10.1002/ptr.1684. [DOI] [PubMed] [Google Scholar]
  • 55.Shukla A., Rasik A. M., Dhawan B. N. Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytotherapy Research. 1999;13(1):50–54. doi: 10.1002/(SICI)1099-1573(199902)13:1<50::AID-PTR368>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  • 56.Kweifio-Okai G. Antiinflammatory activity of a Ghanaian antiarthritic herbal preparation: I. Journal of Ethnopharmacology. 1991;33(3):263–267. doi: 10.1016/0378-8741(91)90087-T. [DOI] [PubMed] [Google Scholar]
  • 57.Olajide O. A., Makinde J. M., Okpako D. T., Awe S. O. Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark. Journal of Ethnopharmacology. 2000;71(1-2):153–160. doi: 10.1016/S0378-8741(99)00201-9. [DOI] [PubMed] [Google Scholar]
  • 58.Fakae B. B., Campbell A. M., Barrett J., et al. Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytotherapy Research. 2000;14(8):630–634. doi: 10.1002/1099-1573(200012)14:8<630::AID-PTR773>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  • 59.Okoye N., Okoye C. Anti-oxidant and Antimicrobial Flavonoid Glycosides from Alstonia boonei De Wild Leaves. British Journal of Pharmaceutical Research. 2016;10(6):1–9. doi: 10.9734/BJPR/2016/24809. [DOI] [Google Scholar]
  • 60.Zheng W., Wang S. Y. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry. 2001;49(11):5165–5170. doi: 10.1021/jf010697n. [DOI] [PubMed] [Google Scholar]
  • 61.Atawodi S. E., Yusufu L. M., Atawodi J. C., Asuku O., Yakubu O. E. Phenolic Compounds and Antioxidant Potential of Nigerian Red Palm Oil (Elaeis Guineensis) International Journal of Biology. 2011;3(2) doi: 10.5539/ijb.v3n2p153. [DOI] [Google Scholar]
  • 62.Mensah A. Y., Houghton P. J., Akyirem G. N. A., et al. Evaluation of the antioxidant and free radical scavenging properties of Secamone afzelii Rhoem. Phytotherapy Research. 2004;18(12):1031–1032. doi: 10.1002/ptr.1614. [DOI] [PubMed] [Google Scholar]
  • 63.Houghton P. J., Hylands P. J., Mensah A. Y., Hensel A., Deters A. M. In vitro tests and ethnopharmacological investigations: wound healing as an example. Journal of Ethnopharmacology. 2005;100(1-2):100–107. doi: 10.1016/j.jep.2005.07.001. [DOI] [PubMed] [Google Scholar]
  • 64.Zabri H., Kodjo C., Benie A., Bekro J. M., Bekro Y. A. Phytochemical screening and determination of flavonoids in Secamone afzelii (Asclepiadaceae) extracts. African Journal of Pure and Applied Chemistry. 2008;2(8):80–82. [Google Scholar]
  • 65.Wube A. A., Bucar F., Asres K., et al. Knipholone, a selective inhibitor of leukotriene metabolism. Phytomedicine. 2006;13(6):452–456. doi: 10.1016/j.phymed.2005.01.012. [DOI] [PubMed] [Google Scholar]
  • 66.Bezabhi M., Abegaz B. M. 4'-Demethylknipholone from aerial parts of Bulbine capitata. Phytochemistry. 1998;48(6):1071–1073. doi: 10.1016/S0031-9422(97)01053-4. [DOI] [Google Scholar]
  • 67.Majinda R. R. T., Abegaz B. M., Bezabih M., et al. Recent results from natural product research at the University of Botswana. Pure and Applied Chemistry. 2001;73(7):1197–1208. doi: 10.1351/pac200173071197. [DOI] [Google Scholar]
  • 68.Bezabih M., Abegaz B. M., Dufall K., Croft K., Skinner-Adams T., Davis T. M. E. Antiplasmodial and antioxidant isofuranonaphthoquinones from the roots of Bulbine capitata. Planta Medica. 2001;67(4):340–344. doi: 10.1055/s-2001-14329. [DOI] [PubMed] [Google Scholar]
  • 69.Abegaz B. M. Novel phenylanthraquinones, isofuranonaphthoquinones, homoisoflavonoids, and biflavonoids from African plants in the genera Bulbine, Scilla, Ledebouria, and Rhus. Phytochemistry Reviews. 2002;1(3):299–310. doi: 10.1023/A:1026066626537. [DOI] [Google Scholar]
  • 70.Abegaz B. M., Bezabih M., Msuta T., et al. Gaboroquinones A and B and 4′-O-demethylknipholone-4′-O-β-D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens. Journal of Natural Products. 2002;65(8):1117–1121. doi: 10.1021/np0201218. [DOI] [PubMed] [Google Scholar]
  • 71.Bezabih M., Motlhagodi S., Abegaz B. M. Isofuranonaphthoquinones and phenolic and knipholone derivatives from the roots of Bulbine capitata. Phytochemistry. 1997;46(6):1063–1067. doi: 10.1016/S0031-9422(97)00402-0. [DOI] [Google Scholar]
  • 72.Grubben G. J. Plant Resources of Tropical Africa (PROTA) Prota: 2008. [Google Scholar]
  • 73.Mats' eliso A., Karuso P. Secondary Metabolites from Basotho Medicinal Plants. II. Bulbine capitata. Australian Journal of Chemistry. 2001;54(7):427–430. [Google Scholar]
  • 74.Mutanyatta J., Bezabih M., Abegaz B. M., et al. The first 6′-O-sulfated phenylanthraquinones: Isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron. 2005;61(35):8475–8484. doi: 10.1016/j.tet.2005.06.055. [DOI] [Google Scholar]
  • 75.Tambama P., Abegaz B., Mukanganyama S. Antiproliferative activity of the isofuranonaphthoquinone isolated from Bulbine frutescens against jurkat T cells. BioMed Research International. 2014;2014:14. doi: 10.1155/2014/752941.752941 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Adams M., Bauer R. Inhibition of leukotriene biosynthesis by secondary plant metabolites. Current Organic Chemistry. 2008;12(8):602–618. doi: 10.2174/138527208784577349. [DOI] [Google Scholar]
  • 77.Habtemariam S. Knipholone anthrone from Kniphofia foliosa induces a rapid onset of necrotic cell death in cancer cells. Fitoterapia. 2010;81(8):1013–1019. doi: 10.1016/j.fitote.2010.06.021. [DOI] [PubMed] [Google Scholar]
  • 78.Habtemariam S. Antioxidant activity of Knipholone anthrone. Food Chemistry. 2007;102(4):1042–1047. doi: 10.1016/j.foodchem.2006.06.040. [DOI] [Google Scholar]
  • 79.Burits M., Asres K., Bucar F. The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytotherapy Research. 2001;15(2):103–108. doi: 10.1002/ptr.691. [DOI] [PubMed] [Google Scholar]
  • 80.Emami S. A., Asili J., Mohagheghi Z., Hassanzadeh M. K. Antioxidant activity of leaves and fruits of Iranian conifers. Evidence-Based Complementary and Alternative Medicine. 2007;4(3):313–319. doi: 10.1093/ecam/nem011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Esteban M., Collado L. G., Macías F. A., Massanet G. M., Luis F. R. Flavonoids from Artemisia lanata. Phytochemistry. 1986;25(6):1502–1504. doi: 10.1016/S0031-9422(00)81325-4. [DOI] [Google Scholar]
  • 82.Naidoo V., McGaw L. J., Bisschop S. P. R., Duncan N., Eloff J. N. The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Veterinary Parasitology. 2008;153(3-4):214–219. doi: 10.1016/j.vetpar.2008.02.013. [DOI] [PubMed] [Google Scholar]
  • 83.Buwa L. V., Afolayan A. J. Antimicrobial activity of some medicinal plants used for the treatment of tuberculosis in the Eastern Cape Province, South Africa. African Journal of Biotechnology. 2009;8(23):6683–6687. [Google Scholar]
  • 84.Van Wyk B.-E., Oudtshoorn B. v., Gericke N. Medicinal Plants of South Africa. Briza: 1997. [Google Scholar]
  • 85.Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry. 2006;97(4):654–660. doi: 10.1016/j.foodchem.2005.04.028. [DOI] [Google Scholar]
  • 86.Akrout A., Gonzalez L. A., El Jani H., Madrid P. C. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food and Chemical Toxicology. 2011;49(2):342–347. doi: 10.1016/j.fct.2010.11.003. [DOI] [PubMed] [Google Scholar]
  • 87.Naili M. B., Alghazeer R. O., Saleh N. A., Al-Najjar A. Y. Evaluation of antibacterial and antioxidant activities of Artemisia campestris (Astraceae) and Ziziphus lotus (Rhamnacea) Arabian Journal of Chemistry. 2010;3(2):79–84. doi: 10.1016/j.arabjc.2010.02.002. [DOI] [Google Scholar]
  • 88.Brandão M. G. L., Nery C. G. C., Mamão M. A. S., Krettli A. U. Two methoxylated flavone glycosides from Bidens pilosa. Phytochemistry. 1998;48(2):397–399. doi: 10.1016/S0031-9422(97)01113-8. [DOI] [Google Scholar]
  • 89.Chiang Y.-M., Chuang D.-Y., Wang S.-Y., Kuo Y.-H., Tsai P.-W., Shyur L.-F. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology. 2004;95(2-3):409–419. doi: 10.1016/j.jep.2004.08.010. [DOI] [PubMed] [Google Scholar]
  • 90.Yuan L.-P., Chen F.-H., Ling L., et al. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. Journal of Ethnopharmacology. 2008;116(3):539–546. doi: 10.1016/j.jep.2008.01.010. [DOI] [PubMed] [Google Scholar]
  • 91.Deba F., Xuan T. D., Yasuda M., Tawata S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control. 2008;19(4):346–352. doi: 10.1016/j.foodcont.2007.04.011. [DOI] [Google Scholar]
  • 92.Fratianni F., Tucci M., Palma M. D., Pepe R., Nazzaro F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) Food Chemistry. 2007;104(3):1282–1286. doi: 10.1016/j.foodchem.2007.01.044. [DOI] [Google Scholar]
  • 93.Speroni E., Cervellati R., Govoni P., Guizzardi S., Renzulli C., Guerra M. C. Efficacy of different Cynara scolymus preparations on liver complaints. Journal of Ethnopharmacology. 2003;86(2-3):203–211. doi: 10.1016/S0378-8741(03)00076-X. [DOI] [PubMed] [Google Scholar]
  • 94.Lourens A. C. U., Reddy D., Başer K. H. C., Viljoen A. M., van Vuuren S. F. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species. Journal of Ethnopharmacology. 2004;95(2-3):253–258. doi: 10.1016/j.jep.2004.07.027. [DOI] [PubMed] [Google Scholar]
  • 95.Albayrak S., Aksoy A., Sagdic O., Hamzaoglu E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chemistry. 2010;119(1):114–122. doi: 10.1016/j.foodchem.2009.06.003. [DOI] [Google Scholar]
  • 96.Lourens A. C. U., Viljoen A. M., van Heerden F. R. South African Helichrysum species: a review of the traditional uses, biological activity and phytochemistry. Journal of Ethnopharmacology. 2008;119(3):630–652. doi: 10.1016/j.jep.2008.06.011. [DOI] [PubMed] [Google Scholar]
  • 97.Ranilla L. G., Kwon Y.-I., Apostolidis E., Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology. 2010;101(12):4676–4689. doi: 10.1016/j.biortech.2010.01.093. [DOI] [PubMed] [Google Scholar]
  • 98.Gyamfi M. A., Yonamine M., Aniya Y. Free-radical scavenging action of medicinal herbs from GhanaThonningia sanguinea on experimentally-induced liver injuries. General Pharmacology: The Vascular System. 1999;32(6):661–667. doi: 10.1016/S0306-3623(98)00238-9. [DOI] [PubMed] [Google Scholar]
  • 99.Ohtani I. I., Gotoh N., Tanaka J., Higa T., Gyamfi M. A., Aniya Y. Thonningianins A and B, new antioxidants from the African medicinal herb Thonningia sanguinea. Journal of Natural Products. 2000;63(5):676–679. doi: 10.1021/np990396w. [DOI] [PubMed] [Google Scholar]
  • 100.Gyamfi M. A., Hokama N., Oppong-Boachie K., Aniya Y. Inhibitory effects of the medicinal herb, Thonningia sanguinea, on liver drug metabolizing enzymes of rats. Human & Experimental Toxicology. 2000;19(11):623–631. doi: 10.1191/096032700667732543. [DOI] [PubMed] [Google Scholar]
  • 101.Gyamfi M. A., Tanaka T., Aniya Y. Selective suppression of cytochrome P450 gene expression by the medicinal herb, Thonningia sanguinea in rat liver. Life Sciences. 2004;74(14):1723–1737. doi: 10.1016/j.lfs.2003.07.049. [DOI] [PubMed] [Google Scholar]
  • 102.Gyamfi M. A., Ohtani I. I., Shinno E., Aniya Y. Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro. Food and Chemical Toxicology. 2004;42(9):1401–1408. doi: 10.1016/j.fct.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • 103.N'Guessan J. D., Bidié A. P., Lenta B. N., Weniger B., André P., Guédé-Guina F. In vitro assays for bioactivity-guided isolation of anti salmonella and antioxidant compounds in Thonningia sanguinea flowers. African Journal of Biotechnology. 2007;6(14):1685–1689. [Google Scholar]
  • 104.Speroni E., Cervellati R., Innocenti G., et al. Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delile. Journal of Ethnopharmacology. 2005;98(1-2):117–125. doi: 10.1016/j.jep.2005.01.007. [DOI] [PubMed] [Google Scholar]
  • 105.Chothani D. L., Vaghasiya H. U. A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacognosy Reviews. 2011;5(9):55–62. doi: 10.4103/0973-7847.79100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.El Tahir A., Ibrahim A. M., Satti G. M. H., Theander T. G., Kharazmi A., Khalid S. A. The potential antileishmanial activity of some Sudanese medicinal plants. Phytotherapy Research. 1998;12(8):576–579. doi: 10.1002/(SICI)1099-1573(199812)12:8<576::AID-PTR354>3.0.CO;2-#. [DOI] [Google Scholar]
  • 107.Binutu O. A., Lajubutu B. A. Antimicrobial potentials of some plant species of the Bignoniaceae family. African Journal of Medicine and Medical Sciences. 1994;23(3):269–273. [PubMed] [Google Scholar]
  • 108.Rojas J. J., Ochoa V. J., Ocampo S. A., Muñoz J. F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Complementary and Alternative Medicine. 2006;6, article 2 doi: 10.1186/1472-6882-6-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Rana A., Bhangalia S., Singh H. P. A new phenylethanoid glucoside from Jacaranda mimosifolia. Natural Product Research (Formerly Natural Product Letters) 2013;27(13):1167–1173. doi: 10.1080/14786419.2012.717290. [DOI] [PubMed] [Google Scholar]
  • 110.Ofori-Kwakye K., Kwapong A. A., Adu F. Antimicrobial activity of extracts and topical products of the stem bark of Spathodea campanulata for wound healing. African Journal of Traditional, Complementary and Alternative Medicines. 2009;6(2):168–174. doi: 10.4314/ajtcam.v6i2.57089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Marzouk M., Gamal-Eldeen A., Mohamed M., El-Sayed M. Anti-proliferative and antioxidant constituents from Tecoma stans. Zeitschrift fur Naturforschung - Section C Journal of Biosciences. 2006;61(11-12):783–791. [PubMed] [Google Scholar]
  • 112.Selloum L., Sebihi L., Mekhalfia A., Mahdadi R., Senator A. Antioxidant activity of Cleome arabica leaves extract. Biochemical Society Transactions. 1997;25(4):p. S608. doi: 10.1042/bst025s608. [DOI] [PubMed] [Google Scholar]
  • 113.Akula U. S., Odhav B. In vitro 5-lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of South Africa. Journal of Medicinal Plants Research. 2008;2(9):207–212. [Google Scholar]
  • 114.Farombi E. O., Møller P., Dragsted L. O. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells. Cell Biology and Toxicology. 2004;20(2):71–82. doi: 10.1023/B:CBTO.0000027916.61347.bc. [DOI] [PubMed] [Google Scholar]
  • 115.Farombi E. O., Shrotriya S., Surh Y.-J. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sciences. 2009;84(5-6):149–155. doi: 10.1016/j.lfs.2008.11.012. [DOI] [PubMed] [Google Scholar]
  • 116.Farombi E. O., Tahnteng J. G., Agboola A. O., Nwankwo J. O., Emerole G. O. Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron—a Garcinia kola seed extract. Food and Chemical Toxicology. 2000;38(6):535–541. doi: 10.1016/S0278-6915(00)00039-9. [DOI] [PubMed] [Google Scholar]
  • 117.Olaleye S., Farombi E., Adewoye E., Owoyele B., Onasanwo S., Elegbe R. Analgesic and anti-inflammatory effects of kaviiron (a Garcinia kola seed extract) African journal of biomedical research. 2000;3(3):171–174. [Google Scholar]
  • 118.Adaramoye O. A., Akinloye O. Possible protective effect of kolaviron on CCl4-induced erythrocyte damage in rats. Bioscience Reports. 2000;20(4):259–264. doi: 10.1023/A:1026488823157. [DOI] [PubMed] [Google Scholar]
  • 119.Adaramoye O. A., Nwaneri V. O., Anyanwo K. C., Farombi E. O., Emerole G. O. Possible anti-atherogenic effect of kolaviron (a Garcinia kola seed extract) in hypercholesterolaemic rats. Clinical and Experimental Pharmacology and Physiology. 2005;32(1-2):40–46. doi: 10.1111/j.1440-1681.2005.04146.x. [DOI] [PubMed] [Google Scholar]
  • 120.Nwankwo J. O., Tahnteng J. G., Emerole G. O. Inhibition of aflatoxin B1 genotoxicity in human liver-derived HepG2 cells by kolaviron biflavonoids and molecular mechanisms of action. European Journal of Cancer Prevention. 2000;9(5):351–361. doi: 10.1097/00008469-200010000-00010. [DOI] [PubMed] [Google Scholar]
  • 121.Kouam S. F., Ngadjui B. T., Krohn K., Wafo P., Ajaz A., Choudhary M. I. Prenylated anthronoid antioxidants from the stem bark of Harungana madagascariensis. Phytochemistry. 2005;66(10):1174–1179. doi: 10.1016/j.phytochem.2005.03.022. [DOI] [PubMed] [Google Scholar]
  • 122.Biapa P.-C. N., Agbor G. A., Oben J. E., Ngogang J. Y. Phytochemical studies and antioxidant properties of four medicinal plants used in Cameroon. African Journal of Traditional, Complementary and Alternative Medicines. 2007;4(4):495–500. doi: 10.4314/ajtcam.v4i4.31243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Iwalewa E. O., Adewale I. O., Taiwo B. J., et al. Effects of Harungana madagascariensis stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. Journal of Complementary and Integrative Medicine. 2008;5(1) [Google Scholar]
  • 124.Bernardi A. P. M., Ferraz A. B. F., Albring D. V., et al. Benzophenones from Hypericum carinatum. Journal of Natural Products. 2005;68(5):784–786. doi: 10.1021/np040149e. [DOI] [PubMed] [Google Scholar]
  • 125.Nunes J. D. M., Pinto P. S., Bordignon S. A. D. L., Rech S. B., von Poser G. L. Phenolic compounds in Hypericum species from the Trigynobrathys section. Biochemical Systematics and Ecology. 2010;38(2):224–228. doi: 10.1016/j.bse.2010.01.010. [DOI] [Google Scholar]
  • 126.El-Sherbiny D. A., Khalifa A. E., Attia A. S., Eldenshary E. D. Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacology Biochemistry & Behavior. 2003;76(3-4):525–533. doi: 10.1016/j.pbb.2003.09.014. [DOI] [PubMed] [Google Scholar]
  • 127.Herold A., Cremer L., Calugaru A., et al. Antioxidant properties of some hydroalcoholic plant extracts with antiinflammatory activity. Romanian Archives of Microbiology and Immunology. 2003;62(3-4):217–227. [PubMed] [Google Scholar]
  • 128.Herold A., Cremer L., Calugaru A., et al. Hydroalcoholic plant extracts with anti-inflammatory activity. Romanian Archives of Microbiology and Immunology. 2003;62(1-2):117–129. [PubMed] [Google Scholar]
  • 129.Hosseinzadeh H., Karimi G.-R., Rakhshanizadeh M. Anticonvulsant effect of Hypericum perforatum: Role of nitric oxide. Journal of Ethnopharmacology. 2005;98(1-2):207–208. doi: 10.1016/j.jep.2004.12.007. [DOI] [PubMed] [Google Scholar]
  • 130.Orčić D. Z., Mimica-Dukić N. M., Francišković M. M., Petrović S. S., Jovin E. T. Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chemistry Central Journal. 2011;5(1):p. 34. doi: 10.1186/1752-153X-5-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Zou Y., Lu Y., Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. Journal of Agricultural and Food Chemistry. 2004;52(16):5032–5039. doi: 10.1021/jf049571r. [DOI] [PubMed] [Google Scholar]
  • 132.Aderogba M. A., Kgatle D. T., McGaw L. J., Eloff J. N. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. South African Journal of Botany. 2012;79:125–131. doi: 10.1016/j.sajb.2011.10.004. [DOI] [Google Scholar]
  • 133.Coombes P. H., Rogers C. B. Methyl gardenolate A, a novel cycloartenoid ester from the leaves of Combretum woodii (Combretaceae) Natural Product Research (Formerly Natural Product Letters) 2002;16(5):301–304. doi: 10.1080/10575630290020587. [DOI] [PubMed] [Google Scholar]
  • 134.Eloff J. N., Famakin J. O., Katerere D. R. P. Combretum woodii (Combretaceae) leaf extracts have high activity against Gram-negative and Gram-positive bacteria. African Journal of Biotechnology. 2005;4(10):1161–1166. [Google Scholar]
  • 135.Eloff J. N., Famakin J. O., Katerere D. R. P. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. African Journal of Biotechnology. 2005;4(10):1167–1171. [Google Scholar]
  • 136.Masoko P., Eloff J. N. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activites. African Journal of Traditional, Complementary and Alternative Medicines. 2007;4(2):231–239. doi: 10.4314/ajtcam.v4i2.31213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Zishiri V. K. Potentising and application of a Combretum woodii leaf extract with high antibacterial and antioxidant activity. University of Pretoria; 2005. [Google Scholar]
  • 138.Angeh J. E., Huang X., Sattler I., et al. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae) Journal of Ethnopharmacology. 2007;110(1):56–60. doi: 10.1016/j.jep.2006.09.002. [DOI] [PubMed] [Google Scholar]
  • 139.Bouchet N., Barrier L., Fauconneau B. Radical scavenging activity and antioxidant properties of tannins from Guiera senegalensisi (Combretaceae) Phytotherapy Research. 1998;12(3):159–162. doi: 10.1002/(SICI)1099-1573(199805)12:3<159::AID-PTR209>3.0.CO;2-C. [DOI] [Google Scholar]
  • 140.Amos S., Kolawole E., Akah P., Wambebe C., Gamaniel K. Behavioral effects of the aqueous extract of Guiera senegalensis in mice and rats. Phytomedicine. 2001;8(5):356–361. doi: 10.1078/0944-7113-00056. [DOI] [PubMed] [Google Scholar]
  • 141.Ficarra R., Ficarra P., Tommasini S., et al. Isolation and characterization of Guiera senegalensis J.F.Gmel. active principles. Bollettino Chimico Farmaceutico. 1997;136(5):454–459. [PubMed] [Google Scholar]
  • 142.Maleš Ž., Medić-Šarić M., Bucar F. Flavonoids of Guiera senegalensis J. F. GMEL. -Thin-layer Chromatography and Numerical Methods. Croatica Chemica Acta. 1998;71(1):69–79. [Google Scholar]
  • 143.Sombié P. A. E. D., Hilou A., Mounier C., et al. Antioxidant and anti-inflammatory activities from galls of guiera senegalensis J.F. Gmel (Combretaceae) Research Journal of Medicinal Plant. 2011;5(4):448–461. doi: 10.3923/rjmp.2011.448.461. [DOI] [Google Scholar]
  • 144.Eldeen I. M. S., Elgorashi E. E., Mulholland D. A., Van Staden J. Anolignan B: A bioactive compound from the roots of Terminalia sericea. Journal of Ethnopharmacology. 2006;103(1):135–138. doi: 10.1016/j.jep.2005.09.005. [DOI] [PubMed] [Google Scholar]
  • 145.Ezea J., Iwuji T., Oguike M. Growth responses of pregnant rabbits and their litters fed Spreading day flower (Commelina diffusa Burm. F.) and rock fig (Ficus ingens Miquel) leaves. Journal of Global Biosciences. 2014;3(2):619–625. [Google Scholar]
  • 146.Akah P. A., Nwambie A. I. Evaluation of Nigerian traditional medicines: 1. Plants used for rheumatic (inflammatory) disorders. Journal of Ethnopharmacology. 1994;42(3):179–182. doi: 10.1016/0378-8741(94)90083-3. [DOI] [PubMed] [Google Scholar]
  • 147.Boakye-Gyasi E., Ainooson G. K., Abotsi W. K. Anti-inflammatory, antipyretic and antioxidant properties of a hydroalcoholic leaf extract of Palisota hirsuta K. Schum. (Commelinaceae) West African Journal of Pharmacy. 2011;22(1) [Google Scholar]
  • 148.Ojewole J. A. O. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. Journal of Ethnopharmacology. 2005;99(1):13–19. doi: 10.1016/j.jep.2005.01.025. [DOI] [PubMed] [Google Scholar]
  • 149.Tatsimo S. J. N., Tamokou J. D. D., Havyarimana L., et al. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Research Notes. 2012;5, article 158 doi: 10.1186/1756-0500-5-158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Alqasoumi S. I., Abdel-Kader M. S. Terpenoids from Juniperus procera with hepatoprotective activity. Pakistan Journal of Pharmaceutical Sciences. 2012;25(2):315–322. [PubMed] [Google Scholar]
  • 151.Orhan N., Orhan I. E., Ergun F. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food and Chemical Toxicology. 2011;49(9):2305–2312. doi: 10.1016/j.fct.2011.06.031. [DOI] [PubMed] [Google Scholar]
  • 152.Araghiniknam M., Chung S., Nelson-White T., Eskelson C., Watson R. R. Antioxidant activity of disoscorea and dehydroepiandrosterone (DHEA) in older humans. Life Sciences. 1996;59(11):PL147–PL157. doi: 10.1016/0024-3205(96)00396-7. [DOI] [PubMed] [Google Scholar]
  • 153.Iwu M. M., Okunji C. O., Ohiaeri G. O., Akah P., Corley D., Tempesta M. S. Hypoglycaemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits. Planta Medica. 1990;56(3):264–267. doi: 10.1055/s-2006-960952. [DOI] [PubMed] [Google Scholar]
  • 154.Sonibare M. A., Abegunde R. B. In vitro antimicrobial and antioxidant analysis of Dioscorea dumetorum (Kunth) Pax and Dioscorea hirtiflora (Linn.) and their bioactive metabolites from Nigeria. Journal of Applied Biosciences. 2012;51:3583–3590. [Google Scholar]
  • 155.Paper D. H., Karall E., Kremser M., Krenn L. Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HEX-CAM assay. Phytotherapy Research. 2005;19(4):323–326. doi: 10.1002/ptr.1666. [DOI] [PubMed] [Google Scholar]
  • 156.Egan P. A., Van Der Kooy F. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) - Future perspectives and ethnopharmacological relevance. Chemistry & Biodiversity. 2013;10(10):1774–1790. doi: 10.1002/cbdv.201200359. [DOI] [PubMed] [Google Scholar]
  • 157.Giardi M. T., Rea G., Berra B. Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors. Springer Science & Business Media; 2011. [PubMed] [Google Scholar]
  • 158.Farombi E. O., Ogundipe O. O., Uhunwangho E. S., Adeyanju M. A., Moody J. O. Antioxidant properties of extracts from Alchornea laxiflora (Benth) Pax and Hoffman. Phytotherapy Research. 2003;17(7):713–716. doi: 10.1002/ptr.1050. [DOI] [PubMed] [Google Scholar]
  • 159.Ogundipe O. O., Moody J. O., Houghton P. J., Odelola H. A. Bioactive chemical constituents from Alchornea laxiflora (benth) pax and hoffman. Journal of Ethnopharmacology. 2001;74(3):275–280. doi: 10.1016/s0378-8741(00)00352-4. [DOI] [PubMed] [Google Scholar]
  • 160.Okigbo R. N., Anuagasi C. L., Amadi J. E. Advances in selected medicinal and aromatic plants indigenous to Africa. Journal of Medicinal Plants Research. 2009;3(2):86–95. [Google Scholar]
  • 161.Oloyede G. K., Onocha P. A., Soyinka J., Oguntokun O., Thonda E. Phytochemical screening, antimicrobial and antioxidant activities of four Nigerian medicinal plants. Annals of Biological Research. 2010;1(2):114–120. [Google Scholar]
  • 162.Adetutu A., Morgan W. A., Corcoran O. Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. Journal of Ethnopharmacology. 2011;133(1):116–119. doi: 10.1016/j.jep.2010.09.011. [DOI] [PubMed] [Google Scholar]
  • 163.Bakoma B., Berké B., Eklu-Gadegbeku K., et al. Total phenolic content, antioxidant activity and In vitro inhibitory potential against key enzymes relevant for hyperglycemia of Bridelia ferruginea extracts. Research Journal of Phytochemistry. 2012;6(4):120–126. doi: 10.3923/rjphyto.2012.120.126. [DOI] [Google Scholar]
  • 164.De Bruyne T., Cimanga K., Pieters L., Claeys M., Dommisse R., Vlietinck A. Gallocatechin - (4'→O→7) - epigallocatechin, a new biflavonoid isolated from Bridelia ferruginea. Natural Product Research (Formerly Natural Product Letters) 1998;11(1):47–52. [Google Scholar]
  • 165.Cimanga K., de Bruyne T., Apers S., et al. Complement-inhibiting constituents of Bridelia ferruginea stem bark. Planta Medica. 1999;65(3):213–217. doi: 10.1055/s-1999-14059. [DOI] [PubMed] [Google Scholar]
  • 166.Fabiyi O. A., Olubunmi A., Adeyemi O. S., Olatunji G. A. Antioxidant and Cytotoxicity of β-Amyrin acetate fraction from Bridelia ferruginea leaves. Asian Pacific Journal of Tropical Biomedicine. 2012;2(2):S981–S984. doi: 10.1016/s2221-1691(12)60347-5. [DOI] [Google Scholar]
  • 167.Farombi E. O., Ogundipe O., Moody J. O. Antioxidant and anti-inflammatory activities of Mallotus oppositifolium in model systems. African Journal of Medicine and Medical Sciences. 2001;30(3):213–215. [PubMed] [Google Scholar]
  • 168.Chukwujekwu J. C., Van Staden J., Smith P. Antibacterial, anti-inflammatory and antimalarial activities of some Nigerian medicinal plants. South African Journal of Botany. 2005;71(3-4):316–325. doi: 10.1016/S0254-6299(15)30105-8. [DOI] [Google Scholar]
  • 169.Barku V., Opoku-Boahen Y., Owusu-Ansah E., Dayie N., Mensah F. In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts of six wound healing medicinal plants. In-Vitro. 2013;3(1) [Google Scholar]
  • 170.Farombi E. O. African indigenous plants with chemotherapeutic potentials and biotechnological approach to the production of bioactive prophylactic agents. African Journal of Biotechnology. 2003;2(12):662–671. [Google Scholar]
  • 171.Kamgang R., Vidal Pouokam Kamgne E., Fonkoua M. C., Penlap N Beng V., Biwolé Sida M. Activities of aqueous extracts of Mallotus oppositifolium on Shigella dysenteriae A1-induced diarrhoea in rats. Clinical and Experimental Pharmacology and Physiology. 2006;33(1-2):89–94. doi: 10.1111/j.1440-1681.2006.04329.x. [DOI] [PubMed] [Google Scholar]
  • 172.Nwaehujor C. O., Ezeja M. I., Udeh N. E., Okoye D. N., Udegbunam R. I. Anti-inflammatory and anti-oxidant activities of Mallotus oppositifolius (Geisel) methanol leaf extracts. Arabian Journal of Chemistry. 2014;7(5):805–810. doi: 10.1016/j.arabjc.2012.03.014. [DOI] [Google Scholar]
  • 173.Sinjman P. W., Joubert E., Ferreira D., et al. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and Trolox. Journal of Agricultural and Food Chemistry. 2009;57(15):6678–6684. doi: 10.1021/jf901417k. [DOI] [PubMed] [Google Scholar]
  • 174.Johnson R., Beer D. D., Dludla P. V., Ferreira D., Muller C. J. F., Joubert E. Aspalathin from Rooibos ( Aspalathus linearis ): A Bioactive C -glucosyl Dihydrochalcone with Potential to Target the Metabolic Syndrome. Planta Medica. 2018 doi: 10.1055/s-0044-100622. [DOI] [PubMed] [Google Scholar]
  • 175.Mathisen E., Diallo D., Andersen Ø. M., Malterud K. E. Antioxidants from the bark of Burkea africana, an African medicinal plant. Phytotherapy Research. 2002;16(2):148–153. doi: 10.1002/ptr.936. [DOI] [PubMed] [Google Scholar]
  • 176.Dave R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. African Journal of Microbiology Research. 2009;3(13):981–996. [Google Scholar]
  • 177.Stoddard F. Novel feed and non-food uses of legumes. Legume Futures Report. 2013;1 [Google Scholar]
  • 178.Joubert E., Richards E. S., Van Der Merwe J. D., De Beer D., Manley M., Gelderblom W. C. A. Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of cyclopia spp. (Honeybush tea) Journal of Agricultural and Food Chemistry. 2008;56(3):954–963. doi: 10.1021/jf072904a. [DOI] [PubMed] [Google Scholar]
  • 179.Kamara B. I., Brand D. J., Brandt E. V., Joubert E. Phenolic metabolites from honeybush tea (Cyclopia subternata) Journal of Agricultural and Food Chemistry. 2004;52(17):5391–5395. doi: 10.1021/jf040097z. [DOI] [PubMed] [Google Scholar]
  • 180.Kamara B. I., Brandt E. V., Ferreira D., Joubert E. Polyphenols from honeybush tea (Cyclopia intermedia) Journal of Agricultural and Food Chemistry. 2003;51(13):3874–3879. doi: 10.1021/jf0210730. [DOI] [PubMed] [Google Scholar]
  • 181.McKay D. L., Blumberg J. B. A review of the bioactivity of South African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) Phytotherapy Research. 2007;21(1):1–16. doi: 10.1002/ptr.1992. [DOI] [PubMed] [Google Scholar]
  • 182.Awouafack M. D., Tane P., Eloff J. N. Two new antioxidant flavones from the twigs of Eriosema robustum (Fabaceae) Phytochemistry Letters. 2013;6(1):62–66. doi: 10.1016/j.phytol.2012.10.017. [DOI] [Google Scholar]
  • 183.Yenesew A., Derese S., Irungu B., et al. Flavonoids and isoflavonoids with antiplasmodial activities from the root bark of Erythrina abyssinica. Planta Medica. 2003;69(7):658–661. doi: 10.1055/s-2003-41119. [DOI] [PubMed] [Google Scholar]
  • 184.Chacha M., Bojase-Moleta G., Majinda R. R. T. Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry. 2005;66(1):99–104. doi: 10.1016/j.phytochem.2004.10.013. [DOI] [PubMed] [Google Scholar]
  • 185.Wanjala C. C. W., Juma B. F., Bojase G., Gashe B. A., Majinda R. R. T. Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Medica. 2002;68(7):640–642. doi: 10.1055/s-2002-32891. [DOI] [PubMed] [Google Scholar]
  • 186.Wanjala C. C. W., Majinda R. R. T. Isoflavone glycosides from the root wood of Erythrina latissima. Journal of AOAC International. 2001;84(2):451–453. [PubMed] [Google Scholar]
  • 187.Dufall K. G., Ngadjui B. T., Simeon K. F., Abegaz B. M., Croft K. D. Antioxidant activity of prenylated flavonoids from the West African medicinal plant Dorstenia mannii. Journal of Ethnopharmacology. 2003;87(1):67–72. doi: 10.1016/S0378-8741(03)00108-9. [DOI] [PubMed] [Google Scholar]
  • 188.Steenkamp V., Grimmer H., Semano M., Gulumian M. Antioxidant and genotoxic properties of South African herbal extracts. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. 2005;581(1-2):35–42. doi: 10.1016/j.mrgentox.2004.10.009. [DOI] [PubMed] [Google Scholar]
  • 189.El-Masry S., Amer M. E., Abdel-Kader M. S., Zaatout H. H. Prenylated flavonoids of Erythrina lysistemon grown in Egypt. Phytochemistry. 2002;60(8):783–787. doi: 10.1016/S0031-9422(02)00202-9. [DOI] [PubMed] [Google Scholar]
  • 190.Mabona U., Van Vuuren S. F. Southern African medicinal plants used to treat skin diseases. South African Journal of Botany. 2013;87:175–193. doi: 10.1016/j.sajb.2013.04.002. [DOI] [Google Scholar]
  • 191.Asres K., Gibbons S., Nachname V. Anti-inflammatory activity of extracts and a saponin isolated from Melilotus elegans. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2005;60(4):310–312. [PubMed] [Google Scholar]
  • 192.Chorepsima S., Tentolouris K., Dimitroulis D., Tentolouris N. Melilotus: Contribution to wound healing in the diabetic foot. Journal of Herbal Medicine. 2013;3(3):81–86. doi: 10.1016/j.hermed.2013.04.005. [DOI] [Google Scholar]
  • 193.Gebre-Mariam T., Asres K., Getie M., Endale A., Neubert R., Schmidt P. C. In vitro availability of kaempferol glycosides from cream formulations of methanolic extract of the leaves of Melilotus elegans. European Journal of Pharmaceutics and Biopharmaceutics. 2005;60(1):31–38. doi: 10.1016/j.ejpb.2005.01.001. [DOI] [PubMed] [Google Scholar]
  • 194.Gebre-Mariam T., Neubert R., Schmidt P. C., Wutzler P., Schmidtke M. Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders. Journal of Ethnopharmacology. 2006;104(1-2):182–187. doi: 10.1016/j.jep.2005.08.071. [DOI] [PubMed] [Google Scholar]
  • 195.Yankep E., Njamen D., Fotsing M. T., et al. Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of Millettia griffoniana. Journal of Natural Products. 2003;66(9):1288–1290. doi: 10.1021/np0205912. [DOI] [PubMed] [Google Scholar]
  • 196.Combes S., Finet J.-P., Siri D. On the optical activity of the 3-aryl-4-hydroxycoumarin isolated from Millettia griffoniana: Molecular modelling and total synthesis. Journal of the Chemical Society, Perkin Transactions 1. 2002;2(1):38–44. [Google Scholar]
  • 197.Ngamga D., Yankep E., Tane P., et al. Antiparasitic prenylated isoflavonoids from seeds of Millettia griffoniana. Bulletin of the Chemical Society of Ethiopia. 2005;19(1):75–80. [Google Scholar]
  • 198.Ngamga D., Yankep E., Tane P., et al. Isoflavonoids from seeds of Millettia griffoniana (Bail), 15. Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences. 2005;60(9):973–977. doi: 10.1515/znb-2005-0911. [DOI] [Google Scholar]
  • 199.Yankep E., Fomum Z. T., Bisrat D., Dagne E., Hellwig V., Steglich W. O-geranylated isoflavones and a 3-phenylcoumarin from Millettia griffoniana. Phytochemistry. 1998;49(8):2521–2523. doi: 10.1016/S0031-9422(98)00392-6. [DOI] [Google Scholar]
  • 200.Yankep E., Fomum Z. T., Dagne E. An O-geranylated isoflavone from Millettia griffoniana. Phytochemistry. 1997;46(3):591–593. doi: 10.1016/S0031-9422(97)00326-9. [DOI] [Google Scholar]
  • 201.Yankep E., Mbafor J. T., Fomum Z. T., et al. Further isoflavonoid metabolites from Millettia griffoniana (Bail) Phytochemistry. 2001;56(4):363–368. doi: 10.1016/S0031-9422(00)00400-3. [DOI] [PubMed] [Google Scholar]
  • 202.Zingue S., Njamen D., Tchoumtchoua J., et al. Effects of Millettia macrophylla (Fabaceae) extracts on estrogen target organs of female Wistar rat. Journal of Pharmacological Sciences. 2013;123(2):120–131. doi: 10.1254/jphs.13094fp. [DOI] [PubMed] [Google Scholar]
  • 203.Sharma R. A., Gescher A. J., Steward W. P. Curcumin: the story so far. European Journal of Cancer. 2005;41(13):1955–1968. doi: 10.1016/j.ejca.2005.05.009. [DOI] [PubMed] [Google Scholar]
  • 204.Alabi D. A., Akinsulire O. R., Sanyaolu M. A. Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth. African Journal of Biotechnology. 2005;4(8):812–815. [Google Scholar]
  • 205.Abegaz B. M., Ngadjui B. T., Dongo E., Bezabih M.-T. Chemistry of the genus Dorstenia. Current Organic Chemistry. 2000;4(10):1079–1090. doi: 10.2174/1385272003375905. [DOI] [Google Scholar]
  • 206.Ngadjui B. T., Dongo E., Happi E. N., Bezabih M.-T., Abegaz B. M. Prenylated flavones and phenylpropanoid derivatives from roots of Dorstenia psilurus. Phytochemistry. 1998;48(4):733–737. doi: 10.1016/s0031-9422(98)00017-x. [DOI] [Google Scholar]
  • 207.Ngadjui B. T., Kapche G. W. F., Tamboue H., Abegaz B. M., Connolly J. D. Prenylated flavonoids and a dihydro-4-phenylcoumarin from Dorstenia poinsettifolia. Phytochemistry. 1999;51(1):119–123. doi: 10.1016/S0031-9422(98)00621-9. [DOI] [Google Scholar]
  • 208.Miranda C. L., Stevens J. F., Ivanov V., et al. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. Journal of Agricultural and Food Chemistry. 2000;48(9):3876–3884. doi: 10.1021/jf0002995. [DOI] [PubMed] [Google Scholar]
  • 209.Adegoke G. O., Vijay Kumar M., Sambaiah K., Lokesh B. R. Inhibitory effect of Garcinia kola on lipid peroxidation in rat liver homogenate. Indian Journal of Experimental Biology (IJEB) 1998;36(9):907–910. [PubMed] [Google Scholar]
  • 210.Aremu A. O., Fawole O. A., Chukwujekwu J. C., Light M. E., Finnie J. F., Van Staden J. In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea. Journal of Ethnopharmacology. 2010;131(1):22–27. doi: 10.1016/j.jep.2010.05.043. [DOI] [PubMed] [Google Scholar]
  • 211.Aremu A. O., Amoo S. O., Ndhlala A. R., Finnie J. F., Van Staden J. Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food and Chemical Toxicology. 2011;49(5):1122–1128. doi: 10.1016/j.fct.2011.02.003. [DOI] [PubMed] [Google Scholar]
  • 212.Amoo S. O., Finnie J. F., Van Staden J. In vitro pharmacological evaluation of three Barleria species. Journal of Ethnopharmacology. 2009;121(2):274–277. doi: 10.1016/j.jep.2008.10.035. [DOI] [PubMed] [Google Scholar]
  • 213.Amoo S. O., Ndhlala A. R., Finnie J. F., Van Staden J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. South African Journal of Botany. 2011;77(2):435–445. doi: 10.1016/j.sajb.2010.11.002. [DOI] [Google Scholar]
  • 214.Barron D., Di Pietro A., Dumontet C., McIntosh D. B. Isoprenoid flavonoids are new leads in the modulation of chemoresistance. Phytochemistry Reviews. 2002;1(3):325–332. doi: 10.1023/A:1026099520073. [DOI] [Google Scholar]
  • 215.Hertog M. G. L., Kromhout D., Aravanis C., et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the Seven Countries Study. JAMA Internal Medicine. 1995;155(4):381–386. doi: 10.1001/archinte.1995.00430040053006. [DOI] [PubMed] [Google Scholar]
  • 216.Middleton E., Jr., Kandaswami C., Theoharides T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews. 2000;52(4):673–751. [PubMed] [Google Scholar]
  • 217.Williams C. A., Grayer R. J. Anthocyanins and other flavonoids. Natural Product Reports. 2004;21(4):539–573. doi: 10.1039/b311404j. [DOI] [PubMed] [Google Scholar]
  • 218.Hanasaki Y., Ogawa S., Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology & Medicine. 1994;16(6):845–850. doi: 10.1016/0891-5849(94)90202-x. [DOI] [PubMed] [Google Scholar]
  • 219.Cao G., Sofic E., Prior R. L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biology & Medicine. 1997;22(5):749–760. doi: 10.1016/S0891-5849(96)00351-6. [DOI] [PubMed] [Google Scholar]
  • 220.Chen Z. Y., Chan P. T., Ho K. Y., Fung K. P., Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and Physics of Lipids. 1996;79(2):157–163. doi: 10.1016/0009-3084(96)02523-6. [DOI] [PubMed] [Google Scholar]
  • 221.Cotelle N., Bernier J.-L., Catteau J.-P., Pommery J., Wallet J.-C., Gaydou E. M. Antioxidant properties of hydroxy-flavones. Free Radical Biology & Medicine. 1996;20(1):35–43. doi: 10.1016/0891-5849(95)02014-4. [DOI] [PubMed] [Google Scholar]
  • 222.Pietta P. G. Flavonoids as antioxidants. Journal of Natural Products. 2000;63(7):1035–1042. doi: 10.1021/np9904509. [DOI] [PubMed] [Google Scholar]
  • 223.Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine. 1996;20(7):933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  • 224.García-Lafuente A., Guillamón E., Villares A., Rostagno M. A., Martínez J. A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research. 2009;58(9):537–552. doi: 10.1007/s00011-009-0037-3. [DOI] [PubMed] [Google Scholar]
  • 225.Juma B. F., Yenesew A., Midiwo J. O., Waterman P. G. Flavones and phenylpropenoids in the surface exudate of Psiadia punctulata. Phytochemistry. 2001;57(4):571–574. doi: 10.1016/S0031-9422(01)00147-9. [DOI] [PubMed] [Google Scholar]
  • 226.Ngadjui B. T., Dongo E., Abegaz B. M., Fotso S., Tamboue H. Dinklagins A, B and C: Three prenylated flavonoids and other constituents from the twigs of Dorstenia dinklagei. Phytochemistry. 2002;61(1):99–104. doi: 10.1016/S0031-9422(02)00130-9. [DOI] [PubMed] [Google Scholar]
  • 227.Ngadjui B. T., Dongo E., Tamboue H., Fogue K., Abegaz B. M. Prenylated flavanones from the twigs of Dorstenia mannii. Phytochemistry. 1999;50(8):1401–1406. doi: 10.1016/S0031-9422(98)00324-0. [DOI] [Google Scholar]
  • 228.Reiersen B., Kiremire B. T., Byamukama R., Andersen Ø. M. Anthocyanins acylated with gallic acid from chenille plant, Acalypha hispida. Phytochemistry. 2003;64(4):867–871. doi: 10.1016/S0031-9422(03)00494-1. [DOI] [PubMed] [Google Scholar]
  • 229.Gordon M. The mechanism of antioxidant action in vitro. Food antioxidants: Springer; 1990. [Google Scholar]
  • 230.Pinchuk I., Lichtenberg D. The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Progress in Lipid Research. 2002;41(4):279–314. doi: 10.1016/S0163-7827(01)00026-1. [DOI] [PubMed] [Google Scholar]
  • 231.Noguchi N., Watanabe A., Shi H. Diverse functions of antioxidants. Free Radical Research. 2000;33(6):809–817. doi: 10.1080/10715760000301331. [DOI] [PubMed] [Google Scholar]
  • 232.Kim H., Moon J. Y., Kim H., et al. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry. 2010;121(2):429–436. doi: 10.1016/j.foodchem.2009.12.060. [DOI] [Google Scholar]
  • 233.Ling L. T., Yap S.-A., Radhakrishnan A. K., Subramaniam T., Cheng H. M., Palanisamy U. D. Standardised Mangifera indica extract is an ideal antioxidant. Food Chemistry. 2009;113(4):1154–1159. doi: 10.1016/j.foodchem.2008.09.004. [DOI] [Google Scholar]
  • 234.Lamien-Meda A., Lamien C., Compaoré M., et al. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13(3):581–594. doi: 10.3390/molecules13030581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Bizimenyera S. E., Swan G. E., Chikoto H., Eloff J. N. Rationale for using Peltophorum africanum (Fabaceae) extracts in veterinary medicine. Journal of the South African Veterinary Association. 2005;76(2):54–58. doi: 10.4102/jsava.v76i2.397. [DOI] [PubMed] [Google Scholar]
  • 236.Mongalo N. Peltophorum africanum Sond [Mosetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. Journal of Medicinal Plants Research. 2013;7(48):3484–3491. [Google Scholar]
  • 237.Shai L. J., Magano S. R., Lebelo S. L., Mogale A. M. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: comparison with their effects on yeast alpha-glucosidase. Journal of Medicinal Plants Research. 2011;5(13):2863–2867. [Google Scholar]
  • 238.Mazimba O. Pharmacology and phytochemistry studies in Peltophorum africanum. Bulletin of Faculty of Pharmacy, Cairo University. 2014;52(1):145–153. doi: 10.1016/j.bfopcu.2014.01.001. [DOI] [Google Scholar]
  • 239.Ibewuike J. C., Ogungbamila F. O., Ogundaini A. O., Okeke I. N., Bohlin L. Antiinflammatory and antibacterial activities of C-methylflavonols from piliostigma thonningii. Phytotherapy Research. 1997;11(4):281–284. doi: 10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9. [DOI] [Google Scholar]
  • 240.Aderogba M., Okoh E., Adelanwa T., AwolowoUniv O. Antioxidant properties of the Nigerian Piliostigma species. Journal of Biological Sciences. 2004 [Google Scholar]
  • 241.Ajiboye T., Salau A., Yakubu M., Oladiji A., Akanji M., Okogun J. Aqueous extract of Securidaca longepedunculata root induce redox imbalance in male rat liver and kidney. Human & Experimental Toxicology. 2010;29(8):679–688. doi: 10.1177/0960327109357218. [DOI] [PubMed] [Google Scholar]
  • 242.Bombardelli E., Cristoni A., Lolla A., et al. Chemical and biological characterisation of Piliostigma thonningii polyphenols. Fitoterapia. 1994;65(6):493–501. [Google Scholar]
  • 243.Ibewuike J. C., Ogundaini A. O., Ogungbamila F. O., et al. Piliostigmin, a 2-phenoxychromone, and C-methylflavonol from Piliostigma thonningii. Phytochemistry. 1996;43(3):687–690. doi: 10.1016/0031-9422(96)00367-6. [DOI] [Google Scholar]
  • 244.Ighodaro O. M., Agunbiade S. O., Omole J. O., Kuti O. A. Evaluation of the chemical, nutritional, antimicrobial and antioxidant-vitamin profiles of Piliostigma thonningii leaves (Nigerian species) Research Journal of Medicinal Plant. 2012;6(7):537–543. doi: 10.3923/rjmp.2012.537.543. [DOI] [Google Scholar]
  • 245.Jimoh F. O., Oladiji A. T. Preliminary Studies on Piliostigma thonningii seeds: Proximate analysis, mineral composition and phytochemical screening. African Journal of Biotechnology. 2005;4(12):1439–1442. [Google Scholar]
  • 246.Fernandes A. C., Cromarty A. D., Albrecht C., Jansen Van Rensburg C. E. The antioxidant potential of Sutherlandia frutescens. Journal of Ethnopharmacology. 2004;95(1):1–5. doi: 10.1016/j.jep.2004.05.024. [DOI] [PubMed] [Google Scholar]
  • 247.Tai J., Cheung S., Chan E., Hasman D. In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. Journal of Ethnopharmacology. 2004;93(1):9–19. doi: 10.1016/j.jep.2004.02.028. [DOI] [PubMed] [Google Scholar]
  • 248.van Wyk B.-E., Albrecht C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae) Journal of Ethnopharmacology. 2008;119(3):620–629. doi: 10.1016/j.jep.2008.08.003. [DOI] [PubMed] [Google Scholar]
  • 249.Kaviarasan S., Naik G. H., Gangabhagirathi R., Anuradha C. V., Priyadarsini K. I. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chemistry. 2007;103(1):31–37. doi: 10.1016/j.foodchem.2006.05.064. [DOI] [Google Scholar]
  • 250.Wojdyło A., Oszmiański J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry. 2007;105(3):940–949. doi: 10.1016/j.foodchem.2007.04.038. [DOI] [Google Scholar]
  • 251.Maduka H. C. C., Okoye Z. S. C. The effect of Sacoglottis gabonensis stem bark extract, a Nigerian alcoholic beverage additive, on the natural antioxidant defences during 2,4-dinitrophenyl hydrazine-induced membrane peroxidation in vivo. Vascular Pharmacology. 2002;39(1-2):21–31. doi: 10.1016/S1537-1891(02)00281-1. [DOI] [PubMed] [Google Scholar]
  • 252.Maduka H. C. C., Okoye Z. S. C., Eje A. The influence of Sacoglottis gabonensis stem bark extract and its isolate bergenin, Nigerian alcoholic beverage additives, on the metabolic and haematological side effects of 2,4-dinitrophenyl hydrazine-induced tissue damage. Vascular Pharmacology. 2002;39(6):317–324. doi: 10.1016/S1537-1891(03)00042-9. [DOI] [PubMed] [Google Scholar]
  • 253.Maduka H., Okoye Z. The Effect of Sacoglottis gabonensis and its Isolate Bergenin on Doxorubicin - Ferric Ions (Fe3+) - Induced Degradation of Deoxyribose. Journal of Medical Sciences(Faisalabad) 2001;1(5):316–319. doi: 10.3923/jms.2001.316.319. [DOI] [Google Scholar]
  • 254.Patel D. K., Patel K., Kumar R., Gadewar M., Tahilyani V. Pharmacological and analytical aspects of bergenin: A concise report. Asian Pacific Journal of Tropical Disease. 2012;2(2):163–167. doi: 10.1016/S2222-1808(12)60037-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Nair V. D. P., Dairam A., Agbonon A., Arnason J. T., Foster B. C., Kanfer I. Investigation of the antioxidant activity of African potato (Hypoxis hemerocallidea) Journal of Agricultural and Food Chemistry. 2007;55(5):1707–1711. doi: 10.1021/jf0619838. [DOI] [PubMed] [Google Scholar]
  • 256.Owira P. M. O., Ojewole J. A. O. 'African potato' (Hypoxis hemerocallidea corm): A plant-medicine for modern and 21st century diseases of mankind? - A review. Phytotherapy Research. 2009;23(2):147–152. doi: 10.1002/ptr.2595. [DOI] [PubMed] [Google Scholar]
  • 257.Van Der Merwe M. J., Jenkins K., Theron E., Van Der Walt B. J. Interaction of the di-catechols rooperol and nordihydroguaiaretic acid with oxidative systems in the human blood: a structure-activity relationship. Biochemical Pharmacology. 1993;45(2):303–311. doi: 10.1016/0006-2952(93)90065-5. [DOI] [PubMed] [Google Scholar]
  • 258.Akinmoladun A. C., Ibukun E. O., Afor E., Obuotor E. M., Farombi E. O. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Scientific Research and Essays. 2007;2(5):163–166. [Google Scholar]
  • 259.Grayer R. J., Kite G. C., Abou-Zaid M., Archer L. J. The application of atmospheric pressure chemical ionisation liquid chromatography-mass spectrometry in the chemotaxonomic study of flavonoids: Characterisation of flavonoids from Ocimum gratissimum var. gratissimum. Phytochemical Analysis. 2000;11(4):257–267. doi: 10.1002/1099-1565(200007/08)11:4<257::AID-PCA521>3.0.CO;2-A. [DOI] [Google Scholar]
  • 260.Odukoya O. A., Ilori O. O., Sofidiya M. O., Aniunoh O. A., Lawal B. M., Tade I. O. Antioxidant activity of Nigerian dietary spices. Electronic Journal of Environmental, Agricultural and Food Chemistry. 2005;4:1086–1093. [Google Scholar]
  • 261.Prakash B., Shukla R., Singh P., Mishra P. K., Dubey N. K., Kharwar R. N. Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Research International. 2011;44(1):385–390. doi: 10.1016/j.foodres.2010.10.002. [DOI] [Google Scholar]
  • 262.Vieira R. F., Grayer R. J., Paton A., Simon J. E. Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochemical Systematics and Ecology. 2001;29(3):287–304. doi: 10.1016/S0305-1978(00)00062-4. [DOI] [PubMed] [Google Scholar]
  • 263.Jayaprakasha G. K., Negi P. S., Jena B. S., Rao L. J. M. Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. Journal of Food Composition and Analysis. 2007;20(3-4):330–336. doi: 10.1016/j.jfca.2006.07.006. [DOI] [Google Scholar]
  • 264.Jäger A. K., Van Staden J. Cyclooxygenase inhibitory activity of South African plants used against inflammation. Phytochemistry Reviews. 2005;4(1):39–46. doi: 10.1007/s11101-004-5570-7. [DOI] [Google Scholar]
  • 265.Zabka M., Pavela R., Slezakova L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Industrial Crops and Products. 2009;30(2):250–253. doi: 10.1016/j.indcrop.2009.04.002. [DOI] [Google Scholar]
  • 266.Palé É., Kouda-Bonafos M., Nacro M. Caractérisation et mesure des activités anti-radicalaires d'anthocyanes de plantes du Burkina Faso. Comptes Rendus Chimie. 2004;7(10-11):973–980. doi: 10.1016/j.crci.2003.12.019. [DOI] [Google Scholar]
  • 267.Farombi E. O., Fakoya A. Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa L. Molecular Nutrition & Food Research. 2005;49(12):1120–1128. doi: 10.1002/mnfr.200500084. [DOI] [PubMed] [Google Scholar]
  • 268.Prenesti E., Berto S., Daniele P. G., Toso S. Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food Chemistry. 2007;100(2):433–438. doi: 10.1016/j.foodchem.2005.09.063. [DOI] [Google Scholar]
  • 269.Wang C.-J., Wang J.-M., Lin W.-L., Chu C.-Y., Chou F.-P., Tseng T.-H. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food and Chemical Toxicology. 2000;38(5):411–416. doi: 10.1016/s0278-6915(00)00011-9. [DOI] [PubMed] [Google Scholar]
  • 270.Germanò M. P., D'Angelo V., Sanogo R., Morabito A., Pergolizzi S., De Pasquale R. Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats. Journal of Pharmacy and Pharmacology. 2001;53(11):1569–1574. doi: 10.1211/0022357011777954. [DOI] [PubMed] [Google Scholar]
  • 271.Nana O., Momeni Nzangué J., Tepongning R., Ngassoum M. B., Momeni Nzangué J. Phythochemical screening, antioxIdant and antiplasmodial activities of extracts from Trichilia roka and Sapium ellipticum. The Journal of Phytopharmacology. 2013;2:22–29. [Google Scholar]
  • 272.Moody J. O., Robert V. A., Connolly J. D., Houghton P. J. Anti-inflammatory activities of the methanol extracts and an isolated furanoditerpene constituent of Sphenocentrum jollyanum Pierre (Menispermaceae) Journal of Ethnopharmacology. 2006;104(1-2):87–91. doi: 10.1016/j.jep.2005.08.051. [DOI] [PubMed] [Google Scholar]
  • 273.Olorunnisola O. S., Akintola A. O., Afolayan A. J. Hepatoprotective and antioxidant effect of Sphenocentrum jollyanum (Menispermaceae) stem bark extract against CCl4- induced oxidative stress in rats. African Journal of Pharmacy and Pharmacology. 2011;5(9):1241–1246. doi: 10.5897/AJPP11.387. [DOI] [Google Scholar]
  • 274.Olorunnisola O. S., Afolayan A. J. In vivo antioxidant and biochemical evaluation of Sphenocentrum jollyanum leaf extract in P. berghei infected mice. Pakistan Journal of Pharmaceutical Sciences. 2013;26(3):445–450. [PubMed] [Google Scholar]
  • 275.Abdelwahab S. I., Koko W. S., Taha M. M. E., et al. In vitro and in vivo anti-inflammatory activities of columbin through the inhibition of cycloxygenase-2 and nitric oxide but not the suppression of NF-κB translocation. European Journal of Pharmacology. 2012;678(1–3):61–70. doi: 10.1016/j.ejphar.2011.12.024. [DOI] [PubMed] [Google Scholar]
  • 276.Omisore N. O. A., Adewunmi C. O., Iwalewa E. O., et al. Antitrichomonal and antioxidant activities of Dorstenia barteri and Dorstenia convexa. Brazilian Journal of Medical and Biological Research. 2005;38(7):1087–1094. doi: 10.1590/S0100-879X2005000700012. [DOI] [PubMed] [Google Scholar]
  • 277.Kuete V., Ngameni B., Mbaveng A. T., Ngadjui B., Meyer J. J. M., Lall N. Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities. Acta Tropica. 2010;116(1):100–104. doi: 10.1016/j.actatropica.2010.06.005. [DOI] [PubMed] [Google Scholar]
  • 278.Ngadjui B. T., Watchueng J., Keumedjio F., Ngameni B., Simo I. K., Abegaz B. M. Prenylated chalcones, flavone and other constituents of the twigs of Dorstenia angusticornis and Dorstenia barteri var. subtriangularis. Phytochemistry. 2005;66(6):687–692. doi: 10.1016/j.phytochem.2004.10.016. [DOI] [PubMed] [Google Scholar]
  • 279.Ngameni B., Ngadjui B. T., Folefoc G. N., Watchueng J., Abegaz B. M. Diprenylated chalcones and other constituents from the twigs of Dorstenia barteri var. subtriangularis. Phytochemistry. 2004;65(4):427–432. doi: 10.1016/j.phytochem.2003.10.021. [DOI] [PubMed] [Google Scholar]
  • 280.Omisore N. O. A., Adewunmi C. O., Iwalewa E. O., et al. Antinociceptive and anti-inflammatory effects of Dorstenia barteri (Moraceae) leaf and twig extracts in mice. Journal of Ethnopharmacology. 2004;95(1):7–12. doi: 10.1016/j.jep.2004.05.022. [DOI] [PubMed] [Google Scholar]
  • 281.Tsopmo A., Tene M., Kamnaing P., Ayafor J. F., Sterner O. A new Dieis-Alder-type adduct flavonoid from Dorstenia barteri. Journal of Natural Products. 1999;62(10):1432–1434. doi: 10.1021/np990109o. [DOI] [PubMed] [Google Scholar]
  • 282.Kansci G., Dongo E., Genot C. 2,2-Diphenyl-1-picrylhydrazyl (DPPH•) test demonstrates antiradical activity of Dorstenia psilurus and Dorstenia ciliata plant extracts. Molecular Nutrition & Food Research. 2003;47(6):434–437. doi: 10.1002/food.200390096. [DOI] [PubMed] [Google Scholar]
  • 283.Al-Jaber N. A., Awaad A. S., Moses J. E. Review on some antioxidant plants growing in Arab world. Journal of Saudi Chemical Society. 2011;15(4):293–307. doi: 10.1016/j.jscs.2011.07.004. [DOI] [Google Scholar]
  • 284.Ngadjui B. T., Ngameni B., Dongo E., Kouam S. F., Abegaz B. M. Prenylated and geranylated chalcones and flavones from the aerial parts of Dorstenia ciliata. Bulletin of the Chemical Society of Ethiopia. 2002;16(2):157–163. [Google Scholar]
  • 285.Mbaveng A. T., Kuete V., Ngameni B., et al. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae) BMC Complementary and Alternative Medicine. 2012;12(1):p. 83. doi: 10.1186/1472-6882-12-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Ngadjui B. T., Abegaz B. M., Dongo E., Tamboue H., Kouam F. Geranylated and prenylated flavonoids from the twigs of Dorstenia mannil. Phytochemistry. 1998;48(2):349–354. doi: 10.1016/S0031-9422(97)01120-5. [DOI] [Google Scholar]
  • 287.Ngadjui B. T., Kouam S. F., Dongo E., Kapche G. W. F., Abegaz B. M. Prenylated flavonoids from the aerial parts of Dorstenia mannii. Phytochemistry. 2000;55(8):915–919. doi: 10.1016/S0031-9422(00)00215-6. [DOI] [PubMed] [Google Scholar]
  • 288.Kuete V., Sandjo L. P. Isobavachalcone: An overview. Chinese Journal of Integrative Medicine. 2012;18(7):543–547. doi: 10.1007/s11655-012-1142-7. [DOI] [PubMed] [Google Scholar]
  • 289.Tsopmo A., Tene M., Kamnaing P., Ngnokam D., Ayafor J. F., Sterner O. Geranylated flavonoids from Dorstenia poinsettifolia. Phytochemistry. 1998;48(2):345–348. doi: 10.1016/S0031-9422(97)01114-X. [DOI] [Google Scholar]
  • 290.Abegaz B. M. Novel natural products from marketed plants of eastern and southern Africa. Pure and Applied Chemistry. 1999;71(6):919–926. doi: 10.1351/pac199971060919. [DOI] [Google Scholar]
  • 291.Etoundi C., Kuaté D., Ngondi J., Oben J. Anti-amylase, anti-lipase and antioxidant effects of aqueous extracts of some Cameroonian spices. Journal of Natural Products. 2010;3(2010):165–171. [Google Scholar]
  • 292.Ngadjui B. T., Tabopda T. K., Dongo E., Kapche G. W. F., Sandor P., Abegaz B. M. Dorsilurins C, D and E, three prenylated flavonoids from the roots of Dorstenia psilurus. Phytochemistry. 1999;52(4):731–735. doi: 10.1016/S0031-9422(99)00211-3. [DOI] [Google Scholar]
  • 293.Toyokuni S., Tanaka T., Kawaguchi W., et al. Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes. Free Radical Research. 2003;37(11):1215–1224. doi: 10.1080/10715760310001598150. [DOI] [PubMed] [Google Scholar]
  • 294.Angaji S. A., Mousavi S. F., Babapour E. Antioxidants: A few key points. Annals of Biological Research. 2012;3(8):3968–3977. [Google Scholar]
  • 295.Neergheen V. S., Bahorun T., Jen L.-S., Aruoma O. I. Bioefficacy of mauritian endemic medicinal plants: Assessment of their phenolic contents and antioxidant potential. Pharmaceutical Biology. 2007;45(1):9–17. doi: 10.1080/13880200601026242. [DOI] [Google Scholar]
  • 296.Ramful D., Aumjaud B., Neergheen V. S., et al. Polyphenolic content and antioxidant activity of Eugenia pollicina leaf extract in vitro and in model emulsion systems. Food Research International. 2011;44(5):1190–1196. doi: 10.1016/j.foodres.2010.09.024. [DOI] [Google Scholar]
  • 297.Barakat H. Composition, antioxidant, antibacterial activities and mode of action of clove (Syzygium aromaticum L.) buds essential oil. British Journal of Applied Science & Technology. 2014;4(13):p. 1934. [Google Scholar]
  • 298.Nassar M. I., Gaara A. H., El-Ghorab A. H., et al. Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Revista Latinoamericana de Química. 2007;35(3):p. 47. [Google Scholar]
  • 299.Abbasi M. A., Shahwar D., Wahab M., Saddiqui M. F. Antibacterial and antioxidant activities of an ethnobotanically important plant Sauromatum venosum (Ait.) Schott. of District Kotli, Azad Jammu & Kashmir. Pakistan Journal of Botany. 2011;43(1):579–585. [Google Scholar]
  • 300.Lee O.-H., Lee B.-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology. 2010;101(10):3751–3754. doi: 10.1016/j.biortech.2009.12.052. [DOI] [PubMed] [Google Scholar]
  • 301.Somova L. I., Shode F. O., Ramnanan P., Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology. 2003;84(2-3):299–305. doi: 10.1016/s0378-8741(02)00332-x. [DOI] [PubMed] [Google Scholar]
  • 302.Betancor-Fernández A., Pérez-Gálvez A., Sies H., Stahl W. Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil's claw root and garlic or salmon oil for antioxidant capacity. Journal of Pharmacy and Pharmacology. 2003;55(7):981–986. doi: 10.1211/0022357021468. [DOI] [PubMed] [Google Scholar]
  • 303.Mahomed I. M., Ojewole J. A. O. Analgesic, antiinflammatory and antidiabetic properties of Harpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract. Phytotherapy Research. 2004;18(12):982–989. doi: 10.1002/ptr.1593. [DOI] [PubMed] [Google Scholar]
  • 304.Gagnier J. J., Chrubasik S., Manheimer E. Harpgophytum procumbens for osteoarthritis and low back pain: a systematic review. BMC Complementary and Alternative Medicine. 2004;4, article 13 doi: 10.1186/1472-6882-4-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Göbel H., Heinze A., Ingwersen M., Niederberger U., Gerber D. Effects of Harpagophytum procumbens LI 174 (devil's claw) on sensory, motor and vascular muscle reagibility in the treatment of unspecific back pain. Der Schmerz. 2001;15(1):10–18. doi: 10.1007/s004820170043. [DOI] [PubMed] [Google Scholar]
  • 306.Grant L., McBean D. E., Fyfe L., Warnock A. M. A review of the biological and potential therapeutic actions of Harpagophytum procumbens. Phytotherapy Research. 2007;21(3):199–209. doi: 10.1002/ptr.2029. [DOI] [PubMed] [Google Scholar]
  • 307.Huang T. H.-W., Tran V. H., Duke R. K., et al. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-κB activation. Journal of Ethnopharmacology. 2006;104(1-2):149–155. doi: 10.1016/j.jep.2005.08.055. [DOI] [PubMed] [Google Scholar]
  • 308.Kaszkin M., Beck K. F., Koch E., et al. Downregulation of inos expression in rat mesangial cells by special extracts of Harpagophytum procumbens derives from harpagoside-dependent and independent effects. Phytomedicine. 2004;11(7-8):585–595. doi: 10.1016/j.phymed.2004.02.003. [DOI] [PubMed] [Google Scholar]
  • 309.Elujoba A. A., Odeleye O. M., Ogunyemi C. M. Traditional Medical Development for medical and dental primary health care delivery system in Africa. African Journal of Traditional, Complementary and Alternative Medicines. 2004;2(1):46–61. doi: 10.4314/ajtcam.v2i1.31103. [DOI] [Google Scholar]
  • 310.Mahomed I. M., Ojewole J. A. O. Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice. Brain Research Bulletin. 2006;69(1):57–62. doi: 10.1016/j.brainresbull.2005.10.010. [DOI] [PubMed] [Google Scholar]
  • 311.Mahomed I. M., Ojewole J. A. O. Oxytocin-like effect of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract on rat isolated uterus. African Journal of Traditional, Complementary and Alternative Medicines. 2006;3(1):82–89. [Google Scholar]
  • 312.McGregor G., Fiebich B., Wartenberg A., Brien S., Lewith G., Wegener T. Devil's claw (Harpagophytum procumbens): an anti-inflammatory herb with therapeutic potential. Phytochemistry Reviews. 2005;4(1):47–53. doi: 10.1007/s11101-004-2374-8. [DOI] [Google Scholar]
  • 313.Agbor G. A., Oben J. E., Ngogang J. Y., Xinxing G., Vinson J. A. Antioxidant capacity of some herbs/spices from Cameroon: a comparative study of two methods. Journal of Agricultural and Food Chemistry. 2005;53(17):6819–6824. doi: 10.1021/jf050445c. [DOI] [PubMed] [Google Scholar]
  • 314.Agbor G. A., Vinson J. A., Oben J. E., Ngogang J. Y. In vitro antioxidant activity of three piper species. Journal of Herbal Pharmacotherapy. 2007;7(2):49–64. doi: 10.1300/J157v07n02_04. [DOI] [PubMed] [Google Scholar]
  • 315.Isong E. U., Essien I. B. Nutrient and antinutrient composition of three varieties of Piper species. Plant Foods for Human Nutrition. 1996;49(2):133–137. doi: 10.1007/BF01091970. [DOI] [PubMed] [Google Scholar]
  • 316.Natarajan K. S., Narasimhan M., Shanmugasundaram K. R., Shanmugasundaram E. R. B. Antioxidant activity of a salt-spice-herbal mixture against free radical induction. Journal of Ethnopharmacology. 2006;105(1-2):76–83. doi: 10.1016/j.jep.2005.09.043. [DOI] [PubMed] [Google Scholar]
  • 317.Abdillahi H. S., Finnie J. F., Van Staden J. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa. Journal of Ethnopharmacology. 2011;136(3):496–503. doi: 10.1016/j.jep.2010.07.019. [DOI] [PubMed] [Google Scholar]
  • 318.Erkan N., Ayranci G., Ayranci E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chemistry. 2008;110(1):76–82. doi: 10.1016/j.foodchem.2008.01.058. [DOI] [PubMed] [Google Scholar]
  • 319.Meral I., Yener Z., Kahraman T., Mert N. Effect of Nigella sativa on Glucose Concentration, Lipid Peroxidation, Anti-Oxidant Defence System and Liver Damage in Experimentally-Induced Diabetic Rabbits. Journal of Veterinary Medicine Series A. 2001;48(10):593–599. doi: 10.1046/j.1439-0442.2001.00393.x. [DOI] [PubMed] [Google Scholar]
  • 320.Bahorun T., Trotin F., Pommery J., Vasseur J., Pinkas M. Antioxidant activities of Crataegus monogyna extracts. Planta Medica. 1994;60(4):323–328. doi: 10.1055/s-2006-959493. [DOI] [PubMed] [Google Scholar]
  • 321.Bahorun T., Aumjaud E., Ramphul H., et al. Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Molecular Nutrition & Food Research. 2003;47(3):191–198. doi: 10.1002/food.200390045. [DOI] [PubMed] [Google Scholar]
  • 322.Bahorun T., Gressier B., Trotin F., et al. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-Forschung/Drug Research. 1996;46(11):1086–1089. [PubMed] [Google Scholar]
  • 323.Bernatoniene J., Masteikova R., Majiene D., et al. Free radical-scavenging activities of crataegus monogyna extracts. Medicina. 2008;44(9):706–712. doi: 10.3390/medicina44090091. [DOI] [PubMed] [Google Scholar]
  • 324.Breza J., Dzurny O., Borowka A., et al. Efficacy and acceptability of Tadenan® (Pygeum africanum extract) in the treatment of benign prostatic hyperplasia (BPH): A multicentre trial in central Europe. Current Medical Research and Opinion. 1998;14(3):127–139. doi: 10.1185/03007999809113352. [DOI] [PubMed] [Google Scholar]
  • 325.Ishani A., MacDonald R., Nelson D., Rutks I., Wilt T. J. Pygeum africanum for the treatment of patients with benign prostatic hyperplasia: A systematic review and quantitative meta-analysis. American Journal of Medicine. 2000;109(8):654–664. doi: 10.1016/S0002-9343(00)00604-5. [DOI] [PubMed] [Google Scholar]
  • 326.Paubert-Braquet M., Cave A., Hocquemiller R., et al. Effect of Pygeum africanum extract on A23187-stimulated production of lipoxygenase metabolites from human polymorphonuclear cells. Journal of Lipid Mediators and Cell Signalling. 1994;9(3):285–290. [PubMed] [Google Scholar]
  • 327.Wang D., Li Y., Hou G., et al. Pygeum africanum: Effect on oxidative stress in early diabetes-induced bladder. International Urology and Nephrology. 2010;42(2):401–408. doi: 10.1007/s11255-009-9610-5. [DOI] [PubMed] [Google Scholar]
  • 328.Adeola S. O., Yahaya T. A., Hafsatu B., et al. Gastro-protective effect of crossopteryx febrifuga in wistar rats. African Journal of Traditional, Complementary and Alternative Medicines. 2011;8(3):300–306. doi: 10.4314/ajtcam.v8i3.65293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 329.Occhiuto F., Sanogo R., Germano M. P., Keita A., D'Angelo V., De Pasquale R. Effects of some Malian medicinal plants on the respiratory tract of guinea-pigs. Journal of Pharmacy and Pharmacology. 1999;51(11):1299–1303. doi: 10.1211/0022357991776877. [DOI] [PubMed] [Google Scholar]
  • 330.Tomas-Barberan F. A., Hostettmann K. A cytotoxic triterpenoid and flavonoids from Crossopteryx febrifuga. Planta Medica. 1988;54(3):266–267. doi: 10.1055/s-2006-962425. [DOI] [PubMed] [Google Scholar]
  • 331.Steenkamp V., Gouws M. C., Gulumian M., Elgorashi E. E., Van Staden J. Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis. Journal of Ethnopharmacology. 2006;103(1):71–75. doi: 10.1016/j.jep.2005.07.007. [DOI] [PubMed] [Google Scholar]
  • 332.Lis-Balchin M., Hart S., Simpson E. Buchu (Agathosma betulina and A. crenulata, Rutaceae) essential oils: Their pharmacological action on guinea-pig ileum and antimicrobial activity on microorganisms. Journal of Pharmacy and Pharmacology. 2001;53(4):579–582. doi: 10.1211/0022357011775703. [DOI] [PubMed] [Google Scholar]
  • 333.Chaaib F., Queiroz E. F., Ndjoko K., Diallo D., Hostettmann K. Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides. Planta Medica. 2003;69(4):316–320. doi: 10.1055/s-2003-38877. [DOI] [PubMed] [Google Scholar]
  • 334.Ngozi O., Samson O., Akindele S. K. In vitro biochemical investigations of the effects of Carica papaya and Fagara zanthoxyloides on antioxidant status and sickle erythrocytes. African Journal of Biochemistry Research. 2011;5(8):226–236. [Google Scholar]
  • 335.Messmer W. M., Tin‐wa M., Fong H. H. S., et al. Fagaronine, a new tumor inhibitor isolated from Fagara zanthoxyloides lam. (Rutaceae) Journal of Pharmaceutical Sciences. 1972;61(11):1858–1859. doi: 10.1002/jps.2600611145. [DOI] [PubMed] [Google Scholar]
  • 336.Ogwal-Okeng J. W., Obua C., Anokbonggo W. W. W. Acute toxicity effects of the methanolic extract of Fagara zanthoxyloides (Lam.) root-bark. African Health Sciences. 2003;3(3):124–126. [PMC free article] [PubMed] [Google Scholar]
  • 337.Getie M., Gebre-Mariam T., Rietz R., et al. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus. Fitoterapia. 2003;74(1):139–143. doi: 10.1016/S0367-326X(02)00315-5. [DOI] [PubMed] [Google Scholar]
  • 338.Getie M., Gebre-Mariam T., Rietz R., Neubert R. H. H. Evaluation of the release profiles of flavonoids from topical formulations of the crude extract of the leaves of Dodonea viscosa (Sapindaceae) Die Pharmazie. 2002;57(5):320–322. [PubMed] [Google Scholar]
  • 339.Mothana R. A. A., Abdo S. A. A., Hasson S., Althawab F. M. N., Alaghbari S. A. Z., Lindequist U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants. Evidence-Based Complementary and Alternative Medicine. 2010;7(3):323–330. doi: 10.1093/ecam/nen004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 340.Rojas A., Cruz S., Ponce-Monter H., Mata R. Smooth muscle relaxing compounds from Dodonaea viscosa. Planta Medica. 1996;62(2):154–159. doi: 10.1055/s-2006-957840. [DOI] [PubMed] [Google Scholar]
  • 341.Teffo L. S., Aderogba M. A., Eloff J. N. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts. South African Journal of Botany. 2010;76(1):25–29. doi: 10.1016/j.sajb.2009.06.010. [DOI] [Google Scholar]
  • 342.Opoku A., Nethengwe M., Dludla P., et al. Larvicidal and antimalarial activity of some Zulu medicinal plants. Planta Medica. 2011;77(12) doi: 10.1055/s-0031-1282439. [DOI] [Google Scholar]
  • 343.Beretta G., Facino R. M. Recent advances in the assessment of the antioxidant capacity of pharmaceutical drugs: From in vitro to in vivo evidence. Analytical and Bioanalytical Chemistry. 2010;398(1):67–75. doi: 10.1007/s00216-010-3829-y. [DOI] [PubMed] [Google Scholar]
  • 344.Carocho M., Ferreira I. C. F. R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology. 2013;51(1):15–25. doi: 10.1016/j.fct.2012.09.021. [DOI] [PubMed] [Google Scholar]
  • 345.Kellett M. E., Greenspan P., Pegg R. B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chemistry. 2018;244:359–363. doi: 10.1016/j.foodchem.2017.10.035. [DOI] [PubMed] [Google Scholar]
  • 346.Schaich K. M., Tian X., Xie J. Reprint of "Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays". Journal of Functional Foods. 2015;18:782–796. doi: 10.1016/j.jff.2015.05.024. [DOI] [Google Scholar]
  • 347.Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology & Medicine. 2010;49(4):503–515. doi: 10.1016/j.freeradbiomed.2010.04.016. [DOI] [PubMed] [Google Scholar]
  • 348.Dalvi L. T., Moreira D. C., Andrade R., Ginani J., Alonso A., Hermes-Lima M. Ellagic acid inhibits iron-mediated free radical formation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;173:910–917. doi: 10.1016/j.saa.2016.10.034. [DOI] [PubMed] [Google Scholar]
  • 349.Hanna P. M., Mason R. P. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Archives of Biochemistry and Biophysics. 1992;295(1):205–213. doi: 10.1016/0003-9861(92)90507-S. [DOI] [PubMed] [Google Scholar]
  • 350.Valko M., Jomova K., Rhodes C. J., Kuča K., Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of Toxicology. 2016;90(1):1–37. doi: 10.1007/s00204-015-1579-5. [DOI] [PubMed] [Google Scholar]
  • 351.Mohammadpour M., Behjati M., Sadeghi A., Fassihi A. Wound healing by topical application of antioxidant iron chelators: Kojic acid and deferiprone. International Wound Journal. 2013;10(3):260–264. doi: 10.1111/j.1742-481X.2012.00971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 352.Demyanenko I. A., Zakharova V. V., Ilyinskaya O. P., et al. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice. Oxidative Medicine and Cellular Longevity. 2017;2017 doi: 10.1155/2017/6408278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Cao X., Wang Y., Wu C., et al. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Scientific Reports. 2018;8(1) doi: 10.1038/s41598-018-19486-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Hosur V., Burzenski L. M., Stearns T. M., et al. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing. Experimental and Molecular Pathology. 2017;102(2):337–346. doi: 10.1016/j.yexmp.2017.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 355.Son D., Yang D., Sun J., et al. A Novel Peptide, Nicotinyl–Isoleucine–Valine–Histidine (NA–IVH), Promotes Antioxidant Gene Expression and Wound Healing in HaCaT Cells. Marine Drugs. 2018;16(8):p. 262. doi: 10.3390/md16080262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 356.Benedí J., Arroyo R., Romero C., Martín-Aragón S., Villar A. M. Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life Sciences. 2004;75(10):1263–1276. doi: 10.1016/j.lfs.2004.05.001. [DOI] [PubMed] [Google Scholar]
  • 357.Diallo D., Marston A., Terreaux C., Toure Y., Paulsen B. S., Hostettmann K. Screening of malian medicinal plants for antifungal, larvicidal, molluscicidal, antioxidant and radical scavenging activities. Phytotherapy Research. 2001;15(5):401–406. doi: 10.1002/ptr.738. [DOI] [PubMed] [Google Scholar]
  • 358.Majinda R. R. T., Erasto P., Bojase-Moleta G. Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry. 2004;65(7):875–880. doi: 10.1016/j.phytochem.2004.02.011. [DOI] [PubMed] [Google Scholar]
  • 359.Juma B. F., Majinda R. R. T. Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties. Phytochemistry. 2004;65(10):1397–1404. doi: 10.1016/j.phytochem.2004.04.029. [DOI] [PubMed] [Google Scholar]
  • 360.Kamatou G. P. P., Viljoen A. M., Gono-Bwalya A. B., et al. The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. Journal of Ethnopharmacology. 2005;102(3):382–390. doi: 10.1016/j.jep.2005.06.034. [DOI] [PubMed] [Google Scholar]
  • 361.Katerere D. R., Eloff J. N. Variation in chemical composition, antibacterial and antioxidant activity of fresh and dried Acacia leaf extracts. South African Journal of Botany. 2004;70(2):303–305. doi: 10.1016/S0254-6299(15)30249-0. [DOI] [Google Scholar]
  • 362.Latté K. P., Kolodziej H. Antioxidant properties of phenolic compounds from Pelargonium reniforme. Journal of Agricultural and Food Chemistry. 2004;52(15):4899–4902. doi: 10.1021/jf0495688. [DOI] [PubMed] [Google Scholar]
  • 363.Nergard C. S., Diallo D., Inngjerdingen K., et al. Medicinal use of Cochlospermum tinctorium in Mali: Anti-ulcer-, radical scavenging- and immunomodulating activities of polymers in the aqueous extract of the roots. Journal of Ethnopharmacology. 2005;96(1-2):255–269. doi: 10.1016/j.jep.2004.09.018. [DOI] [PubMed] [Google Scholar]
  • 364.Opoku A. R., Maseko N. F., Terblanche S. E. The in vitro antioxidative activity of some traditional Zulu medicinal plants. Phytotherapy Research. 2002;16(1):S51–S56. doi: 10.1002/ptr.804. [DOI] [PubMed] [Google Scholar]
  • 365.Burits M., Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research. 2000;14(5):323–328. doi: 10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 366.Gyamfi M. A., Aniya Y. Antioxidant properties of Thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea. Biochemical Pharmacology. 2002;63(9):1725–1737. doi: 10.1016/S0006-2952(02)00915-2. [DOI] [PubMed] [Google Scholar]
  • 367.Farombi E. O., Nwaokeafor I. A. Anti-oxidant mechanisms of kolaviron: Studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats. Clinical and Experimental Pharmacology and Physiology. 2005;32(8):667–674. doi: 10.1111/j.0305-1870.2005.04248.x. [DOI] [PubMed] [Google Scholar]
  • 368.Luximon-Ramma A., Bahorun T., Soobrattee M. A., Aruoma O. I. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry. 2002;50(18):5042–5047. doi: 10.1021/jf0201172. [DOI] [PubMed] [Google Scholar]
  • 369.Singh S., Parasharami V., Rai S. Medicinal uses of adansonia digitata L.: An endangered tree species. Journal of Pharmaceutical and Scientific Innovation. 2013;2(3):14–16. doi: 10.7897/2277-4572.02324. [DOI] [Google Scholar]
  • 370.Bucar F., Resch M., Bauer R., Burits M., Knauder E., Schubert-Zsilavecz M. 5-methylflavasperone and rhamnetin from Guiera senegalensis and their antioxidative and 5-lipoxygenase inhibitory activity. Die Pharmazie. 1999;30(13) [PubMed] [Google Scholar]
  • 371.Bucar F., Schneider I., Ögmundsdóttir H., Ingólfsdóttir K. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine. 2004;11(7-8):602–606. doi: 10.1016/j.phymed.2004.03.004. [DOI] [PubMed] [Google Scholar]
  • 372.Schneider I., Bucar F. Lipoxygenase inhibitors from natural plant sources, part 1: medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase. Phytotherapy Research. 2005;19(2):81–102. doi: 10.1002/ptr.1603. [DOI] [PubMed] [Google Scholar]
  • 373.Wube A. A., Streit B., Gibbons S., Asres K., Bucar F. In vitro 12(S)-HETE inhibitory activities of naphthoquinones isolated from the root bark of Euclea racemosa ssp. schimperi. Journal of Ethnopharmacology. 2005;102(2):191–196. doi: 10.1016/j.jep.2005.06.009. [DOI] [PubMed] [Google Scholar]
  • 374.Lin J., Opoku A. R., Geheeb-Keller M., et al. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. Journal of Ethnopharmacology. 1999;68(1-3):267–274. doi: 10.1016/S0378-8741(99)00130-0. [DOI] [PubMed] [Google Scholar]
  • 375.Hiermann A., Bucar F. Influence of some traditional medicinal plants of senegal on prostaglandin biosynthesis. Journal of Ethnopharmacology. 1994;42(2):111–116. doi: 10.1016/0378-8741(94)90104-X. [DOI] [PubMed] [Google Scholar]
  • 376.Jäger A. K., Hutchings A., Van Staden J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. Journal of Ethnopharmacology. 1996;52(2):95–100. doi: 10.1016/0378-8741(96)01395-5. [DOI] [PubMed] [Google Scholar]
  • 377.Krenn L., Beyer G., Pertz H. H., et al. In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittel-Forschung/Drug Research. 2004;54(7):402–405. doi: 10.1055/s-0031-1296991. [DOI] [PubMed] [Google Scholar]
  • 378.Vasänge M., Liu B., Welch C. J., Rolfsen W., Bohlin L. The flavonoid constituents of two Polypodium species (Calaguala) and their effect on the elastase release in human neutrophils. Planta Medica. 1997;63(6):511–517. doi: 10.1055/s-2006-957753. [DOI] [PubMed] [Google Scholar]
  • 379.Calixto J. B., Otuki M. F., Santos A. R. S. Anti-inflammatory compounds of plant origin. part i. action on arachidonic acid pathway, nitric oxide and nuclear factor κB (NF-κB) Planta Medica. 2003;69(11):973–983. doi: 10.1055/s-2003-45141. [DOI] [PubMed] [Google Scholar]
  • 380.Ojo-Amaize E. A., Kapahi P., Kakkanaiah V. N., et al. Hypoestoxide, a novel anti-inflammatory natural diterpene, inhibits the activity of IκB kinase. Cellular Immunology. 2001;209(2):149–157. doi: 10.1006/cimm.2001.1798. [DOI] [PubMed] [Google Scholar]
  • 381.Ojo-Amaize E. A., Nchekwube E. J., Cottam H. B., et al. Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic and antitumor activity: Possible mechanisms of action. Cancer Research. 2002;62(14):4007–4014. [PubMed] [Google Scholar]
  • 382.Chernishov G., Arragie M., Etana A. Preliminary pharmacological studies on Mettere (Glinus lotoides). II. Effects upon the cardiovascular and gastrointestinal system. Ethiopian Medical Journal. 1978;16(3):105–110. [PubMed] [Google Scholar]
  • 383.Mengesha A. E. Isolation, Structural Elucidation, Quantification and Formulation of the Saponins and Flavonoids of the Seeds of Glinus Lotoides. 2005. [Google Scholar]
  • 384.Endale A., Kammerer B., Gebre-Mariam T., Schmidt P. C. Quantitative determination of the group of flavonoids and saponins from the extracts of the seeds of Glinus lotoides and tablet formulation thereof by high-performance liquid chromatography. Journal of Chromatography A. 2005;1083(1-2):32–41. doi: 10.1016/j.chroma.2005.05.095. [DOI] [PubMed] [Google Scholar]
  • 385.Endale A., Schmidt P. C., Gebre-Mariam T. Standardisation and physicochemical characterisation of the extracts of seeds of Glinus lotoides. Die Pharmazie. 2004;59(1):34–38. [PubMed] [Google Scholar]
  • 386.El-Sayed M. Phytochemical investigation of Glinus lotoides growing in Egypt. Egyptian journal of pharmaceutical sciences. 1997;38(4-6):377–390. [Google Scholar]
  • 387.Diallo D., Hveem B., Ag Mahmoud M., Berge G., Paulsen B. S., Maiga A. An ethnobotanical survey of herbal drugs of Gourma district, Mali. Pharmaceutical Biology. 1999;37(1):80–91. doi: 10.1076/phbi.37.1.80.6313. [DOI] [Google Scholar]
  • 388.Sahakitpichan P., Disadee W., Ruchirawat S., Kanchanapoom T. L-(-)-(N-trans-Cinnamoyl)-arginine, an Acylamino Acid from Glinus oppositifolius (L.) Aug. DC. Molecules. 2010;15(9):6186–6192. doi: 10.3390/molecules15096186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 389.Ojewole J. A. O. Evaluation of the analgesic, anti-inflammatory and anti-diabetic properties of Sclerocarya birrea (A. Rich.) Hochst. stem-bark aqueous extract in mice and rats. Phytotherapy Research. 2004;18(8):601–608. doi: 10.1002/ptr.1503. [DOI] [PubMed] [Google Scholar]
  • 390.Agbaje E., Tijani A., Braimoh O. Effects of Enantia chlorantha extracts in Laboratory-Induced Convulsion and Inflammation. Orient Journal of Medicine. 2004;15(1):68–71. doi: 10.4314/ojm.v15i1.29050. [DOI] [Google Scholar]
  • 391.Atata R. F., Alhassan S., Ajewole S. M. Effect of stem bark extracts of Enantia chloranta on some clinical isolates. Biokemistri. 2003;15(2):84–92. [Google Scholar]
  • 392.Moody J. O., Bloomfield S. F., Hylands P. J. In-vitro evaluation of the antimicrobial activities of Enantia chlorantha Oliv. extractives. African Journal of Medicine and Medical Sciences. 1995;24(3):269–273. [PubMed] [Google Scholar]
  • 393.Tan P. V., Nyasse B., Dimo T., Wafo P., Akahkuh B. T. Synergistic and potentiating effects of ranitidine and two new anti-ulcer compounds from Enantia chlorantha and Voacanga africana in experimental animal models. Die Pharmazie. 2002;57(6):409–412. [PubMed] [Google Scholar]
  • 394.Koffi A. M., Kanko C., Ramiarantsoa H., et al. Essentials oils phenolic and benzenic derivatives from three Uvaria (Annonaceae) of Ivory Coast: Uvaria chamae (P. Beauv), Uvaria afzelii (Sc. Elliot), and Uvaria sp. (Aké Assi) Comptes Rendus Chimie. 2004;7(10-11):997–1002. doi: 10.1016/j.crci.2003.12.024. [DOI] [Google Scholar]
  • 395.Ménan H., Banzouzi J.-T., Hocquette A., et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. Journal of Ethnopharmacology. 2006;105(1-2):131–136. doi: 10.1016/j.jep.2005.10.027. [DOI] [PubMed] [Google Scholar]
  • 396.Uchegbu R. I., Okwu D. E. An Evaluation of the Phytochemical and Nutrient Composition of the Seeds and Stem bark of Detarium senegalense Gmelin. Journal of Natural Science Research. 2012;2(5):107–111. [Google Scholar]
  • 397.Fall D., Gleye C., Franck X., Laurens A., Hocquemiller R. Cis-bullatencin, a linear acetogenin from roots of Uvaria chamae. Natural Product Research (Formerly Natural Product Letters) 2002;16(5):315–321. doi: 10.1080/10575630290026437. [DOI] [PubMed] [Google Scholar]
  • 398.Philipov S., Ivanovska N., Istatkova R., Velikova M., Tuleva P. Phytochemical study and cytotoxic activity of alkaloids from Uvaria chamae P. Beauv. Die Pharmazie. 2000;55(9):688–689. [PubMed] [Google Scholar]
  • 399.Duwiejua M., Woode E., Obiri D. D. Pseudo-akuammigine, an alkaloid from Picralima nitida seeds, has anti-inflammatory and analgesic actions in rats. Journal of Ethnopharmacology. 2002;81(1):73–79. doi: 10.1016/S0378-8741(02)00058-2. [DOI] [PubMed] [Google Scholar]
  • 400.Ezeamuzie I. C., Ojinnaka M. C., Uzogara E. O., Oji S. E. Anti-inflammatory, antipyretic and anti-malarial activities of a West African medicinal plant--Picralima nitida. African Journal of Medicine and Medical Sciences. 1994;23(1):85–90. [PubMed] [Google Scholar]
  • 401.Betti J. An ethnobotanical study of medicinal plants among the Baka pygmies in the Dja biosphere reserve, Cameroon. 2004. [DOI] [Google Scholar]
  • 402.Fakeye T. O., Itiola O. A., Odelola H. A. Evaluation of the antimicrobial property of the stem bark of Picralima nitida (Apocynaceae) Phytotherapy Research. 2000;14(5):368–370. doi: 10.1002/1099-1573(200008)14:5<368::AID-PTR615>3.0.CO;2-X. doi: 10.1002/1099-1573(200008)14:5<368::AID-PTR615>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 403.Papajewski S., Vogler B., Conrad J., et al. Isolation from Cussonia barteri of 1′-O-chlorogenoylchlorogenic acid and 1′-o-chlorogenoylneochlorogenic acid, a new type of quinic acid esters. Planta Medica. 2001;67(8):732–736. doi: 10.1055/s-2001-18338. [DOI] [PubMed] [Google Scholar]
  • 404.Roy S., Sehgal R., Padhy B. M., Kumar V. L. Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats. Journal of Ethnopharmacology. 2005;102(3):470–473. doi: 10.1016/j.jep.2005.06.026. [DOI] [PubMed] [Google Scholar]
  • 405.Ugochukwu N. H., Babady N. E. Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus. Fitoterapia. 2002;73(7-8):612–618. doi: 10.1016/s0367-326x(02)00218-6. [DOI] [PubMed] [Google Scholar]
  • 406.Ugochukwu N. H., Babady N. E. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sciences. 2003;73(15):1925–1938. doi: 10.1016/S0024-3205(03)00543-5. [DOI] [PubMed] [Google Scholar]
  • 407.Ugochukwu N. H., Babady N. E., Cobourne M., Gasset S. R. The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. Journal of Biosciences. 2003;28(1):1–5. doi: 10.1007/BF02970124. [DOI] [PubMed] [Google Scholar]
  • 408.Nébié R. H., Yaméogo R. T., Bélanger A., Sib F. S. Composition chimique des huiles essentielles d'Ageratum conyzoïdes du Burkina Faso. Comptes Rendus Chimie. 2004;7(10-11):1019–1022. doi: 10.1016/j.crci.2003.12.027. [DOI] [Google Scholar]
  • 409.Shirwaikar A., Bhilegaonkar P. M., Malini S., Sharath Kumar J. The gastroprotective activity of the ethanol extract of Ageratum conyzoides. Journal of Ethnopharmacology. 2003;86(1):117–121. doi: 10.1016/S0378-8741(03)00050-3. [DOI] [PubMed] [Google Scholar]
  • 410.Liu C. Z., Murch S. J., El-Demerdash M., Saxena P. K. Artemisia judaica L.: Micropropagation and antioxidant activity. Journal of Biotechnology. 2004;110(1):63–71. doi: 10.1016/j.jbiotec.2004.01.011. [DOI] [PubMed] [Google Scholar]
  • 411.Popat A., Shear N. H., Malkiewicz I., et al. The toxicity of Callilepis laureola, a South African traditional herbal medicine. Clinical Biochemistry. 2001;34(3):229–236. doi: 10.1016/S0009-9120(01)00219-3. [DOI] [PubMed] [Google Scholar]
  • 412.Steenkamp V., Stewart M. J., Zuckerman M. Detection of poisoning by impila (Callilepis laureola) in a mother and child. Human & Experimental Toxicology. 1999;18(10):594–597. doi: 10.1191/096032799678839428. [DOI] [PubMed] [Google Scholar]
  • 413.Midiwo J. O., Yenesew A., Juma B. F., et al. Bioactive compounds from some kenyan ethnomedicinal plants: myrsinaceae, polygonaceae and psiadia punctulata. Phytochemistry Reviews. 2002;1(3):311–323. doi: 10.1023/a:1026029609500. [DOI] [Google Scholar]
  • 414.Nergard C. S., Diallo D., Michaelsen T. E., et al. Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp. Journal of Ethnopharmacology. 2004;91(1):141–152. doi: 10.1016/j.jep.2003.12.007. [DOI] [PubMed] [Google Scholar]
  • 415.William Carey M., Rao N. V., Kumar B. R., Mohan G. K. Anti-inflammatory and analgesic activities of methanolic extract of Kigelia pinnata DC flower. Journal of Ethnopharmacology. 2010;130(1):179–182. doi: 10.1016/j.jep.2010.04.023. [DOI] [PubMed] [Google Scholar]
  • 416.Gouda Y. G., Abdel-baky A. M., Darwish F. M., Mohamed K. M., Kasai R., Yamasaki K. Iridoids from Kigelia pinnata DC. fruits. Phytochemistry. 2003;63(8):887–892. doi: 10.1016/S0031-9422(03)00262-0. [DOI] [PubMed] [Google Scholar]
  • 417.Reddy J. S., Rao P. R., Reddy M. S. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats. Journal of Ethnopharmacology. 2002;79(2):249–251. doi: 10.1016/s0378-8741(01)00388-9. [DOI] [PubMed] [Google Scholar]
  • 418.Souza J. S. N., Machado L. L., Pessoa O. D. L., et al. Pyrrolizidine alkaloids from Heliotropium indicum. Journal of the Brazilian Chemical Society. 2005;16(6 B):1410–1414. doi: 10.1590/S0103-50532005000800019. [DOI] [Google Scholar]
  • 419.Togola A., Diallo D., Dembélé S., Barsett H., Paulsen B. S. Ethnopharmacological survey of different uses of seven medicinal plants from Mali, (West Africa) in the regions Doila, Kolokani and Siby. Journal of Ethnobiology and Ethnomedicine. 2005;1, article 7 doi: 10.1186/1746-4269-1-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 420.Emam A. M., Elias R., Moussa A. M., Faure R., Debrauwer L., Balansard G. Two flavonoid triglycosides from Buddleja madagascariensis. Phytochemistry. 1998;48(4):739–742. doi: 10.1016/S0031-9422(97)01043-1. [DOI] [PubMed] [Google Scholar]
  • 421.Manguro L. O. A., Ugi I., Hermann R., Lemmen P. Flavonol and drimane-type sesquiterpene glycosides of Warburgia stuhlmannii leaves. Phytochemistry. 2003;63(4):497–502. doi: 10.1016/S0031-9422(03)00105-5. [DOI] [PubMed] [Google Scholar]
  • 422.Arot Manguro L. O., Ugi I., Lemmen P., Hermann R. Flavonol glycosides of Warburgia ugandensis leaves. Phytochemistry. 2003;64(4):891–896. doi: 10.1016/S0031-9422(03)00374-1. [DOI] [PubMed] [Google Scholar]
  • 423.Wube A. A., Bucar F., Asres K., Gibbons S., Rattray L., Croft S. L. Antimalarial compounds from Kniphofia foliosa roots. Phytotherapy Research. 2005;19(6):472–476. doi: 10.1002/ptr.1635. [DOI] [PubMed] [Google Scholar]
  • 424.Wube A. A., Bucar F., Gibbons S., Asres K. Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity. Phytochemistry. 2005;66(19):2309–2315. doi: 10.1016/j.phytochem.2005.07.018. [DOI] [PubMed] [Google Scholar]
  • 425.Abegaz B. M., Woldu Y. Isoflavonoids from the roots of Salsola somalensis. Phytochemistry. 1991;30(4):1281–1284. doi: 10.1016/S0031-9422(00)95217-8. [DOI] [Google Scholar]
  • 426.Germanò M. P., Sanogo R., Guglielmo M., De Pasquale R., Crisafi G., Bisignano G. Effects of Pteleopsis suberosa extracts on experimental gastric ulcers and Helicobacter pylori growth. Journal of Ethnopharmacology. 1998;59(3):167–172. doi: 10.1016/s0378-8741(97)00109-8. [DOI] [PubMed] [Google Scholar]
  • 427.Nimenibo–Uadia R. Control of hyperlipidaemia, hypercholesterolaemia and hyperketonaemia by aqueous extract of Dioscorea dumetorum tuber. Tropical Journal of Pharmaceutical Research. 2003;2(1):183–189. doi: 10.4314/tjpr.v2i1.14584. [DOI] [Google Scholar]
  • 428.Dagne E., Alemua M., Sterner O. Flavonoids from Euclea divinorum. Bulletin of the Chemical Society of Ethiopia. 1993;7(2) [Google Scholar]
  • 429.Adesina S. K., Idowu O., Ogundaini A. O., et al. Antimicrobial constituents of the leaves of Acalypha wilkesiana and Acalypha hispida. Phytotherapy Research. 2000;14(5):371–374. doi: 10.1002/1099-1573(200008)14:5<371::AID-PTR625>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 430.Akinyemi K. O., Oladapo O., Okwara C. E., Ibe C. C., Fasure K. A. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complementary and Alternative Medicine. 2005;5 doi: 10.1186/1472-6882-5-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 431.Gálvez J., Crespo M. E., Jiménez J., Suárez A., Zarzuelo A. Antidiarrhoeic activity of quercitrin in mice and rats. Journal of Pharmacy and Pharmacology. 1993;45(2):157–159. doi: 10.1111/j.2042-7158.1993.tb03706.x. [DOI] [PubMed] [Google Scholar]
  • 432.Harborne J. B., Williams C. A. Anthocyanins and other flavonoids. Natural Product Reports. 2001;18(3):310–333. doi: 10.1039/b006257j. [DOI] [PubMed] [Google Scholar]
  • 433.Bennie L., Coetzee J., Malan E., Ferreira D. (4→6)-coupled proteracacinidins and promelacacinidins from Acacia galpinii and Acacia caffra. Phytochemistry. 2002;60(5):521–532. doi: 10.1016/S0031-9422(02)00124-3. [DOI] [PubMed] [Google Scholar]
  • 434.Bennie L., Coetzee J., Malan E., Ferreira D. Structure and stereochemistry of dimeric proteracacinidins possessing the rare C-4(C) → C-5(D) interflavanyl linkage. Phytochemistry. 2002;59(6):673–678. doi: 10.1016/S0031-9422(02)00010-9. [DOI] [PubMed] [Google Scholar]
  • 435.Bennie L., Malan E., Coetzee J., Ferreira D. Structure and synthesis of ether-linked proteracacinidin and promelacacinidin proanthocyanidins from Acacia caffra. Phytochemistry. 2000;53(7):785–793. doi: 10.1016/s0031-9422(99)00618-4. [DOI] [PubMed] [Google Scholar]
  • 436.Binutu O. A., Cordell G. A. Constituents of Afzelia bella stem bark. Phytochemistry. 2001;56(8):827–830. doi: 10.1016/S0031-9422(01)00006-1. [DOI] [PubMed] [Google Scholar]
  • 437.Bojase G., Wanjala C. C. W., Majinda R. R. T. Flavonoids from the stem bark of Bolusanthus speciosus. Phytochemistry. 2001;56(8):837–841. doi: 10.1016/S0031-9422(01)00009-7. [DOI] [PubMed] [Google Scholar]
  • 438.Ito C., Itoigawa M., Kojima N., et al. Cancer chemopreventive activity of rotenoids from Derris trifoliata. Planta Medica. 2004;70(6):585–588. doi: 10.1055/s-2004-815447. [DOI] [PubMed] [Google Scholar]
  • 439.Yenesew A., Kiplagat J. T., Derese S., et al. Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata. Phytochemistry. 2006;67(10):988–991. doi: 10.1016/j.phytochem.2006.01.002. [DOI] [PubMed] [Google Scholar]
  • 440.Yenesew A., Mushibe E. K., Induli M., et al. 7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoliata. Phytochemistry. 2005;66(6):653–657. doi: 10.1016/j.phytochem.2005.02.005. [DOI] [PubMed] [Google Scholar]
  • 441.Ragusa S., De Pasquale R., Flores M., Germanò M. P., Sanogo R., Rapisarda A. Micromorphological investigations on Entada africana Guill. et Perr. (Mimosaceae) Farmaco. 2001;56(5-7):361–363. doi: 10.1016/S0014-827X(01)01052-7. [DOI] [PubMed] [Google Scholar]
  • 442.Sanogo R., Germanò M. P., D'Angelo V., Guglielmo M., De Pasquale R. Antihepatotoxic properties of Entada africana (Mimosaceae) Phytotherapy Research. 1998;12(1):S157–S159. doi: 10.1002/(SICI)1099-1573(1998)12:1+<S157::AID-PTR282>3.0.CO;2-H. [DOI] [Google Scholar]
  • 443.Kokwaro J. O. Medicinal plants of east Africa. University of Nairobi press; 2009. [Google Scholar]
  • 444.Yenesew A., Induli M., Derese S., et al. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65(22):3029–3032. doi: 10.1016/j.phytochem.2004.08.050. [DOI] [PubMed] [Google Scholar]
  • 445.Yenesew A., Derese S., Midiwo J. O., Bii C. C., Heydenreich M., Peter M. G. Antimicrobial flavonoids from the stem bark of Erythrina burttii. Fitoterapia. 2005;76(5):469–472. doi: 10.1016/j.fitote.2005.04.006. [DOI] [PubMed] [Google Scholar]
  • 446.Yenesew A., Irungu B., Derese S., Midiwo J. O., Heydenreich M., Peter M. G. Two prenylated flavonoids from the stem bark of Erythrina burttii. Phytochemistry. 2003;63(4):445–448. doi: 10.1016/S0031-9422(03)00209-7. [DOI] [PubMed] [Google Scholar]
  • 447.Yenesew A., Midiwo J. O., Guchu S. M., Heydenreich M., Peter M. G. Three isoflav-3-enes and a 2-arylbenzofuran from the root bark of Erythrina burttii. Phytochemistry. 2002;59(3):337–341. doi: 10.1016/S0031-9422(01)00459-9. [DOI] [PubMed] [Google Scholar]
  • 448.Yenesew A., Midiwo J. O., Miessner M., Heydenreich M., Peter M. G. Two prenylated flavanones from stem bark of Erythrina burttii. Phytochemistry. 1998;48(8):1439–1443. doi: 10.1016/S0031-9422(97)00945-X. [DOI] [Google Scholar]
  • 449.Nkengfack A. E., Vardamides J. C., Fomum Z. T., Meyer M. Prenylated isoflavanone from Erythrina eriotricha. Phytochemistry. 1995;40(6):1803–1808. doi: 10.1016/0031-9422(95)00037-8. [DOI] [PubMed] [Google Scholar]
  • 450.Nkengfack A. E., Vouffo T. W., Vardamides J. C., et al. Phenolic metabolites from Erythrina species. Phytochemistry. 1997;46(3):573–578. doi: 10.1016/S0031-9422(97)00291-4. [DOI] [Google Scholar]
  • 451.Andayi A. W., Yenesew A., Derese S., et al. Antiplasmodial flavonoids from Erythrina sacleuxii. Planta Medica. 2006;72(2):187–189. doi: 10.1055/s-2005-873200. [DOI] [PubMed] [Google Scholar]
  • 452.Yenesew A., Midiwo J. O., Heydenreich M., Peter M. G. Four isoflavones from the stem bark of Erythrina sacleuxii. Phytochemistry. 1998;49(1):247–249. doi: 10.1016/S0031-9422(97)00880-7. [DOI] [PubMed] [Google Scholar]
  • 453.Yenesew A., Midiwo J. O., Heydenreich M., Schanzenbach D., Peter M. G. Two isoflavanones from the stem bark of Erythrina sacleuxii. Phytochemistry. 2000;55(5):457–459. doi: 10.1016/S0031-9422(00)00349-6. [DOI] [PubMed] [Google Scholar]
  • 454.Derese S., Yenesew A., Midiwo J. O., Heydenreich M., Peter M. G. A new isoflavone from stem bark of Millettia dura. Bulletin of the Chemical Society of Ethiopia. 2003;17(1):113–115. [Google Scholar]
  • 455.Dagne E., Mammo W., Sterner O. Flavonoids of Tephrosia polyphylla. Phytochemistry. 1992;31(10):3662–3663. doi: 10.1016/0031-9422(92)83754-M. [DOI] [Google Scholar]
  • 456.Niassy B., Um B.-H., Lobstein A., Weniger B., Koné M., Anton R. Flavonoids of Tephrosia deflexa and Tephrosia albifoliolis. Comptes Rendus Chimie. 2004;7(10-11):993–996. doi: 10.1016/j.crci.2003.12.020. [DOI] [Google Scholar]
  • 457.Duddeck H., Yenesew A., Dagne E. Isoflavonoids from Taverniera abyssinica. Bulletin of the Chemical Society of Ethiopia. 1987;1(1):p. pp. [Google Scholar]
  • 458.Noamesi B. K., Bogale M., Dagne E. Intestinal smooth muscle spasmolytic actions of the aqueous extract of the roots of Taverniera abyssinica. Journal of Ethnopharmacology. 1990;30(1):107–113. doi: 10.1016/0378-8741(90)90021-K. [DOI] [PubMed] [Google Scholar]
  • 459.Latté K. P. Phytochemische und pharmakologische Untersuchungen an Pelargonium reniforme CURT. 1999. [Google Scholar]
  • 460.Wagner H., Bladt S. Cumarine aus südafrikanischen Pelargonium-arten. Phytochemistry. 1975;14(9):2061–2064. doi: 10.1016/0031-9422(75)83126-8. [DOI] [Google Scholar]
  • 461.Drewes S. E., Khan F., van Vuuren S. F., Viljoen A. M. Simple 1, 4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry. 2005;66(15):1812–1816. doi: 10.1016/j.phytochem.2005.05.024. [DOI] [PubMed] [Google Scholar]
  • 462.Ngondi J. L., Oben J. E., Minka S. R. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids in Health and Disease. 2005;4(1):12. doi: 10.1186/1476-511X-4-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 463.Vertuani S., Braccioli E., Buzzoni V., Manfredini S. Antioxidant capacity of Adansonia digitata fruit pulp and leaves. Acta Phytotherapeutica. 2002;2(5):2–7. [Google Scholar]
  • 464.El-Mousallamy A. M. D. Leaf flavonoids of Albizia lebbeck. Phytochemistry. 1998;48(4):759–761. doi: 10.1016/S0031-9422(97)01117-5. [DOI] [PubMed] [Google Scholar]
  • 465.Abegaz B. M., Ngadjui B. T., Folefoc G. N., et al. Prenylated flavonoids, monoterpenoid furanocoumarins and other constituents from the twigs of Dorstenia elliptica (Moraceae) Phytochemistry. 2004;65(2):221–226. doi: 10.1016/j.phytochem.2003.10.028. [DOI] [PubMed] [Google Scholar]
  • 466.Abegaz B. M., Ngadjui B. T., Dongo E., Tamboue H. Prenylated chalcones and flavones from the leaves of Dorstenia kameruniana. Phytochemistry. 1998;49(4):1147–1150. doi: 10.1016/S0031-9422(98)00061-2. [DOI] [Google Scholar]
  • 467.Abegaz B. M., Ngadjui B. T., Dongo E., Ngameni B., Nindi M. N., Bezabih M. Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri. Phytochemistry. 2002;59(8):877–883. doi: 10.1016/S0031-9422(01)00483-6. [DOI] [PubMed] [Google Scholar]
  • 468.El-Ghorab A. H., El-Massry K. F., Marx F., Fadel H. M. Antioxidant activity of Egyptian Eucalyptus camaldulensisvar. brevirostrisleaf extracts. Molecular Nutrition Food Research. 2003;47(1):41–45. doi: 10.1002/food.200390009. [DOI] [PubMed] [Google Scholar]
  • 469.Ezeamuzie I. C., Ambakederemo A. W., Shode F. O., Ekwebelem S. C. Antiinflammatory effects of Moringa oleifera root extract. International Journal of Pharmacognosy. 1996;34(3):207–212. doi: 10.1076/phbi.34.3.207.13211. [DOI] [Google Scholar]
  • 470.Midiwo J. O., Yenesew A., Juma B., Omosa K. L., Omosa I. L., Mutisya D. Phytochemical evaluation of some Kenyan medicinal plants. Proceedings of the Phytochemical evaluation of some Kenyan medicinal plants. 11th NAPRECA Symposium Book of Proceedings; 2001; Antananarivo, Madagascar. [Google Scholar]
  • 471.Midiwo J. O., Gikonyo N., Wanjau D., Matasi J., Waterman P. Flavonoids of Polygonum senegalense (Meisn) Part II: More surface and internal tissue flavonoid aglycones. Bulletin of the Chemical Society of Ethiopia. 1992;6(2) [Google Scholar]
  • 472.Akpanabiatu M. I., Umoh I. B., Udosen E. O., Udoh A. E., Edet E. E. Rat serum electrolytes, lipid profile and cardiovascular activity on Nauclea latifolia leaf extract administration. Indian Journal of Clinical Biochemistry. 2005;20(2):29–34. doi: 10.1007/BF02867397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 473.Gidado A., Ameh D. A., Atawodi S. E. Effect of Nauclea latifolia leaves aqueous extracts on blood glucose levels of normal and alloxan-induced diabetic rats. African Journal of Biotechnology. 2005;4(1):91–93. [Google Scholar]
  • 474.Onyeyili P. A., Nwosu C. O., Amin J. D., Jibike J. I. Anthelmintic activity of crude aqueous extract of Nauclea latifolia stem bark against ovine nematodes. Fitoterapia. 2001;72(1):12–21. doi: 10.1016/S0367-326X(00)00237-9. [DOI] [PubMed] [Google Scholar]
  • 475.Majinda R. R. T., Motswaledi M., Waigh R. D., Waterman P. G. Phenolic and antibacterial constituents of Vahlia capensis. Planta Medica. 1997;63(3):268–270. doi: 10.1055/s-2006-957671. [DOI] [PubMed] [Google Scholar]
  • 476.Katsoulis L. C., Veale D. J. H., Havlik I. The pharmacological action of Rhoicissus tridentata on isolated rat uterus and ileum. Phytotherapy Research. 2000;14(6):460–462. doi: 10.1002/1099-1573(200009)14:6<460::AID-PTR616>3.0.CO;2-A. doi: 10.1002/1099-1573(200009)14:6<460::AID-PTR616>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 477.De Paola R., Muià C., Mazzon E., et al. Effects of Hypericum perforatum extract in a rat model of ischemia and reperfusion injury. Shock. 2005;24(3):255–263. doi: 10.1097/01.shk.0000175428.57769.34. [DOI] [PubMed] [Google Scholar]
  • 478.Farombi E. O. Mechanisms for the hepatoprotective action of kolaviron: studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride-treated rats. Pharmacological Research. 2000;42(1):75–80. doi: 10.1006/phrs.1999.0648. [DOI] [PubMed] [Google Scholar]
  • 479.Farombi E. O., Adepoju B. F., Ola-Davies O. E., Emerole G. O. Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seeds. European Journal of Cancer Prevention. 2005;14(3):207–214. doi: 10.1097/00008469-200506000-00003. [DOI] [PubMed] [Google Scholar]
  • 480.Gyamfi M. A., Aniya Y. Medicinal herb, Thonningia sanguinea protects against aflatoxin B1 acute hepatotoxicity in Fischer 344 rats. Human & Experimental Toxicology. 1998;17(8):418–423. doi: 10.1191/096032798678909007. [DOI] [PubMed] [Google Scholar]
  • 481.Farombi E. O., Alabi M. C., Akuru T. O. Kolaviron modulates cellular redox status and impairment of membrane protein activities induced by potassium bromate (KBrO3) in rats. Pharmacological Research. 2002;45(1):63–68. doi: 10.1006/phrs.2001.0907. [DOI] [PubMed] [Google Scholar]
  • 482.Ojewole J. A. O. Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. Journal of Ethnopharmacology. 2006;103(1):126–134. doi: 10.1016/j.jep.2005.07.012. [DOI] [PubMed] [Google Scholar]
  • 483.Ojewole J. A. O. Evaluation of the anti-inflammatory properties of Sclerocarya birrea (A. Rich.) Hochst. (family: Anacardiaceae) stem-bark extracts in rats. Journal of Ethnopharmacology. 2003;85(2-3):217–220. doi: 10.1016/S0378-8741(03)00019-9. [DOI] [PubMed] [Google Scholar]
  • 484.Ojewole J. A. O. Antinociceptive, antiinflammatory and antidiabetic effects of Leonotis leonurus (L.) R. BR. (Lamiaceae) leaf aqueous extract in mice and rats. Methods and Findings in Experimental and Clinical Pharmacology. 2005;27(4):257–264. doi: 10.1358/mf.2005.27.4.893583. [DOI] [PubMed] [Google Scholar]
  • 485.Olajide O. A., Awe S. O., Makinde J. M., et al. Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. Journal of Ethnopharmacology. 2000;71(1-2):179–186. doi: 10.1016/S0378-8741(99)00200-7. [DOI] [PubMed] [Google Scholar]
  • 486.Kabiri N., Asgary S., Madani H., Mahzouni P. Effects of Amaranthus caudatus l. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. Journal of Medicinal Plants Research. 2010;4(5):355–361. [Google Scholar]
  • 487.Selloum L., Arrar L., Medani B., Khenchouche A., Bisker H. Effect of Cleome arabica leaves extract on inflammatory cells response in rat. Biochemical Society Transactions. 1995;23(4):p. 609. doi: 10.1042/bst023609s. [DOI] [PubMed] [Google Scholar]
  • 488.Mohammed B. M., Fisher B. J., Kraskauskas D., et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. International Wound Journal. 2016;13(4):572–584. doi: 10.1111/iwj.12484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 489.Larrosa J. M., Polo V., Ramirez T., Pinilla I., Pablo L. E., Honrubia F. M. Alpha-tocopherol derivatives and wound healing in an experimental model of filtering surgery. Ophthalmic Surgery, Lasers & Imaging Retina. 2000;31(2):131–135. [PubMed] [Google Scholar]
  • 490.Süntar I., Akkol E. K., Keles H., Yesilada E., Sarker S. D. Exploration of the wound healing potential of Helichrysum graveolens (Bieb.) Sweet: isolation of apigenin as an active component. Journal of Ethnopharmacology. 2013;149(1):103–110. doi: 10.1016/j.jep.2013.06.006. [DOI] [PubMed] [Google Scholar]
  • 491.Lodhi S., Singhai A. K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pacific Journal of Tropical Medicine. 2013;6(4):253–259. doi: 10.1016/s1995-7645(13)60053-x. [DOI] [PubMed] [Google Scholar]
  • 492.Park E., Lee S. M., Jung I.-K., Lim Y., Kim J.-H. Effects of genistein on early-stage cutaneous wound healing. Biochemical and Biophysical Research Communications. 2011;410(3):514–519. doi: 10.1016/j.bbrc.2011.06.013. [DOI] [PubMed] [Google Scholar]
  • 493.Yadav V. R., Prasad S., Sung B., Aggarwal B. B. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. International Immunopharmacology. 2011;11(3):295–309. doi: 10.1016/j.intimp.2010.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 494.Ajayi E. I. O., Popoola G., Ojediran E. Wound healing potential of Nauclea latifolia and Manihot esculenta leaf extracts in type 1 diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines. 2016;13(1):1–5. [Google Scholar]
  • 495.Agyare C., Boakye Y. D., Bekoe E. O., Hensel A., Dapaah S. O., Appiah T. Review: African medicinal plants with wound healing properties. Journal of Ethnopharmacology. 2016;177:85–100. doi: 10.1016/j.jep.2015.11.008. [DOI] [PubMed] [Google Scholar]
  • 496.Tuhin R. H., Begum M., Rahman S., et al. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complementary and Alternative Medicine. 2017;17(1, article no. 423) doi: 10.1186/s12906-017-1930-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Wiley

RESOURCES