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Early-onset (pediatric and adolescent) multiple sclerosis (MS) is a well-established demyelinating disease that accounts for
approximately 3-5% of all MS cases. Thus, identifying potential biomarkers that can reflect the pathogenic mechanisms, disease
course and prognosis, and therapeutic response in such patients is of paramount importance.Myelin oligodendrocyte glycoprotein
(MOG) has been regarded as a putative autoantigen and autoantibody target in patientswith demyelinating diseases for almost three
decades. However, recent studies have suggested that antibodies against MOG represent a distinct clinical entity of dominantly
humoral profile, with a range of clinical phenotypes closely related to the age of onset, specific patterns of disease course, and
responses to treatment. Furthermore, the major histocompatibility complex (MHC)—which has been regarded as the “gold
standard” for attributing genetic burden in adult MS since the early 1970s—has also emerged as the primary genetic locus in
early-onset MS, particularly with regard to the human leukocyte antigen (HLA) alleles DRB1∗1501 and DRB1∗0401. Recent studies
have investigated the potential interactions among HLA, MOG, and environmental factors, demonstrating that early-onset MS is
characterized by genetic, immunogenetic, immunological, and familial trait correlations. In this paper, we review recent evidence
regarding HLA-genotyping and MOG antibodies—the two most important candidate biomarkers for early-onset MS—as well as
their potential application in the diagnosis and treatment of MS.

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune demyeli-
nating and neurodegenerative disease of the central nervous
system (CNS), representing the most common cause of
neurological disability among young adults. For decades,
the pediatric and adolescent form of the disease consti-
tuted a controversial entity that often escaped diagnosis.
Presently, early-onset (pediatric and adolescent) MS is a well-
established demyelinating disease that accounts for approxi-
mately 3-5% of all MS cases [1–3].

Different mechanisms of demyelination, neurodegener-
ation, gliosis, and remyelination converge in various ways
to create a unique clinical result for each patient with MS.
Thus, identifying potential biomarkers that can reflect the
pathogenic mechanisms, disease course and prognosis, and
therapeutic response is of paramount importance. However,
no studies to date have identified absolute surrogates for
MS [4]. In this paper, we review recent evidence regarding
human leukocyte antigen (HLA) genotyping and myelin
oligodendrocyte glycoprotein (MOG) antibodies—the two
most important candidate biomarkers for early-onsetMS—as
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well as their potential application in the diagnosis and treat-
ment of MS.

2. Main Text

2.1.MOGAntibody-RelatedDisorders: Phenotypical Spectrum,
Prognosis, and Treatment. Although MOG comprises less
than 0.05% of all CNS myelin proteins, it is localized on the
outermost surface of themyelin sheath,making it an excellent
antibody target [5]. The human antibodies (Abs) to MOG
exhibit all the characteristics of pathogenic autoantibodies:
they recognize MOG in its correct conformation, they are
mostly of the complement fixing isotype IgG1, and they
activate Ab-dependent cellular cytotoxicity, although their
exact pathogenic role remains to be further clarified [5–7].

MOG antibodies are continually identified in a range of
acquired demyelinating syndromes (ADS) in both adults and
children. MOG antibodies are present in up to one-third of
children with ADS, especially in patients who have expe-
rienced an acute demyelinating episode prior to the age of
10 years. Furthermore, previous studies have demonstrated a
link between MOG antibodies and non-MS diagnoses [8–11].

While older reports provided controversial evidence,
more recent studies have revealed that children with MOG
antibodies can present with either a monophasic or mul-
tiphasic disease course (in up to 50% of cases), primarily
depending on their age [9–14]. Previous research has indi-
cated that patients with a monophasic disease course are
more often younger and male. Moreover, in the majority
of cases (50%), monophasic forms of the disease manifest
as acute disseminated encephalomyelitis (ADEM), especially
in patients under the age of 5 years [9, 12, 15, 16]. Other
monophasic subtypes include monophasic neuromyelitis
optica spectrum diseases (NMOSDs) accompanied by optic
neuritis and/or transverse myelitis [9, 12, 17, 18], as well as
clinically isolated syndromes [optic neuritis (ON), transverse
myelitis (TM), cerebellitis, and brainstem disease], which
present after puberty and donot confer risk factors for further
MS-like episodes, such as positive oligoclonal bands (OCBs)
or MS-like lesions on MRI [9, 10, 12, 16]. Interestingly, in
patients with the monophasic subtype, anti-MOG titers tend
to be transient and fall to undetected levels during themonths
following an acute episode [9, 12, 19]. In contrast, especially
in older female patients with high and persistent MOG titers,
different multiphasic subtypes have been identified, includ-
ing multiphasic disseminated encephalomyelitis (MDEM);
ADEM followed by relapsing episodes of ON (ADEM-ON);
NMOSD; and relapsing, steroid-responsive ON [9, 12, 20–
27]. Recently, MOG Abs have been detected in cases of
NMDAR encephalitis, further expanding the phenotypic
spectrum of the disorder [28, 29].

Only a very small proportion of both children and adults
with MS present with MOG antibody seropositivity, possi-
bly representing a distinct phenotype which could benefit
from different treatment strategies. This is in accordance
with biopsy findings in MOG antibody patients with acute
demyelinating episodes, which reveal a lesion pattern similar
to MS pattern II with demyelination and complement acti-
vation [9, 30–33]. Moreover, Hennes et al. suggested that a

cutoff higher than previously anticipated (e.g., ≥1,280) can be
used to increase the specificity for a non-MS disease course
and facilitate the interpretation of MOG assay results [9].

The vast majority of recent studies suggest that persis-
tently high-titer MOG Abs, but not their sole presence at
onset, are associated with a high risk of relapse and that
serial testing during and between clinical relapses could
be reasonable for safe therapeutic decision-making, when
attempting to predict the clinical course in MOG antibody
positive patients [9, 11, 12, 34]. In general, patients with
monophasic disease tend to exhibit more favorable outcomes
(i.e., resolution of clinical and imaging abnormalities), which
does not seem to be the case in patientswith relapsing disease,
who tend to exhibit a high relapse rate and progressive
impairments [9, 12, 34, 35].

Paraclinical tests have also been associated with a distinct
profile in patients with MOG antibody associated diseases.
Cerebrospinal fluid (CSF) analysis inMOG antibody positive
children is mandatory for detecting pleocytosis and the usual
absence of OCBs (90% of cases), while double positivity for
both MOG and anti-aquaporin 4 (AQP4) is rare in patients
with NMOSD phenotypes and usually not statistically signif-
icantly different fromhealthy controls [8, 9, 12, 36].MRI find-
ings also vary among clinical phenotypes. In younger patients
with an ADEM-like presentation, MRI findings are usually
characterized by poorly demarcated and widespread lesions,
sometimes with extensive myelin involvement including the
conus. Such lesions exhibit no postcontrast enhancement and
tend to resolve. In older patients, MRI findings can align
with those of NMOSD, which is associated with extensive
involvement of the optic nerves and periependymal areas as
well as longitudinal extensive transverse myelitis (LETM).
In such patients, lesions occasionally extend rostrally into
the medulla and often the conus, although normal MRI
findings are common in patients with pure relapsing ON
[12, 16, 37]. The few MOG antibody seropositive children
diagnosed with relapsing–remitting MS tend to exhibit a
typical MS-like pattern with well demarcated periventricular
and curved juxtacortical lesions involving U-fiber lesions,
Dawson finger-type lesions, and short transverse myelitis
[38].

In the acute phase, intravenous steroid treatment fol-
lowed by per os tapering, intravenous immunoglobulin treat-
ment, and plasmapheresis cycles appears to be associated
with good responsiveness [12, 24, 37, 39]. However, the
most effective treatments for relapsing disease remain to be
clarified. Children with MOG antibody associated disorders
generally did not benefit from the disease-modifying ther-
apies commonly used in MS, in those rare cases that they
have been employed, which also led to dramatic aggravation
of symptoms in select cases [40–43]. B-cell-directed inter-
ventions (e.g., plasmapheresis and rituximab) have yielded
positive results, along with certain immunosuppressive drugs
(e.g., mycophenolate, azathioprine) [12, 44–46]. In their
recent study of 102 children, Hacohen et al. reported that
IV immunoglobulin maintenance therapy was the only inter-
vention to significantly improve relapse rates and functional
outcomes, expanding its well-known immunomodulatory
effect in a probable dose-dependent manner [34].
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2.2. HLA Alleles in Pediatric MS. Linkage studies in various
populations have consistently demonstrated that the MHC
and its polymorphisms represent the genetic locus most
strongly linked to MS [47, 48]. In a recent collaborative
European study, DRB1∗1501 (split of DR2) exhibited the
strongest association with MS, along with DRB1∗0301 and
DRB1∗1301, while HLA-A∗0201 has been shown to confer
protection against MS [49].

Numerous studies have verified the association between
DRB1∗15 and early-onset MS [50–52], supporting the notion
that genetic contributions are fundamentally similar in
both early-onset and adult MS. However, whether HLA-
DRB1∗1501 by itself lowers the age at MS onset remains con-
troversial, with several studies indicating that both genetic
and environmental epistatic interactions may play a role [53–
71]. Several hypotheses have been proposed in an effort to
explain this discrepancy. Ramagopalan et al. observed that
only maternally transmitted DRB1∗15 promotes lower age
at MS onset, suggesting a possible parent of origin effect,
while others have implicated relative fluctuations in vitamin
D levels among different populations [72, 73].

In 2010, a remarkable DRB1-genotyping study in Aus-
tralia became the first to demonstrate the significance of
epistatic interactions at the HLA-DRB1 locus. Carriage of the
DRB1∗1501 risk allele was not significantly associated with
age at onset, while the DRB1∗0401 allele was associated with
a reduced age at onset when combined with DRB1∗1501 [74].

In our recent study in the Greek population, we proposed
that the DRB1∗03 allele may be associated with early-onset
MS. However, further studies are required to verify this
finding, as this allele has been associated not only with
a presumably better MS prognosis, but also with NMO, a
mainly humoral immunological entity [50].

In parallel with HLA studies, recent genome-wide associ-
ation studies (GWAS) have provided evidence for more than
50 single-nucleotide polymorphisms (SNPs) of more modest
effect that influence the risk of both adult MS and early-onset
MS, further equalizing the genetic burden of these age groups
[75] and suggesting possible clinical correlations [76]. In a
2017 study by Gianfrancesco et al., the authors analyzed 28
non-MHCmutations in 569 cases of early-onset MS. Despite
the extensive literature regarding adult MS, they concluded
that—while the generally observed higher burden did not
reach statistical significance—the weighted genetic risk score
of thesemutationswas significantly associatedwith pediatric-
onset MS [77].

3. Discussion

Pediatric and adolescent MS is a well-defined clinical entity
with established diagnostic criteria, whose early diagno-
sis and treatment may alter clinical outcomes in younger
patients. In the context of the largely expanding therapeu-
tic repertoire, the identification of genetic and antibody
biomarkers may help guide diagnosis, predict disease course,
and achieve targeted treatment. MOG antibodies and HLA
alleles, either individually or via interactive mechanisms,
have emerged as the two most promising candidates for such
biomarkers.

MOG has been identified as a putative autoantigen and
autoantibody target in patients with demyelination for almost
three decades. However, only recently have cell-based assays
(CBAs) and large-scale studies revealed its role in childhood
and adolescent demyelination [23]. Earlier studies investi-
gated MOG autoimmunity within the framework of specific
demyelinating syndromes, including ADEM and pediatric
MS, and while in ADEM cases the results were consistent,
usually contradictory results were obtained in patients with
CIS and an association with conversion to MS, especially
before the introduction of CBAs [18, 78–90]. More recent
evidence has demonstrated that antibodies against MOG
may be associated with a clinical entity distinct from MS
and AQP4-positive NMOSD [91–96]. This new entity, of
dominantly humoral profile, is characterized by a range of
clinical phenotypes closely related to the age of onset, with
their own course, response to treatment, and prognosis,
expanding the differential diagnostic work-up for patients
with suspected demyelinating diseases. Thus, Hacohen et
al. proposed a diagnostic algorithm for relapsing ADS in
children, identifying five categories of relapsing DS (MS,
anti-AQP4-positive NMOSD, MOG antibody associated dis-
orders, and antibody-negative RDS) and highlighting the
importance of anti-MOG testing in the differential diagnosis
of MS [97]. Moreover, extended clinical and radiologic diag-
nostic criteria regarding the spectrum of MOG associated
disorders have been recently proposed and although they
could be adjusted on the basis of the evolving knowledge
in this field, they could provide great assistance in everyday
clinical practice [98–101].

In contrast, since its discovery and the early disease asso-
ciation studies of the 1970s, the MHC and its polymorphisms
have represented the “gold standard” for attributing genetic
burden in adult MS. Recently studies have further established
the role of HLA-DRB1∗1501 in pediatric and adolescent,
while the roles of HLA-DRB1∗0401 and HLA-DRB1∗03
remain to be clarified. Furthermore, HLA genotype may
interact with MOG and environmental factors, especially
viruses, which may explain in part the clinical diversity of
MOG antibody associated disorders. In particular, HLA-
DRB1∗0401, which appears to correlate with younger age at
onset via epistatic interactions with HLA-DRB1∗1501, also
appears to bind with high affinity to MOG epitopes in both
familial patients with MS and asymptomatic relatives. These
findings indicate that humoral immune reactivity against
MOG is partially under the control of certain HLA class II
alleles [102–107]. This observation may be helpful in guiding
therapy, as the HLA-DRB1∗0401 allele is associated with
a greater risk of developing neutralizing antibodies against
interferon beta (IFN-𝛽), which have been linked to poor ther-
apeutic outcomes in adults [108]. Furthermore, in their recent
breakthrough study, Morandi et al. investigated the potential
interactions among MOG, HLA, and the Epstein–Barr virus
(EBV), each of which is known to play a pathogenetic role in
MS.Their findings demonstrated that EBV infection of B cells
alters MOG processing, facilitating its cross-presentation
to autoaggressive cytotoxic CD8 + T cells in an MHC-
restricted manner, highlighting the interplay between genetic
and biological factors in MS [109].
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Table 1: Summary of the available data regarding the distribution of HLA alleles andMRI findings for the four major pediatric demyelinating
clinical entities, as they have emerged under the scope of the latest genetic, antibody, and imaging markers [12, 50–71, 74, 98–101, 110–117].

Clinically definite MS AQP4 (+) NMOSD MOG antibody associated
disorders ADEM Ab(-)

HLA allele

HLA-DRB1∗1501
(Caucasian)

HLA-DRB1∗0401
(Caucasian)

HLA-DRB3∗02 &
HLA-DRB1∗13 &
HLA-DQB1∗03

(Korean)

HLA-DRB1∗03
(adult Caucasian)
HLA-DRB1∗0501
(adult Japanese)

HLA-DRB1∗0401 (?)

HLA-DRB1∗01 &
HLA-DRB1∗017

(Russian)
HLA-DRB1∗1501 &
HLA-DRB5∗0101

(Korean)
HLA-DQB1∗0602&
HLA-DRB1∗1501 &
HLA-DRB1∗1503

(Brazilian)
HLA-DRB1∗16 &
HLA-DQB1∗05
(Caucasian adult)

MRI

Ovoid, well-defined
lesions in at least two

regions
(periventricular, cortical,
or juxtacortical U-fibers,
infratentorial and spinal
cord), Dawson fingers

and black holes
in T1, ring pattern of
Gd enhancement

(1) Lesions (usually
small & localized)
involving the dorsal
medulla and the
periependymal
surface of the
ventricles; large,
confluent, unilateral,
or bilateral
subcortical/deep
white matter lesions
and long lesions (>1/2
length) of the corpus
callosum
(2) LETM with
probable rostral
extension of the lesion
into the brainstem
(3) Unilateral or
bilateral increased T2
signal or Gd
enhancement within
optic nerve or optic
chiasm, >1/2 the
distance from orbit to
chiasm

(1) Longitudinally extensive
spinal cord lesion (≥3 VS,
contiguous) on MRI
(so-called LETM)
(2) Longitudinally extensive
spinal cord atrophy (≥3 VS,
contiguous) on MRI in
patients with a history
compatible with acute myelitis
(3) Conus medullaris lesions,
especially if present at onset
(4) Longitudinally extensive
optic nerve lesion (e.g., >1/2 of
the length of the pre-chiasmal
optic nerve, T2 or T1/Gd)
(5) Perioptic Gd enhancement
during acute ON
(6) Normal supratentorial
MRI in patients with acute
ON, myelitis and/or brainstem
encephalitis
(7) Brain MRI abnormal but
no lesion adjacent to a lateral
ventricle that is ovoid/round
or associated with an inferior
temporal lobe lesion and no
Dawson’s finger-type or
juxtacortical U fiber lesion
(Matthews-Jurynczyk criteria)
(8) Large, confluent T2 brain
lesions suggestive of ADEM

Large, diffuse, poorly
demarcated (>1 to 2
cm) lesions involving
predominantly the

cerebral white matter;
deep gray matter

lesions;
T1-hypointense

lesions in the white
matter are

rare

MS: multiple sclerosis, ADEM: acute disseminated encephalomyelitis, NMOSD: neuromyelitis optica spectrum disorders, MOG: myelin oligodendrocyte
glycoprotein, LETM: longitudinally extensive transverse myelitis, Gd: gadolinium, VS: vertebral segments.

Abundant evidence supports the notion that MS is
influenced by genetic, immunogenetic, immunological, and
familial trait correlations. Table 1 [12, 50–71, 74, 98–101, 110–
117] summarizes the available data regarding the distribution
of HLA alleles and MRI findings for five demyelinating
syndromes: clinically definite MS, AQP4-positive NMOSD,

MOG antibody associated disorders, and antibody-negative
ADEM. As indicated in the table, there is an obvious lack of
information regardingHLAgenotyping in pediatric and ado-
lescentADS, despite the fact that primary results demonstrate
clear genetic diversity. We strongly believe that larger HLA-
genotyping studies regarding early-onset demyelinating
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disorders are necessary. Such studies should be conducted in
various ethnic groups in order to clarify, replicate, and expand
the available evidence.

4. Conclusions

HLA alleles and MOG antibodies have emerged as two
major biomarkers of pediatric and adolescent MS and related
demyelinating disorders. Each of these putative biomarkers
exhibits a separate correlation with MS pathogenesis, clinical
course, and treatment responses, suggesting that these factors
interact to influence MS phenotypes and outcomes, an
assumption further supported by recent evidence. Thus, fur-
ther large-scale studies regarding HLA and MOG antibodies
are required to verify and expand our knowledge of early-
onset MS and to determine the appropriate biomarkers for
distinct clinical phenotypes.

Abbreviations

MS: Multiple sclerosis
MHC: Major histocompatibility complex
HLA: Human leukocyte antigens
MOG: Myelin oligodendrocyte glycoprotein
AQP4: Aquaporin-4
Abs: Antibodies
CSF: Cerebrospinal fluid
OCBs: Oligoclonal bands
ADS: Acquired demyelinating syndromes
ADEM: Acute disseminated encephalomyelitis
MDEM: Multiphasic disseminated encephalomyelitis
ADEM-ON: ADEM followed by optic neuritis
ON: Optic neuritis
TM: Transverse myelitis
NMO: Neuromyelitis optica
NMOSD: NMO spectrum diseases
GWAS: Genome-wide association studies
SNPs: Single-nucleotide polymorphisms
CBAs: Cell-based assays
IFN-𝛽: Interferon beta
CNS: Central nervous system.
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