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A new era for stroke therapy:
Integrating neurovascular protection
with optimal reperfusion
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Abstract

Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many

patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show

that 95% of published preclinical studies on ‘‘neuroprotectants’’ (1990–2018) reported positive outcomes in animal

models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this

failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants

in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined

the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small

fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models

with stroke comorbidities. Recent clinical trials demonstrate that 70%–80% of patients treated with endovascular

thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed

approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that

neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this

review to increase translational successes.
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Introduction

Acute ischemic stroke remains a leading cause of dis-
ability and mortality worldwide.1 Following initially
modest progress after the introduction of intravenous
thrombolysis in 1995,2–5 dramatic gains in reperfusion
therapies have recently been achieved with endovascu-
lar thrombectomy for the most severe strokes with large
vessel occlusion (LVO).6 On the other hand, many
stroke patients remain severely disabled. The rates of
functional independence achieved even after highly
effective reperfusion treatments are just under 50%,7–9

underscoring an unmet clinical need for adjunctive neu-
roprotective treatments. There has been a long history
of failed clinical trials of neuroprotection in stroke.10

However, most clinical trials did not test the neuropro-
tective candidate in combination with successful reper-
fusion. Timely and successful restoration of blood flow
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may be essential to deliver therapeutic concentrations
of neuroprotectants to the ischemic brain. Recognition
of this key distinction unveils a new path for more fruit-
ful partnerships between preclinical and clinical scien-
tists. The primary goal of this review is to discuss the
evidence-based rationale for retesting neuroprotectants
in conjunction with reperfusion therapy in ischemic
stroke patients. In this review, we hope to accomplish
the following: (1) Highlight recent exciting advances
in stroke treatments, (2) identify the remaining areas
of paramount clinical need for neuroprotection in
stroke, (3) synopsize our analysis of the preclinical lit-
erature on neuroprotective strategies, (4) identify mis-
matches between preclinical and clinical research that
may have contributed to the failures of translation to
date, (5) discuss the primary goals of stroke treatments
and the biological mechanisms they must target, and
(6) recommend future approaches for preclinical and
clinical research, including combinatorial approaches
to decelerate ischemic injury and extend the temporal
window during which injured tissue can be salvaged.

Recent progress in stroke
reperfusion therapies

Recent progress in stroke reperfusion therapies is lar-
gely attributed to the successful translation of key con-
cepts about the pathophysiology of cerebral artery
occlusion and ensuing tissue ischemia. Early laboratory
and clinical studies demonstrated that acute LVO
leads to an ischemic ‘‘core’’ consisting of irreversibly
damaged, infarcted tissue, surrounded by a ‘‘penum-
bra’’ of functionally impaired, but potentially salvage-
able tissue.11–13 Following acute LVO, the ischemic
core may expand into the penumbral area over time,
but this process may be aborted if tissue reperfusion is
achieved sufficiently early.14–16 The growth of the ische-
mic core progresses at varying rates across individuals,
depending on collateral blood flow capacity and paren-
chymal ischemic tolerance.17–19 Thus, some individuals
with poor collateral flow and low ischemic tolerance
after LVO display a larger ischemic core soon after
symptom onset. These individuals are known as ‘‘fast
progressors,’’ who tend to suffer worse clinical out-
comes, with the most severe symptoms, larger infarcts,
and increased risk of malignant cerebral edema and
hemorrhagic transformation.19 Further studies are
needed to better understand the molecular and clinical
predictors of this devastating stroke phenotype.
Conversely, patients with superior collateral flow and
ischemic tolerance tend to exhibit a smaller ischemic
core up to several days after LVO stroke onset. These
may be the ‘‘slow progressors,’’ who typically experi-
ence superior clinical outcomes in response to reperfu-
sion therapy.13,19,20

Seven randomized clinical trials8,9,21,25 of endovas-
cular therapy have now established that LVO reperfu-
sion significantly improved clinical outcomes in
patients with severe symptoms and brain tissue that is
salvageable within 24 h after stroke onset (Table 1).
A clear trend across these clinical trials is that faster
and more complete arterial reperfusion correlates with
superior treatment efficacy. Fast progressors benefit the
most from the earliest possible reperfusion, typically
within less than 6 h of stroke onset. Slow progressors
may also derive significant benefits from delayed reper-
fusion, as demonstrated in the recent DAWN and
DEFUSE-3 trials.8,9 Importantly, the latter trials
revealed that slow progressors who do not achieve
reperfusion will ultimately experience poor functional
outcomes.

Why does reperfusion therapy not
improve stroke outcome in all patients?

Despite the successful modernization of reperfusion
therapies as outlined in Table 1 and recognition of
the importance of selecting patients with salvageable
brain tissue rather than solely by fixed time-windows,
there remains a large need to improve acute stroke
treatments in multiple areas. Although overall rates of
partial or complete arterial recanalization after early
administration of intravenous tissue plasminogen acti-
vator (iv tPA) reach 33%,26,27 complete recanalization
rates with iv tPA are much lower for occlusions of the
intracranial internal carotid artery (ICA; 4%), prox-
imal middle cerebral artery (MCA; 21%), and basilar
artery (4%).27 Moreover, a significant number of LVO
patients remain severely disabled despite achieving suc-
cessful reperfusion with the gold standard intervention
of intravenous tPA combined with endovascular
thrombectomy. In a 2015 meta-analysis of the first
five successful trials of stroke endovascular therapy,
18.5 to 32.5% of those patients who achieved successful
reperfusion within 3 to 8 h after symptom onset still
experienced severe disability or death at 90 days.28 In
the DAWN and DEFUSE-3 trials of delayed reperfu-
sion, 84% and 76% of respective endovascular patients
achieved successful reperfusion, but only 49% and 45%
of these patients experienced long-term functional inde-
pendence. These data indicate that some patients are
less responsive to initially successful reperfusion. In
some cases, early re-stenosis or re-occlusion of the reca-
nalized vessel may account for unfavorable long-term
outcomes. In the DAWN and DEFUSE-3 trials, the
rates of artery recanalization at 24 h were 77% and
78%, respectively, which were only slightly lower or
similar to the rates of initial angiographic recanaliza-
tion. Therefore, in the majority of patients, failure to
achieve good outcomes despite successful reperfusion is
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more readily attributed to a large pre-intervention
infarct and to a lesser extent, the eloquence of the
affected brain area.29 Another possible explanation is
that some LVO patients experience relatively fast
infarct growth due to collaterals failing between the
initial time of brain imaging and subsequent vessel reca-
nalization.19 Other factors, most notably age but also
other co-morbidities, in-hospital complications, and
rehabilitation quality may also influence the long-term
efficacy of reperfusion therapies. Further studies are
needed to characterize the mechanisms of ineffective
arterial recanalization and suboptimal response to ade-
quate reperfusion.

Among current stroke therapies, another need for
improvement relates to hemorrhagic transformation
and other deleterious effects of reperfusion after intra-
venous thrombolysis with or without endovascular
thrombectomy.30 Intravenous thrombolysis has been
associated with an increased risk of symptomatic intra-
cranial hemorrhage (sICH) ranging between 2 and 7%
within the first 24 to 30 h after ischemic stroke
onset.31,32 The risk of sICH or large parenchymal
hematoma ranged from 4 to 5% in both the interven-
tion and control groups in the HERMES meta-analy-
sis, which included more than 1200 patients pooled
from the landmark endovascular therapy trials in
2015.7 Furthermore, approximately 60 to 80% of
LVO patients who developed early ICH after endovas-
cular thrombectomy experienced severe disabilities
based on the modified Rankin score (mRS 4 or 5) or
mortality at 90 days in a large single-center retrospect-
ive study.33 To maximize the benefits of reperfusion
therapies, future neuroprotective therapies must protect
the blood–brain barrier, reduce the risk of hemorrhagic
transformation, and minimize other types of reperfu-
sion injury after ischemic strokes.

How can stroke reperfusion therapies be
further improved?

Although stroke reperfusion therapy is effective under
ideal circumstances, its effectiveness in the real world
remains limited because the majority of stroke patients
lack timely access to intravenous thrombolysis, with or
without endovascular therapy. This is due in large part
to failure of early recognition, unknown duration of
symptoms, or late arrival of stroke patients to the hos-
pital in remote geographical locations. Early epidemio-
logical studies demonstrated that less than 10% of
patients diagnosed with acute ischemic stroke in US
hospitals are treated with reperfusion therapies,
mainly because of delayed presentation.34 This
number is likely to increase with the modernization of
stroke healthcare systems, and as more patients with
LVO are now eligible for endovascular therapy up toT
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24 h after symptom onset, based on the DAWN and
DEFUSE-3 trials.35 On the other hand, no more than
25% of all acute ischemic strokes in the general popu-
lation are thought to be due to LVO.36 Therefore, the
majority of non-LVO patients with distal arterial
branch occlusions or small vessel occlusion who could
be eligible for intravenous thrombolysis remain
excluded from reperfusion, strictly due to delayed clin-
ical presentation beyond 4.5 h of symptom onset. This
problem underscores the unmet demand for neuropro-
tective therapies to preserve penumbral brain tissue
(with consequent delay in tissue infarction), prevent
hemorrhagic transformation, and extend the thera-
peutic time window for reperfusion.

Why did earlier clinical trials of
neuroprotection in stroke fail despite

previous success in preclinical models?

The last two decades have witnessed a remarkable
increase in the number, breadth, and depth of preclin-
ical research studies on acute ischemic stroke.37 Recent
animal studies have identified a significant number of
neuroprotectants that reduce acute ischemic brain
injury in preclinical models.38 Between 1990 and 1994,
there were �25 publications per year assessing the
effects of neuroprotectants in animal models of acute
ischemic stroke. This number increased three-fold
(77 per year) between 2000 and 2004 and almost six-
fold after 2010 (144 per year). Between 1990 and 1994,
approximately 500 clinical trials had commenced on
>200 neuroprotective candidates for ischemic stroke,
and �350 of these trials had been completed as of 28
February 2018 (data from www.clinicaltrials.gov).
However, among the �200 neuroprotective candidates
tested in patients, only nine successfully transitioned to
Phase III trials with the support of promising preclin-
ical studies. An additional candidate, DP-B99, transi-
tioned to Phase III trials without the support of
published preclinical work.39–41 However, none of
these completed Phase III trials demonstrated signifi-
cantly positive treatment effects to support transla-
tion of neuroprotectants into standard clinical
practice.11,13,19,20

The neuroprotectant uric acid accounts for as much
as two-thirds of total antioxidant capacity in plasma42

and is among the top 10 candidates from the above-
mentioned Phase III stroke trials. Preclinical studies
have demonstrated that uric acid can prevent gluta-
mate-induced cell death in vitro43 and improve func-
tional outcomes in animal models of ischemic stroke
by neutralizing reactive oxygen species.44 Consistent
with these preclinical data, the administration of uric
acid decreased lipid peroxidation in a Phase II pilot
study without eliciting significant adverse reactions.45

However, the randomized, double-blinded, placebo-
controlled Phase IIb/III multicenter URICO-ICTUS
trial demonstrated that co-administration of uric acid
with tissue plasminogen activator (tPA) was not super-
ior to reperfusion (intravenous or intra-arterial) alone;
the addition of uric acid failed to change primary out-
comes, or the percentage of patients with modified
Rankin scores of 0–1 during follow-up at 90 days.46

However, a post hoc analysis conducted on patients
undergoing thrombectomy in URICO-ICTUS revealed
statistically significant differences in clinical outcomes
favoring the uric acid arm.47 A plethora of other pre-
clinically validated neuroprotective candidates, includ-
ing cerebrolysin,48 magnesium sulfate,49 citicoline,50

human albumin,51 ginsenoside Rb1,52 and recombinant
human erythropoietin (rhEPO)53 all failed to provide
meaningful clinical benefits, raising important ques-
tions about the low rate of translation of drug efficacy
from experimental models to clinical trials.54 Why has
it been so difficult to achieve meaningful neuroprotec-
tive effects in clinical trials of stroke? This failure may
be attributed to multiple factors, including a series of
key mismatches between preclinical and clinical stroke
research that are identified below.

Analysis of pre-clinical and clinical
research mismatches

In order to identify the discrepancies between basic and
clinical stroke research, we analyzed all the original
preclinical studies on neuroprotectants in ischemic
stroke that were indexed in PubMed and Web of
Science databases between January 1, 1990 and
February 28, 2018 and published in English. The
MeSH search terms entered into PubMed were:
‘‘Neuroprotective Agents’’[Majr] AND ‘‘Brain
Ischemia’’[Majr]. The search terms for the Web of
Science database were: (TS¼ (((Brain OR cerebral
OR intracranial OR cranial OR intracerebral) AND
(ischemic OR ischemia OR infarct OR hypoxic OR
hypoxia OR anoxic OR anoxia)) AND (neuroprotec-
tive OR neuroprotectant OR neuroprotect)))
AND LANGUAGE: (English) AND DOCUMENT
TYPES: (Article). These search strategies identified a
total of 3943 publications in PubMed and 6749 publi-
cations in Web of Science. We excluded studies dupli-
cated in both databases (3182 in number) and all
records that did not directly report the testing of neu-
roprotectants (2928 in number). The remaining 4582
studies were screened to ensure compliance with
remaining inclusion/exclusion criteria. For example,
review articles, clinical studies, in vitro studies, studies
focused on physiotherapy, hemorrhagic stroke, or
global ischemic brain injuries were excluded. In total,
2489 publications were closely examined in the final
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analyses (Figure 1). All of the included studies evalu-
ated biological, chemical, and cell-based therapies in
preclinical settings, and we identified a number of
important inconsistencies between preclinical models
and clinical protocols that we believe may have influ-
enced the general failure to translate animal work. Here
we list five major characteristics of the clinical popula-
tion that are not faithfully recapitulated in most pre-
clinical research design:

Mismatch I: Neuroprotectants have
been tested in preclinical models of
transient ischemia but not tested in
combination with adequate reperfusion
in stroke clinical trials

Our attention was first drawn to 10 therapies that had
entered Phase III clinical trials and were initially

deemed neuroprotective based on preclinical studies.
Further scrutiny of the preclinical work on these neu-
roprotectants revealed that most were tested in models
of transient ischemia (Figure 2(a)). As experimental
models of transient ischemia typically last for 1 h in
mice or 1.5–2 h in rats, the likelihood of successful
translation of the preclinical neuroprotectant might be
greater in patients who are recanalized with tPa and
EVT within these time frames. Preclinical models of
permanent cerebral ischemia are much less frequently
used, although the vast majority of stroke patients had
not experienced significant reperfusion before the
recent successes of EVT.55 For example, uric acid was
only tested and proven efficacious in transient injury
models—all four preclinical studies adhering to our
inclusion criteria consistently found a reduction in
brain damage after transient focal ischemia.43,44,56,57

As mentioned earlier, the Phase III clinical trial,
URICO-ICTUS, revealed that uric acid combined

Figure 1. Flowchart of study selection. A total of 7510 studies on Pubmed and Web of Science were screened by evaluators. After

exclusion for lack of relevance and various other criteria, 2489 studies were eligible for the qualitative synthesis.
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with intravenous tPA within 4.5 h of stroke onset had
no additional salutary effects on functional recovery at
90 days post-injury compared to tPA alone.46 However,
further analyses of the URICO-ICTUS trial suggested
that uric acid was more effective than the placebo in
reducing infarct volume in patients with early onset
recanalization (P¼ 0.015), but not in patients with
delayed recanalization (P¼ 0.889) or permanent occlu-
sion (P¼ 0.233).60 These important observations high-
light the importance of accounting for the temporal
kinetics of ischemia in both preclinical and clinical
work.

In addition to uric acid, magnesium sulfate,49,59,60

human albumin,51,61,62 and Ginsenoside Rb163–65 were
also tested in preclinical models of transient ischemia
(Figure 2(a)), and also failed in Phase III trials. Indeed,
more than 80% of preclinical studies involved transient
ischemic stroke, in contrast to the clinical studies, in
which only about one-third of patients exhibited revas-
cularization.27 This mismatch between preclinical
experimental models and human subjects offers one
likely explanation for the high rate of failure of neuro-
protectants in clinical trials.

A series of preclinical rodent studies employing tran-
sient middle cerebral artery occlusion (MCAO)
reported that human albumin reduced infarct volumes,
ameliorated brain edema, and improved neurobeha-
vioral function.57,61,66,68 Among numerous potential
mechanisms, an improvement in collateral perfusion
to the ischemic penumbra and regulation of the micro-
circulatory environment were identified.62,69 These pre-
clinical results led to initiation of a Phase III
randomized, double-blinded, placebo-controlled multi-
center clinical trial, ALIAS, to examine the potential
neuroprotective effects of human albumin on acute

ischemic stroke patients.70 The ALIAS clinical trial
included 841 patients across 89 sites in four countries
and failed to report any significant difference between
patients administered high-dose human albumin treat-
ment versus placebo. Although 89% of the patients
enrolled in ALIAS received either intravenous
thrombolytic therapy with recombinant tissue plas-
minogen activator or underwent an endovascular pro-
cedure, the clinical report did not include recanalization
rates. Administration of thrombolytic therapy is no
guarantee of sufficient recanalization. Only 33% of
patients with proximal LVO receiving intravenous
thrombolysis typically undergo partial or complete
early recanalization according to a meta-analysis of
26 studies encompassing 2063 stroke patients.27 In
other words, the majority of patients enrolled in clinical
trials involving neuroprotectants do not undergo reca-
nalization. This conclusion is further substantiated by
the SAINT-II trial testing NXY-059 as a potential
treatment for acute ischemic stroke, as only 44% of
3306 subjects received tPA in this trial.71 Given that
only 33% of patients with proximal LVO who receive
tPA achieve successful recanalization,27 one might esti-
mate that �85% of subjects in the SAINT-II trial
received NXY-059 without significant reperfusion. In
contrast, almost all animals undergo complete recana-
lization once the suture is removed in experimental
models of transient ischemia, revealing a mismatch in
the degree of reperfusion achieved in preclinical versus
clinical studies of neuroprotection in stroke.

Preclinical studies also support the notion that neu-
roprotection is reperfusion-dependent because the
treatment effect size is typically smaller after permanent
ischemia than transient ischemia.72 For example, dex-
tromethorphan,73,74 sulforaphane,75,76 SS-31,77

Figure 2. Neuroprotectants in preclinical models of transient and permanent ischemia. (a) Preclinical studies of ten neuroprotec-

tants that entered Phase III clinical trials are divided into those employing permanent (pink) or transient (blue) ischemic insults.

(b) Neuroprotectants with positive effects in transient models but neutral or negative effects in permanent models are listed.
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FTY720,78,79 and ornithine decarboxylase80,81 were sig-
nificantly protective in transient stroke models but
failed to elicit any protection against permanent cere-
bral ischemia (Figure 2(b)). Therefore, recent advances
in EVT offer unprecedented opportunities to test neu-
roprotective therapies that were previously unsuccessful
on non-reperfused ischemic tissue.55 Restoration of
blood flow with EVT is likely to improve the delivery
of neuroprotectants into ischemic brain tissue.82 In pre-
vious clinical work, the lack of reperfusion may have
acted as a bottleneck preventing effective delivery of
neuroprotectants to cells in the ischemic penumbra
that would be the most dynamically responsive to
therapeutic intervention. In light of these argu-
ments, we believe that some of the neuroprotectants
that are effective in transient MCAO models may be
worth reevaluating clinically in combination with
modern EVT.

The efficacy of reperfusion after ischemic stroke is
determined not only by recanalization of the occluded
vessel, but also by the inherent properties of the collat-
eral circulation. The collateral circulation in the vicinity
of the necrotic infarct core may be recruited after vessel
occlusion to supply missing nutrients and oxygen to the
endangered surrounding tissue and exerts a profound
influence over the evolution of the penumbral infarct
zone.83,84 If there is insufficient collateral blood flow in
stroke patients, the infarct tends to grow in size.84 It is
important to bear in mind that specific features of the
collateral circulation in humans, such as number of col-
laterals, arterial diameter, the anatomical structure of
the circle of Willis, and the presence of anterior com-
municating arteries are not always readily modeled in
rodents.85 Although collateral blood flow may be useful
as a prognostic factor, various types of collateral blood
flow measurements have been underemployed in pre-
clinical work. A recent comprehensive analysis has
demonstrated that 80% of the genetic variation of
leptomeningeal collateral anatomy has been linked to
a single nucleotide polymorphism of the Rabep2 gene
across numerous mouse strains.86 Therefore, research-
ers should stratify animals according to natural vari-
ations in collateral perfusion to control against
intragroup and strain variability.83

Mismatch II: Treatment effect sizes are
determined by infarct volumes in
preclinical models but by long-term

functional outcomes in clinical trials

Aside from the mismatch between transient ischemia
models and the lack of reperfusion in clinical trials of
neuroprotection in stroke, another concern is that 70%

of the preclinical studies relied on ‘‘infarct volume’’ as
the single endpoint for the evaluation of therapeutic
effects. In contrast, the effectiveness of a clinical treat-
ment is mainly based on the 90-day modified Rankin
score for long-term neurological function.41,87,88 A sig-
nificant discrepancy between the severity of the clinical
deficits and the infarct volumes is not uncommon in
human subjects,89 suggesting that overreliance on
infarct volumes in preclinical studies should be avoided.
The recent DAWN trial on thrombectomy revealed
that acute stroke patients with a mismatch between
clinical deficits and infarct volumes, or ‘‘clinical-core
mismatch,’’ were excellent candidates for successful
EVT irrespective of time of presentation within 24 h
after stroke onset.8 These clinical findings highlight
the critical necessity of functional evaluations in pre-
clinical studies, at both acute injury and chronic recov-
ery/repair phases. Furthermore, the preclinical
measurements of infarct volume are typically made at
the histological level on postmortem tissue, which may
be difficult to relate to the neuroimaging that is typic-
ally performed in clinical subjects.

Among the 2489 preclinical studies included in our
analyses, only 819 evaluated neurological functional
outcomes in stroke animals (Figure 3(a)). Even
among those that reported neurological function,
fewer than 30% of studies monitored functional recov-
ery over extended periods (defined here as >14 days)
(Figure 3(a)). Among those neuroprotectants that
improved long-term functional recovery in animal stu-
dies, only 20 agents transitioned to Phase II or III trials.
These agents include 17 beta-estradiol,90 atorvastatin,91

cilostazol,92 erythropoietin,93 ginsenoside Rd,94 filgras-
tim,95 hydrogen (Recruiting), melatonin (registered),
minocycline,96 NXY-059,97 human albumin,98 cerebro-
lysin,99 citicoline,100 propofol (Recruiting), JPI-289
(Recruiting), memantine (Recruiting), 3K3A-APC
(NCT02222714, completed), FTY720 (Recruiting),
YM872 (NCT00044057, NCT00044070, completed),
and edaravone.101 Thus, more than 80% of the neuro-
protectants that elicit improvements in long-term func-
tional outcomes in preclinical studies have never been
tested clinically. For example, preclinical evidence sup-
port the neuroprotective role of progesterone following
acute CNS injuries, including traumatic brain injury
and ischemic stroke.102–104 Progesterone significantly
reduces infarct volumes and improves long-term func-
tional outcomes in both permanent and transient
models of ischemia.105,106 Although the therapeutic
potential of progesterone following traumatic brain
injury has been tested in two multi-center Phase III
clinical trials,107,108 no clinical trials have tested the
efficacy of progesterone as a treatment for ischemic
stroke.
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Of the 85 preclinical studies on the 10 neuroprotec-
tants that entered Phase III clinical trials, only 39
measured neurological function as an endpoint, and
only 12 evaluated neurological functions longer than
14 days after stroke (Figure 3(b)). For example, DP-
B99 is a lipophilic chelator with a moderate affinity
for zinc and was observed to exert beneficial effects
against ischemic stroke in double-blinded placebo-con-
trolled Phase II trials.40 However, the Phase III
Membrane Activator Chelator Stroke Intervention
trial on 446 subjects with acute ischemic stroke
reported that only 20.6% patients receiving DP-B99
displayed modified Rankin scores� 1, which was
lower than placebo (28.8%).39 To the best of our
knowledge, there are no preclinical studies on the
impact of DP-B99 in experimental models of acute
ischemic stroke. In addition to DP-B99, the thera-
peutic candidates ONO-2506, cerebrolysin, and uric
acid have also not received sufficient preclinical sup-
port. Citicoline has been tested in various ischemic
models involving different species, but only one of
these studies measured neurological functions longer
than 14 days after stroke.109 Similar concerns apply
to some of the other neuroprotectants, including
human albumin, magnesium sulfate, and NXY-059.
Therefore, it seems worthwhile to focus future clinical
tests on those neuroprotectants that achieve significant
improvements in long-term functional recovery in pre-
clinical studies conducted by multiple independent
laboratories.

Mismatch III: Stroke is most prevalent
in elderly men and women, whereas
preclinical models mostly test young
animals

The third concern raised by our analysis is that the
majority of preclinical studies employ young adult ani-
mals, although it is well established that the risk for
human stroke rises dramatically with age.110 As
shown in Figure 4(a), out of more than 2000 treat-
ments, only two (3K3A-activated protein C111 and
magnesium chloride112) have been evaluated in an
aged rodent model of permanent ischemia, and nine
have been assessed in aged rodent models of transient
ischemia. The remarkable differences in stroke patho-
physiology and outcomes between young and old ani-
mals have been known for many years.113 Aging is
associated with a notable decline in the capacity of
the brain to restore cellular and biochemical functions
after ischemic stroke.57,113 Preclinical studies indicate
that the mortality rate for animals subjected to transi-
ent middle cerebral artery occlusion is 6.3% for young
adult rats and 43.5% for aged rats.114 Aging can result
in greater oxidative DNA damage and impair neuro-
protective responses in the peri-infarct cortex in the
early stages after ischemic stroke.115 Our group previ-
ously observed that aged mice exhibited worse long-
term learning and memory deficits after experimental
stroke than young mice, and this age-related exacerba-
tion of functional outcomes was associated with

Figure 3. Neurological functional assessments in preclinical studies of neuroprotectants. (a) Only 32% of the eligible preclinical

studies included measurements of neurological functional outcomes in stroke animals. Even among those that reported neurological

function, fewer than 30% of studies monitored functional recovery over extended periods (defined here as >14 days). (b) Among the

85 preclinical studies on the ten neuroprotectants that entered Phase III clinical trials, only 39 measured neurological function as an

endpoint, and only 12 evaluated neurological functions longer than 14 days after stroke.
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impaired cerebral perfusion, greater infarct sizes, white
matter injury, and dysregulation of pro versus anti-
inflammatory microglia.116 Similar age-related declines
in endogenous defenses are also observed in clinical
settings. Almost 72% of stroke occurrences are rec-
orded in patients above the age of 65.117 A recent
report from the American Heart Association (2018)
indicated that the 30-day mortality rate of patients
with ischemic stroke was 9.0% between 65 and 74
years of age, 13.1% between 74 and 84 years of age,
and 23.0% in those 85 years of age or older.118 Aged
animals can respond quite differently to treatment regi-
mens than young animals.119 For example, melatonin
prevents neuronal apoptosis by protecting nuclear and
mitochondrial DNA damage when administered chron-
ically to aged rats, but increases neuronal apoptosis
when administered to younger rats,120 perhaps because
melatonin levels drop with age.121 Thus, future experi-
mental stroke studies need to account for age-related
changes in the brain and test the effects of neuropro-
tective agents in appropriately aged animals. In preclin-
ical studies, researchers may also need to focus on distal
branch occlusion for better translation to elderly
humans, whereas in preclinical studies, middle cerebral
artery occlusion is commonly employed.

The National Institutes of Neurological Disorders
and Stroke reported that �55,000 more women are
afflicted annually by stroke than men.122 Women have
a lower incidence of ischemic stroke than men when

they are younger, but this trend is reversed after 85
years of age.123 In addition, women have higher post-
stroke rates of mortality, disability, depression, and
dementia compared to men.124 Although this has been
partially attributed to higher life expectancies in
women, this gender disparity remains present even
after adjusting for age differences in medical history
and presentation.125 In preclinical studies, young
female rodents exhibit less brain injury than males
after ischemic stroke.126 This relative resilience can be
abolished by ovariectomy or after reproductive senes-
cence,127 perhaps because the circulating sex steroid
hormones, estrogen and progesterone, are potential
neuroprotective factors after ischemic stroke.128,129

In our analysis, only 3% of the preclinical ischemic
stroke studies reported the effects of potential neuro-
protectants in female animals. Given the gender
dimorphisms presented above, it seems necessary to
assess neuroprotective strategies in both males and
females prior to clinical translation. For example, uric
acid failed to achieve any overall improvement in
patients with acute ischemic stroke, but it exerted a
positive effect on functional recovery in female
patients.46 In the URICO-ICTUS trial, women dis-
played significantly lower serum uric acid concentra-
tions than men, but their levels rose by 13% after uric
acid therapy.46 Therefore, it seems plausible that uric
acid may be more valuable as a therapeutic agent
against oxidative stress after ischemic stroke in female

Figure 4. Aging imbalance, therapeutic targets, and publication bias in preclinical studies of ischemic stroke. (a) Out of more than

2,000 treatments, only two have been evaluated in an aged rodent model of permanent ischemia, and nine neuroprotectants have been

assessed in aged rodent models of transient ischemia. (b) The potential mechanisms underlying the therapeutic properties of

neuroprotectants in both transient and permanent stroke models. More than 80% of the neuroprotectants in the current analyses

target inflammation, apoptosis, oxidative stress, neurotrophy, and excitotoxicity. (c) 95% of studies fitting all of our inclusion criteria

reported positive outcomes in preclinical models. PISM: permanent ischemic stroke model; TISM: transient ischemic stroke model.

2082 Journal of Cerebral Blood Flow & Metabolism 38(12)



patients. Nevertheless, our extensive analysis did not
reveal any preclinical studies that assess the effects
and potential mechanisms of uric acid in female
animals.

Mismatch IV: Stroke is more devastating
in patients with multiple comorbidities
not captured in preclinical models

As mentioned above, almost 72% of ischemic strokes
occur in patients above the age of 65.117 Serious comor-
bidities are present in this elderly cohort, including
hypertension and diabetes, which are likely to influ-
ence the efficacy of neuroprotectants.130 The
INTERSTROKE study estimated that 90% of ischemic
strokes arise due to 10 established risk factors, includ-
ing hypertension, diabetes, high alcohol intake, current
smoking habits, poor dietary choices, obesity, physical
inactivity, psychosocial stress, and cardiac and lipid
abnormalities.131 Despite these observations, the vast
majority of experimental stroke studies have been per-
formed on young and healthy rodents housed under
optimal pathogen-free conditions.132 Of course, no
single model can simulate all the comorbidities known
to influence stroke outcomes in humans. However, sev-
eral attempts have been made to devise animal models
displaying the most frequent comorbidities, including
diabetes133,134 and hypertension.135,136 Approximately
50 preclinical stroke studies have employed hyperten-
sive animals and reported larger infarct volumes com-
pared to normotensive animals.137 Fewer preclinical
investigations have assessed the effect of diabetes on
the response to therapeutic interventions for ischemic
stroke.138,139 For example, the genetically altered db/db
mouse is used as a model of adult onset type-2 dia-
betes.140 The db/db mice display larger infarct volumes,
increased cerebral edema, and impaired functional
recovery following ischemic stroke than db/þ mice.140

In addition, db/db mice display higher expression of
matrix metalloprotease(MMP)-9 than db/þ mice,
resulting in increased blood–brain barrier (BBB) per-
meability, greater infiltration of macrophages and
neutrophils into the infarct area, and higher
inflammation.141

A number of issues need to be addressed in order to
properly evaluate therapeutic interventions in animals
with comorbid diseases, including selection of appro-
priate animal models. For example, there are important
post-stroke sequelae not commonly assessed in animals,
such as depression and other psychiatric conse-
quences,142 obstructive sleep apnea,143 and immunode-
pression, which frequently results in fever.144 Given
these complexities, it has been argued by some authors
that ‘‘experimental models of stroke can cover only
individual, specific aspects of this multifaceted

disease.’’145 Therefore, it is recommended that the
effects of a therapeutic intervention on stroke injury
and recovery should first be examined in adult male
control and diseased (diabetic, hypertensive, or hyper-
lipidemic) animals, followed by studies in female and
aged animals.146 Ensuring that therapies are effective in
multiple independent models that encompass specific
comorbidities may increase the likelihood of clinical
translation.

Mismatch V: Therapeutic targets and
publication bias in preclinical versus
clinical studies

The primary goal of neuroprotectants is to salvage the
ischemic penumbra surrounding the infarcted core
(Figure 4(b)). More than 80% of the neuroprotectants
in the current analyses aid in neurotrophy and target
inflammation, apoptosis, oxidative stress, and excito-
toxicity (Figure 4(b)). The actions of these neuropro-
tective agents range from pharmacological blockade of
neurotransmitter receptors to interference with cell
death pathways. It is well established that one of the
first molecular mechanisms underlying ischemic brain
damage involves excitotoxicity.147 Aside from massive
and rapid release of the excitatory amino acid glutam-
ate after ischemic stroke, the reuptake of this transmit-
ter is also inhibited,148 and the subsequent extracellular
accumulation of glutamate activates downstream sig-
naling pathways that flood cells with intracellular cal-
cium, leading to activation of proteases and failure of
mitochondrial bioenergetics.148 Numerous pharmaco-
logical inhibitors of glutamate receptors have been
examined in models of ischemic stroke and in stroke
patients, but all failed to show efficacy in clinical
trials, including N-methyl-D-aspartate (NMDA) recep-
tor antagonists that reduce glutamate excitotoxicity,
such as Selfotel, Aptiganel, and Gavestinel.149,150

NMDA antagonists have been shown to reduce
neurogenesis in the recovery phase of ischemic stroke,
apart from inhibiting proteasomal function, which can
lead to selective neuronal apoptosis.151 Although
NMDA antagonists may alleviate early neuronal
injury by suppressing glutamate excitotoxicity in the
acute phase, the inhibition of long-term neurogenesis
during the chronic recovery/repair phase may counter-
act the former benefits and contribute to failure of clin-
ical translation. Thus, investigators have begun to
target the signaling pathways downstream of glutamate
receptor binding. For example, NA-1 is an inhibitor of
the postsynaptic density-95 protein (PSD95), which
couples NMDA receptor activation to nitric oxide
neurotoxicity.152NA-1 has been shown to halt glutam-
ate excitotoxicity, reduce infarct volume, and improve
long-term functional outcomes in rodents and
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non-human primates after ischemic stroke.153 Although
clinical trials confirmed the safety of NA-1, no signifi-
cant effects on functional recovery have been
achieved.154 However, the clinical study was geared
towards testing neuroprotective effects in patients
with stroke following endovascular aneurysmal repair
and were therefore unlikely to harbor a salvageable
penumbra anyway. Previous studies testing NA-1 in
ischemic stroke primarily focused on its ability to pro-
tect neurons from excitotoxic damage.155 Few studies
were designed to characterize the influence of NA-1 on
neurogenesis. A randomized double-blinded clinical
trial, ESCAPE-NA-1 (NCT02930018), is currently
ongoing to test the safety and efficacy of NA-1 admin-
istration in LVO patients with salvageable penumbral
tissue and sufficient collateral circulation who have
been treated with EVT.

In addition to the aforementioned issues contribut-
ing to the failure to translate preclinically effective
treatments into clinical interventions (e.g. the absence
of recanalization or functional evaluations, overreli-
ance on young male animals, and a neglect of comor-
bidities), there have been many other impediments to
meaningful progress. For example, neutral or negative
results are difficult to publish in major peer-reviewed
journals, which may introduce biases into preclinical
and clinical research and may therefore influence the
conclusions drawn in this report. Surprisingly, 95% of
studies fitting all of our inclusion criteria reported posi-
tive outcomes in preclinical models (Figure 4(c)). As we
do not believe that our search terms or inclusion cri-
teria would have skewed the data dramatically, this
degree of bias towards only reporting positive out-
comes may be serious. There are too few rewards for
publishing neutral or negative data and the resulting
publication bias needs to be addressed at the levels of
reviewers, editors, publishers, and funding bodies.

Perspectives

The primary function of stroke treatments should be to
improve recanalization rates in the early stages after
ischemic stroke. Recently, a number of novel thrombo-
lytic drugs (e.g. tenecteplase, desmoteplase) with super-
ior pharmacological profiles compared to alteplase
(tPA) have been tested in Phase III trials.156 Our pre-
vious meta-analysis of 819 patients from five clinical
trials indicated that desmoteplase administered over
an extended time window (3 to 9 h after stroke onset)
exerted no significant effects upon functional recovery,
but had a favorable safety profile in patients with acute
ischemic stroke.157 Furthermore, greater early-stage (4
to 8 h) reperfusion was observed in the desmoteplase-
treated group (47.4%) compared to the placebo-treated
group (37.5%). Although tenecteplase was not superior

to alteplase in improving recanalization rate in ischemic
stroke patients, it was associated with a reduced risk of
bleeding.158 Recent data indicate that tenecteplase is
superior to alteplase as a bridging agent for patients
with LVO stroke undergoing intravenous thrombolysis
in the 0–4.5 h time window prior to intended
thrombectomy.159

Reperfusion therapies with thrombolysis and mech-
anical thrombectomy are aimed at achieving tissue
reperfusion and not simply recanalization. Clinical
trials have shown that 70–80% of patients receiving
thrombectomy can be successfully reperfused.7 This
area of clinical intervention has great potential for
growth. Stroke researchers will need to identify more
effective and safer thrombolytic agents and improve the
mechanical thrombectomy technique to not only
achieve LV recanalization in the largest number of
ischemic stroke patients, but also obtain maximum
small vessel reperfusion in ischemic brains.

Effective neuroprotectants are needed to alleviate
ischemia–reperfusion injury in multiple cell types.
Ischemic stroke causes a failure in cellular bioenergetics
in the ischemic core, including in neurons, astrocytes
and endothelial cells of the BBB.160 Impairments in
the function of the ischemic BBB facilitate the entry
of water and pro-inflammatory cytokines into the
brain, leading to further activation of inflammatory
responses and production of excess free radicals after
reperfusion, culminating in the phenomenon of ‘‘reper-
fusion injury.’’160 Furthermore, ischemia and reperfu-
sion injury can both induce hemorrhagic
transformation.160 Hence, drugs that protect the BBB
and maintain its integrity might alleviate reperfusion
injury and prevent hemorrhagic transformation after
complete recanalization.

Neuroprotective candidates should be tested in both
transient and permanent ischemia stroke models, and in
young and aged animals of both genders before the
initiation of a clinical trial. Permanent ischemia
models may be superior for the testing of neuroprotec-
tants that can maintain salvageable ischemic penumbra
until reperfusion (i.e. bridging therapy), whereas tran-
sient ischemia models may be most suited to test reper-
fusion injury. In addition, preclinical studies are
essential for establishing a comprehensive toxicity pro-
file prior to any human exposures, and for identifying
and then characterizing the precise molecular mechan-
ism of action, which can accelerate the discovery of
additional drug targets. Hypertensive and diabetic ani-
mals are particularly valuable in revealing the thera-
peutic potential of the neuroprotective candidate in
more realistic settings of age-related diseases.
Furthermore, experimental studies need to focus not
only on short-term neuroprotection, which may be
transient and only delay injury, but also on long-term
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repair and recovery processes, including neurogenesis
and other structural changes in the brain. Finally, all
stroke studies should incorporate long-term assess-
ments of multiple functional outcomes into their
study design, particularly those that encompass higher
order cognitive functions as well as anxiety and depres-
sion. In order to properly compare clinical testing con-
ditions such as Rankin scores to animal research,
assessments at 90 days post-injury may also be neces-
sary. Furthermore, live animal imaging may be easier to
relate to the functional imaging on live stroke patients
rather than relying only on postmortem histological
assessments.

Based on our extensive literature analyses, we recom-
mend that combinations of neuroprotectants with
thrombolytic drugs or endovascular thrombectomy
should be studied as new therapeutic strategies for
acute ischemic stroke. Rather than targeting one bio-
logical system/pathway or cell type with monotherapies,
a multidimensional cocktail approach that includes
thrombolytic agents, neuroprotectants, glioprotectants,
vasoprotectants, anti-inflammatory drugs, anti-excita-
tory agents, and antioxidants delivered at both the opti-
mal dose and time after onset of symptoms might
improve success rates. The combination drug cocktail
approach may also extend the duration of the ischemic
penumbra.161 Other important points to consider are
whether the temporal window of tPA or other intraven-
ous thrombolytic agents such as tenecteplase can really
be extended without increasing the risk for hemorrhagic
transformation or blunting thrombolytic efficacy, but
these risks may be mitigated by the concurrent use of
neuroprotective interventions such as hypothermia,
which is thought to mitigate reperfusion injury.162,163

Conclusions

To summarize, the lack of success of preclinically vali-
dated neuroprotectants in clinical trials of stroke may
be attributed to: (1) Failure to test the candidate mol-
ecule in combination with rapid, substantial reperfu-
sion in patients, as in the experimental models, which
suffer from overreliance on transient rather than per-
manent brain ischemia models; (2) paucity of preclin-
ical studies designed to analyze treatment effects on
clinically relevant long-term outcomes; (3) use of
healthy young adult male animals instead of aged
males and females with diabetes and other conditions;
and (4) a publication bias toward reporting statistically
significant, positive outcomes in preclinical studies
versus large clinical trials.

Previous efforts in facilitating the success of clinical
translation have prompted STAIR, STEPS, and
RIGOR research guidelines, which have also proposed
the use of females, aged animals, long-term functional

outcomes, and increased rigor with blinding, power
analyses, and appropriate statistical tests.164 Based on
our literature analyses, we also encourage technical
development of superior preclinical models that recap-
itulate permanent ischemia or removal of a thrombus
followed by reperfusion. We recognize that these rec-
ommendations might involve completing fewer studies
due to higher costs and greater animal numbers, but
these higher demands are likely to reward biomedical
researchers in the long run by accelerating the transla-
tion of their benchwork to the bedside and clinic.
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