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1 | INTRODUCTION

| Glen P. Martin!
Niels Peek! | Iain Buchan!?

| Alexander Pate! | Tjeerd Van Staal |

Clinical prediction models (CPMs) can inform decision making about treatment
initiation, which requires predicted risks assuming no treatment is given. How-
ever, this is challenging since CPMs are usually derived using data sets where
patients received treatment, often initiated postbaseline as “treatment drop-ins.”
This study proposes the use of marginal structural models (MSMs) to adjust for
treatment drop-in. We illustrate the use of MSMs in the CPM framework through
simulation studies that represent randomized controlled trials and real-world
observational data and the example of statin initiation for cardiovascular disease
prevention. The simulations include a binary treatment and a covariate, each
recorded at two timepoints and having a prognostic effect on a binary outcome.
The bias in predicted risk was examined in a model ignoring treatment, a model
fitted on treatment-naive patients (at baseline), a model including baseline treat-
ment, and the MSM. In all simulation scenarios, all models except the MSM
underestimated the risk of outcome given absence of treatment. These results
were supported in the statin initiation example, which showed that ignoring
statin initiation postbaseline resulted in models that significantly underesti-
mated the risk of a cardiovascular disease event occurring within 10 years.
Consequently, CPMs that do not acknowledge treatment drop-in can lead to
underallocation of treatment. In conclusion, when developing CPMs to predict
treatment-naive risk, researchers should consider using MSMs to adjust for treat-
ment drop-in, and also seek to exploit the ability of MSMs to allow estimation of
individual treatment effects.
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Healthcare systems worldwide face escalating pressures from more people living longer with one or more long-term con-
ditions. To meet this challenge, interventions must move to earlier stages of disease, slowing disease progression, thereby
reducing the time consuming more expensive healthcare, and increasing quality-adjusted life years. This change requires
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better targeting of limited healthcare resources; the foundation for such targeting is prediction.! Clinical prediction mod-
els (CPMs) typically predict the risk of an adverse outcome (eg, heart attack) based on what is currently known about an
individual (eg, covariates).* Clinical prediction models can be used to support decision making about treatment initiation,
facilitate the discussion of treatment risks, and underpin risk stratification analyses.

Here, we consider the development of CPMs from electronic health record data to guide the commencement of drug
treatments as preventive interventions among patients at high risk of common chronic disease events, eg, statins to help
prevent heart attack or stroke. To support treatment initiation decisions, the risk calculated by a CPM should apply to the
patient assuming that no treatment is given.> However, CPMs are typically derived using observed data where patients do
receive treatment, often in a time-dependent fashion.* If time-dependent treatments are not accounted for during CPM
development, the subsequent risk predictions could be incorrect owing to misspecified covariate-outcome associations,’
ie, the “treatment paradox.”®

Recent work has, therefore, focussed on adjusting for the effect of treatment by explicitly including baseline treatment
within the modeling framework.” An alternative approach is to select a treatment-naive cohort at baseline®; however,
this restricts the applicability of the model to those not under treatment. Importantly, these approaches do not account
for patients commencing (or changing) treatment after baseline, but before the outcome of interest, so-called “treatment
drop-ins.”® For example, QRISK3 predicts 10-year risk of cardiovascular events conditional on baseline risk factors, which
is derived in a “treatment-naive” cohort by removing all patients who take statins at baseline.® However, this means that
patients who contribute to the 10-year risk calculation may commence statins during the 10-year follow-up, making the
interpretation of a 10-year risk derived from such a model difficult.”’ For example, a patient's predicted risk of lower than
10% may be driven by similar patients in the derivation cohort taking statins shortly after baseline.

The literature on accounting for treatment drop-in is sparse. One possible approach is to restrict analysis to a popu-
lation with no treatment drop-ins, which could be achieved by selecting either a historical cohort before treatment was
available, or selecting only patients who do not commence treatment during follow-up. However, the former approach is
likely to produce a model that is not relevant to current practice,' while the latter approach is subject to selection bias.
A refinement might be to censor patients when they commence treatment, but this would implausibly assume that treat-
ment drop-ins are uninformative with respect to risk factor progression after baseline (ie, treatment drop-in depends only
on baseline risk factors).'? A further possible approach is to estimate risk based on very large cohorts over very short time
periods, thereby minimizing the potential for treatment drop-in.’ Nevertheless, low probability short-term risks may be of
less clinical relevance, and extrapolating these to long-term risks requires strong assumptions. Alternatively, Simes et al
used a penalized Cox approach for treatment drop-in in the context of a clinical trial with differential treatment drop-in
by trial arm."® Here, one adjusts the event rates for the assumed effect of the “dropped in” treatments in a time-updated
fashion. The use of external estimates of the effect of the dropped in treatments avoids the issue of selection bias,'* but
does require an assumption of transferability of effect size across contexts.'

In this paper, we ask the question, can combining marginal structural models (MSMs) with predictive modeling
approaches generate CPMs that appropriately estimate risk in a variety of treatment regimens? Marginal structural mod-
els “subtract” the effect of both current and future treatment use, appropriately adjusting for the association between
treatment drop-in and risk factor progression postbaseline. Importantly, MSMs estimate the difference in risk for a patient
who receives treatment under different regimes (ie, the causal effect of treatment under the counterfactual framework).
In contrast, the aforementioned modeling techniques described cannot be used in this way since they do not explicitly
consider counterfactuals.'® In practice, CPMs are often used in a counterfactual manner,"” so if such an interpretation
were possible, this would be useful.

2 | METHODS

2.1 | Marginal structural models within the CPM framework

To formulate and illustrate the ideas, we consider a simplified causal model, as illustrated in Figure 1, considering a single
treatment and two time steps. For causal modeling, we work in the potential outcomes framework.'® We suppose that at
time 0, we wish to estimate a patient's risk of a future outcome, Y, given their baseline risk factors measured at or just
before time 0, Xj. The prediction will be used to support the decision regarding intervention Ay, applied at or just after
time 0. We use time 1 to represent future values of risk factors and intervention levels, which are X; and A, respectively,
and acknowledge possible unmeasured confounding U. Of course, future values of the risk factors, X, are unavailable at
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FIGURE 1 Causal diagram for simplified example

time 0 when the prediction is being made. In general, there are likely to be many future times 1, 2, ..., K; for example,
in computing 10-year risk of an outcome, we may consider K = 9 annual reviews of risk factors and treatments. Let
A = (Ag, A1, ... ,Ag) denote the treatment history, and let X = (Xo, X1, ... ,Xg). Let X o = (X1, ... , Xg);let A =0 mean
no treatment received at any time, and write A;_; to mean the treatment history up to time k — 1. We could also consider
multiple treatments, where each Ay is a vector of length m to represent m treatments. One could regard this as a partially
observable Markov decision process."’

A CPM seeks, at time 0, to determine future risk of Y = 1, using the information currently available (ie, X, and poten-
tially Ap). There are various ways we could consider handling treatment, which correspond to different causal estimands.
We use the notation that Z(B = b) refers to the value of Z given that we intervene to set B to value b.

El. E[Y|Xp]: the risk of Y, disregarding the intervention.

E2. E[Y(A; =0) | Xo]: the risk of Y given that we do not intervene now, and may or may not intervene in the future.
E3. E[Y (A =0) | Xo]: the risk of Y given that we do not intervene now, nor do we intervene in the future.

E4. E[Y(A; =1) | Xo]: the risk of Y given that we intervene now, and may or may not intervene in the future.

E5. E[Y (A = i) | Xo]: the risk of Y given that we intervene now, and continue to intervene in the future.

Most existing prognostic models provide estimates of E1 or E2. In the absence of unmeasured confounding, U, the
observed risk E[Y | Xo, Ag = 0] is a valid estimator for E2. However, calculating the risk based on not intervening imme-
diately may provide inappropriate reassurance, since a low risk may be driven by data from patients who commence the
intervention shortly after time 0.

Therefore, E3 is the treatment-naive risk that is truly of interest to support the decision of whether to intervene. Even
in the absence of unmeasured confounding, E3 is challenging to estimate, since standard regression estimators are not
valid whether or not we condition on X_y.%° If we do not condition, the estimate E[Y | Xy, A = 0] is prone to a “healthy
survivor” bias since patients in the development cohort who remain untreated throughout are likely to have future risk
factors that are better than similar patients who initiate treatment.

Conversely, if we do condition, an estimate of the form E[Y | X, A = 0] will mask some of the benefits of the intervention
since these manifest in X_, not to mention that the model would be useless in practice since X_ is unknown at time 0.

The solution to estimating risks of the form E3 is the MSM,?*! which applies a weighting to the population to “break”
the arrows from X to A, and provides a valid estimator for E3 in the absence of residual confounding. In the usual applica-
tion of MSMs for causal inference, we would condition only on variables that moderate the treatment effect. In the CPM
case, we also condition on variables that have only a prognostic effect (ie, those that do not modify the effect of treatment).
Hence, we would like to fit a model within strata of X.

The proposed approach then proceeds as follows.

1. Calculate stabilized weights for each individual i, using the formula

K

K
swi =TT (87,)™ (1= p3)" ™"/ {H (ri )™(1 = pra)' ™ } :
k=0

k=0
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Here, f);’;i is the estimated predicted value from a model for logit P[Ak =1 |Ak_1,XO] ,while py; is the estimated pre-
dicted value from a model for logit P[Ak =1 |Ak_1,)_(k] . This follows the classic development of calculating weights for
a MSM,* besides that, to reiterate, X, comprises all baseline variables that are prognostic for Y, rather than only the
effect modifiers.
2. Using the derived stabilized weights, fit the model

K

logit PY = 1| Xo, Al = fo + fxXo + ), (Ba,Ax + faxAiXo) -
k=0

The model allows any of the variables in X, to modify the effect of treatment. We may fix by design some (or all) of
the elements of f4, x to 0. Similarly, a subset of X, may be considered by fixing some fx to 0.

Succinctly, the strategy is to adjust for variables that are available at baseline and are to be used as predictors, plus
treatment strategy at baseline and in the future, and then to reweight for all remaining variables that might be on the
treatment causal pathways. Generating a CPM in this manner allows us not only to estimate treatment-naive risk that
accounts for treatment drop-in, but also to estimate the (counterfactual) causal effect of treatment for a patient with given
baseline risk factors.

2.2 | Simulation design: overview

We designed a simulation study to demonstrate the properties of the proposed method, compared with current approaches
of handling treatment when developing CPMs. Specifically, the aim was to investigate the extent of bias in predicted
risk by failing to account for treatment drop-ins. For simplicity of illustration, we again consider a scenario where we
have one treatment option and two timepoints, ie, time 0 when the predictions are to be made, and a “future” time 1. At
each timepoint, we record information on a single time-varying continuous covariate and a binary treatment indicator
(also time varying) (Figure 2). While, in practice, CPMs include more than one risk factor, one can imagine that the single
covariate is a summary of multiple risk factors; this follows similar reasoning to previous simulation studies.” Both the
covariate and the treatment indicator have a prognostic effect at each timepoint on a binary outcome, where treatment
reduces risk of outcome and higher values of the covariate increase risk. For example, one could imagine that Y represents
a cardiovascular event, X is cholesterol (HDL ratio), and A statins.

Several simulation scenarios were considered, representing a mixture of randomized controlled trials (where treatment
allocation at baseline is independent of the continuous covariate) and observational studies (where treatment allocation
at each timepoint depends on the continuous covariate) under different causal pathways (see the following and Table 1
for details). Within the generated data, we fit a model simply ignoring treatment, a treatment-naive model (fitted on all
patients without treatment at baseline), a model incorporating baseline treatment as a predictor, and the MSM.

The predictive performance of each modeling technique was calculated in two “test” data sets that were independent
of the data used to derive each model (details as follows). For each simulation scenario, the relationship between Ay and
X7 was controlled through the value of y, which was varied through (-3, -2.5, -2, —1.5, —1, —0.5, 0). Since we assumed

\
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FIGURE 2 Causal diagram and parameters of the data-generating mechanism
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TABLE 1 Description and parameter formulisation across each simulation scenario

Simulation Scenario Description Parameter values
RCT: 10% dropout® A randomized controlled ¢=0
trial with treatment ays.t.P(A4p=1)=0.5
randomly allocated to 50% T, = 00y
of the population at baseline, 0=0.9
with 10% treatment dropout. ays.t. P(Y=1)=0.2

Ba, = Ba, =10g(0.5)
Bx, = Bx, = log(1.5)

Observational: 50% An observational study ¢ = log (2)
treated where 50% of the population 0 = log (2)
have treatment. @:j=0,1s.t.P(4;=1)=05

ays.t.P(Y=1)=02
Ba, = Ba, =10g(0.5)
Bx, = Bx, = log(1.5)

Observational: 20% An observational study ¢ = log(2)
treated where 20% of the population 0 = log(2)
have treatment. @j:j=0,1s.t.P(A;=1)=0.2

ays.t.P(Y=1)=0.2
Ba, = Ba, =10g(0.5)
Bx, = Bx, = log(1.5)

T: results from across a range of percentage dropouts (values of §) gave similar results as those for the RCT: 10% dropout
scenario and so are omitted. They are available on request.

that treatment was effective and the covariate increased risk of outcome, we did not consider positive values of y. In our
example, y could represent the cholesterol-lowering effect of statins. For each value of y, we repeated the simulation across
1000 iterations. The predicted performance was averaged across iterations and empirical standard errors were calculated.
The simulation was implemented in R version 3.4.0,2 and the code is available as an online data supplement.

2.3 | Simulation design: data-generating mechanism

Within each iteration of a given simulation scenario, data of N = 10000 observations were generated, acting as “devel-
opment” data, on which one is interested in deriving a CPM. The steps of the data-generating mechanism were the
following.

1. Simulate N realizations of X, ~ N(0, 1).

2. Simulate N realizations of Ay ~ Binomial (74, ), where

_exp(ap + $Xoi)
1+ exp (ap + Pxo)

7ri,A0

3. Simulate N realizations of X; ~ N(Xy + yAy, 1).
4. Simulate N realizations of A; ~ Binomial(r;,, ), where

exp (a1 + ¢x1; + Oag;)
mia, =9 1+exp(a + ¢xy; + Oag;)
fag; for 6 € [0,1], if simulating a RCT.

, if simulating an observational study

5. Simulate N realizations of Y ~ Binomial(z; ,), where

n'i’y
log < . > = ay + fx,Xoi + Px,x1i + Pa,Qoi + Pa,a1;.
— iy

The values of the aforementioned parameters across simulation scenarios are given in Table 1. Across all simulation
scenarios, we assumed that the covariate increased the risk of outcome (ie, fix, = fix, = log(1.5)), the treatment decreased
risk of outcome (fa, = fa, = log(0.5)), and the mean event rate for the outcome, Y, was set at 20%. The first scenario
(denoted “RCT: 10% dropout”) aims to mimic development of a CPM within a randomized controlled trial, in which
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treatment was randomly allocated to 50% of observations at baseline and independent of their baseline covariate (¢ = 0).
Here, we assumed that 10% of those treated at baseline were untreated at timepoint one (ie, 90% remained treated through-
out, with # = 0.9), and that untreated patients at baseline remained untreated at timepoint one. We conducted sensitivity
analyses across a range of RCT @ values, with the results being quantitatively similar to those presented for § = 0.9,
and so are omitted for clarity. In contrast, the remaining two scenarios were based on observational data, in which one
unit increase in X, or X; doubled the odds of been given treatment at the corresponding time, ¢ = log(2), and those
on treatment at baseline (time zero) had twice the odds of being on treatment at time one (ie, # = log(2)). Scenario 2
(denoted “Observational: 50% treated”) assumed that 50% of patients were on treatment at each timepoint, while scenario
3 (denoted “Observational: 20% treated”) lowered this to 20% of patients at each timepoint.

2.4 | Simulation design: modeling methods and performance measures

The following models were fit within the development set, ie, a model ignoring treatment, a model developed on a
treatment-naive cohort, a model including baseline treatment, and the MSM. The model ignoring treatment modeled the
log odds of Y with the baseline risk factor, X as the only covariate (ie, logit (E [Y | X,]) = f + ﬂ)’(oxm); the treatment-naive
model was similar, except that only observations with no treatment at baseline (ie, those i such that ap; = 0) were used in
model fitting. The model including baseline treatment was fit as logit (E[Y | Xo, Aol) = ﬂ(’) + ﬂ)’(oxm + ﬁgoam- Finally, the

MSM modeled the full treatment pathway and the baseline covariate as logit (E [Y| XO,A]) = fy+ ﬁ)’(oxo,- + ﬁ//xo agi + ﬂ:,lan,
under the weighted log-likelihood

N

L(B) = 2 swi {yilog (miy) + A —y)log (1 - my)},

i=1

where sw; were calculated as described. Here,

- - k
IOgit (f)k,-) = logit (P (Ak = 1|Ak_1,Xk)) = wo + 010(k-1)i + Zj:()a)j+2xU)i
logit (f)ltl) = logit (P (Ak = 1|Ak_1,X0)) = wé + w’{a(k_m + a);xol-,

with a(_1); = 0. Thus, the numerator probabilities of the stabilized weights were modeled through a logit-linear combina-
tion of the treatment indication at the previous timepoint and the baseline covariate. The denominator probabilities were
modeled as a logit-linear combination of the previous timepoint treatment and all previous covariate information.

We generated two further independent test data sets, each of size N = 100 000 observations, which were used to assess
performance of each modeling method. Test data set 1 was generated under the same aforementioned data-generating
mechanism described for the development data set. Test data set 2 sets Ag = A; = 0 for all patients, but, otherwise,
used the same data-generating mechanism (Table 2). Predictive performance was assessed in terms of calibration, dis-
crimination, and Brier score.* Calibration is the agreement between the observed event rate and that expected from the
model, while discrimination is the ability of the model to distinguish cases and controls. Calibration was assessed via the
calibration-in-the-large, and the calibration slope was estimated from a logistic regression model for the outcome with
the linear predictor from a model as the only covariate (where a perfectly calibrated model will have a slope of one).*
Discrimination was assessed through the area under the receiver operating characteristic curve (area under the curve).

Across the two test data sets, three performance settings were considered (Table 2). The first, (denoted “performance
setting: mix of treatment (MT)”) used test data set 1 to estimate performance, thus representing performance on (treated
and untreated) samples drawn from a similar population to the development set; this was used to examine estimate E1.
The second performance setting (denoted “performance setting: no baseline treatment (NBT)”) estimated performance
in test data set 1, but restricted to those observations who did not receive treatment at baseline, giving an indication of
estimate E2. Finally, “performance setting: no treatment throughout (NTT)” used test data set 2 to examine the bias in the
calculation of the causal effect E3 for each modeling method. Moreover, in practice, individuals might initiate treatment
if the predicted (E3) risk exceeded an a priori chosen treatment threshold. Thus, to examine the impact of each modeling
strategy on treatment decision making, we calculated the proportion of patients within test data set 2 where the predicted
risk from a given modeling strategy was larger than a range of treatment thresholds from 5% to 70%.
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TABLE 2 Description of the performance-settings and corresponding test datasets

Performance-setting Description Test set data-generating mechanism

Mix of Treatment Model validation on samples Test set 1 (N = 100 000):

(MT) drawn from a similar Generated under exactly the same
population to the process as the development cohort.

development set.
Corresponds to estimating E1.

No Baseline Treatment Model validation on samples Test set 1 (N = P(Ay = 0)x
(NBT) drawn from a similar 100 000):
population to the Generated under exactly the same
development set, but process as the development cohort,
restricted to those without but restricted to examining
treatment at baseline. {ie[1,N]:ay =0}
Corresponds to estimating E2.
No Treatment Model validation in a Test set 2 (N = 100 000):
Throughout (NTT) population where treatment is generated as
withheld from all patients, Xo ~N(0,1)
but where the distribution of X, ~NXy, 1)
covariates is similar to the Ay=A,=0

development cohort.
Corresponds to estimating E3.

2.5 | Statin initiation in cardiovascular disease prevention example

To illustrate the MSM approach in a real-world clinical example, we used data derived from the Clinical Practice Research
Datalink (CPRD). The CPRD is a database of routinely collected primary care data, including approximately 7% of the
UK population.”® The database collates coded data on patient demographics, prescription details, clinical events, and
diagnoses.

We extracted a population of patients aged 25 to 84 at index date, who were registered in England between the January
1, 1998 and December 31, 2015. Here, the index date for each patient was chosen at random between the study start date
(defined as the maximum of a patient's 25th birthday, one year of valid follow-up, or January 1, 1998), and the study end
date (defined as the minimum of March 3, 2016, the date of censoring, or the date of a patient’s 85th birthday). If this time
period did not have a positive number of days, or the patient had received a statin or had a cardiovascular disease (CVD)
event prior to the randomly assigned index date, the patient was excluded. This time period is the same as that chosen in
QRISK3,? with the exception of choosing random index dates rather than the start of the study interval.

We defined the outcome to be first recorded diagnosis of CVD within 10 years of each patient's index date. Additionally,
at the index date, we extracted the following baseline covariate information for each patient: age, sex, atrial fibrillation,
chronic kidney disease (stage 4/5), type I or II diabetes, ethnicity, family history of coronary heart disease, hypertension,
rheumatoid arthritis, and systolic blood pressure. These variables represent Xy, and were each reviewed annually, up to 10
years post index date (representing Xj, ..., Xo). Missing data occurred for systolic blood pressure; we imputed this as the
mean of the future observed values, and missing annual updates were imputed using a last observation carried forward
approach within each patient. Patients who had no observed systolic blood pressure throughout 10-year follow-up were
removed from the analysis.

Time from index date to prescription of first statin was available for all patients. We defined annual binary indicators
of statin use (ie, Ay, A1, ..., Ag) as 1 if (i) a given patient had started statins prior to year k for k =0, ..., 9, and (ii) the
statin initiation occurred at least one year prior to any subsequent CVD event for a given patient. We did not model for
statin discontinuation after first prescription.

Details of fitting time-to-event models under stabilized weights have been given previously.?' Explicitly, we fitted a
treatment-naive model and an MSM as two pooled logistic regression models that treated each person-year prior to
either a CVD event, censoring, or 10-year follow-up (which ever occurred first) as an observation. The MSM included
a year-specific intercept (fitted as a restricted cubic spline), the baseline covariates (ie, X;), and an indicator of statin
use at the previous year. A further advantage of the MSM framework is that right censoring due to loss of follow-up in
CPRD could be adjusted for by conceptualizing the censoring as a second time-varying treatment.”?' Thus, the MSM
was estimated under a weighted likelihood with the stabilized weights accounting for treatment drop-in and censoring;
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the models used to estimate the stabilized weights were also fitted through pooled logistic regression models.?* In contrast,
the treatment-naive model was estimated via standard maximum likelihood and only included the year-specific intercept
(fitted as a restricted cubic spline) and the baseline covariates.

Calibration-in-the-large was assessed in those patients who had no prescription of statins (at any time) to mimic estimat-
ing E3. Additionally, we calculated the proportion of patients with a predicted 10-year CVD risk from each model greater
than a range of treatment threshold values (ie, proportion treated), similar to that described in the simulation study.

3 | RESULTS

3.1 | Simulation study
3.1.1 | Calibration

Within the RCT: 10% dropout simulation scenario, the model including baseline treatment and the MSM were well
calibrated across all three performance settings (Figure 3). In contrast, the model ignoring treatment underestimated
E2 (performance setting: NBT) and E3 (performance setting: NTT), while the treatment-naive model overpredicted
E1 (performance setting: MT). In both observational simulation scenarios (20% treated and 50% treated), all models except
the MSM provide biased estimates of E3 (performance setting: NTT), with calibration-in-the-large significantly larger
than zero (Figure 3); here, the underestimation was most pronounced for the model that ignored treatment. Since the
MSM can include the full treatment pathway, this model had calibration-in-the-large close to zero across all values of y.

Ignore Treatment - Treatment-Naive - - Model Treatment — MSM

Performance-setting: MT Performance-setting: NBT Performance-setting: NTT
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FIGURE 3 Calibration-in-the-large in each simulation scenario (rows), across all performance-settings (columns), and values of y

(the cholesterol lowering effect of statins). In performance settings no baseline treatment (NBT) and no treatment throughout (NTT),

the calibration-in-the-large for the treatment-naive model and the model treatment is indistinguishable. MSM, marginal structural model;
MT, mix of treatment [Colour figure can be viewed at wileyonlinelibrary.com]


http://wileyonlinelibrary.com

M_Wl LEY_StatiStiCS SPERRIN ET AL

The bias in estimating E3 by ignoring treatment drop-in decreased as the proportion of treated observations at each
timepoint decreased.

The RCT: 10% dropout simulation scenario demonstrated calibration slopes not significantly different from one across
all models except the model ignoring treatment in performance setting: NBT and performance setting: NTT (Supplemen-
tary Figure 1). In contrast, the calibration slope for the model ignoring treatment, the treatment-naive model and the
model including baseline treatment was significantly above one in Observational: 50% treated and Observational: 20%
treated simulation scenarios. This indicated that, in these observational circumstances, the coefficient of X in all models
apart from the MSM was too low.

3.1.2 | Discrimination and Brier score

The discrimination of all models for simulation scenario RCT: 10% dropout were identical across performance settings:
NBT and NTT (Supplementary Figure 2). For performance setting MT, the MSM resulted in the highest discrimination
and lowest Brier score across all values of y, with all models converging when y = 0 (Supplementary Figure 2). This is
likely the effect of the MSM model being able to incorporate the full treatment pathway (ie, adjusts for both Ay and A;).
The area under the curve and Brier score were quantitatively similar in both observational simulation scenarios to those
in the RCT scenario, and so are omitted for clarity.

3.1.3 | Treatment decision making

We examined the proportion of patients who would have treatment initiated at baseline if E[Y = 1 | Xy, A = 0] exceeded
a given treatment threshold; Figure 4 depicts the results obtained from the Observational: 50% treated simulation sce-
nario. Given that only the MSM provides valid estimates of E3, we take this to be the reference and find that the model
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FIGURE 4 Proportion of patients in the Observational: 50% treated simulation scenario who would initiate treatment at baseline if their
predicted risk given no current or future intervention exceeded a given treatment threshold. Note that y values of —2.5, —1.5, and —0.5 have
been removed for clarity. The treatment-naive model and the model including baseline treatment are identical. MSM, marginal structural
model [Colour figure can be viewed at wileyonlinelibrary.com]
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ignoring treatment, the treatment-naive model, and the model including baseline treatment all underallocated treatment.
For example, when y = 0 and taking a 40% treatment threshold, the proportion of patients allocated to treatment was
2.9%, 14.9%, 15.1%, and 29.2%; for the model ignoring treatment, the treatment-naive model, the model including base-
line treatment, and the MSM, respectively (Figure 4). Similar results were obtained across the other simulation scenarios
(Supplementary Figures 3 and 4).

3.2 | Statin initiation in CVD prevention example

A total of n = 3 630 818 patients were extracted from CPRD, of which n = 656 006 had no observed systolic blood pressure
throughout follow-up and were removed from the analysis. Hence, the final analysis sample was n = 2974 812, which
included 12144 193 person-years of follow-up. The Kaplan-Meier 10-year CVD event rate was 9.15%, with an incidence
rate of 8.06 per 1000 person-years. Within the analysis sample, n = 170249 (5.72%) had a prescription of first statin after
index date but before either 10-year follow-up or at least one year prior to a CVD event occurring within 10 years.

The coefficient estimates for the baseline covariates were similar between the treatment-naive model and the MSM
(Table 3). However, the MSM shows that statins significantly reduce the odds of a subsequent CVD event, which is not
captured within the treatment-naive model. In the subset of patients in the analysis sample who did not have a statin
“treatment drop-in,” calibration-in-the-large was 0.110 (95% CI: 0.103, 0.116) for the treatment-naive model, and 0.003
(95% CI: —0.004, 0.010) for the MSM,; this is reflected in the calibration plots (Supplementary Figure 5) and the calibration
slopes and c-statistics (Supplementary Table 1). Hence, the MSM accurately predicted risk E3, while the treatment-naive
model significantly underpredicted risk since it does not account for the risk lowering effect of statin use. Correspondingly,
the proportion of patients with a predicted risk from the treatment-naive model that exceeded a given treatment threshold
was lower than that from the MSM (Supplementary Figure 6). For example, a treatment threshold of >10% for the 10-year
predicted CVD risk resulted in 22.6% of patients starting treatment based on the treatment-naive model and 26.2% of
patients based on the MSM.

TABLE 3 Parameter estimates from the Clinical Practice Research Datalink example estimated from the
treatment-naive model and the marginal structural model (MSM). All of the variables are those extracted at
baseline (ie, the index date). Note that both models include a year-specific intercept fitted as a restricted cubic spline

Variable Treatment Naive Model (SE) MSM (SE)
Statin Initiation N/A —0.1002 (0.0103)
Female —0.5566 (0.0066) —0.5331 (0.0062)
Age 0.0711 (0.0003) 0.0723 (0.0002)
Atrial Fibrillation 0.4827 (0.0156) 0.4353 (0.0148)
Chronic Kidney Disease (stage 4/5) 0.3646 (0.0352) 0.3612 (0.0318)
Type I diabetes 0.7307 (0.0585) 0.5859 (0.0564)
Type II diabetes 0.5967 (0.0138) 0.5414 (0.0128)
Ethnicity
White or not stated Reference Reference
Asian —0.0840 (0.0700) —0.1936 (0.0679)
Bangladesh 0.1343 (0.1557) 0.1191 (0.1504)
Black —0.6454 (0.0568) —0.7092 (0.0536)
Chinese —0.7970 (0.1629) —0.7965 (0.1553)
Indian —0.0250 (0.0498) 0.0787 (0.0440)
Mixed —0.6138 (0.1287) —0.6547 (0.1229)
Other —0.3416 (0.0758) —0.2489 (0.0674)
Pakistani 0.3351 (0.0794) 0.3109 (0.0766)
Family history of coronary heart disease 0.1391 (0.0088) 0.1172 (0.0082)
Hypertension 0.1390 (0.0078) 0.2553 (0.0072)
Rheumatoid arthritis 0.4200 (0.0237) 0.4072 (0.0220)
Systolic blood pressure 0.0109 (0.0002) 0.0104 (0.0002)

SE = standard error.
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4 | DISCUSSION

This paper introduces the concept of embedding CPMs within a counterfactual causal framework, using MSMs to adjust
for treatment drop-in, thereby better reflecting real-world healthcare. This allows for estimation of treatment-naive risk
that appropriately adjusts for treatment drop-in. Moreover, we can estimate causal effects of treatment. The application
of sophisticated counterfactual modeling, specifically the MSM, is novel.

Our simulation study shows that the common practice of simply ignoring time-dependent treatment in CPM devel-
opment provides biased outcome risk estimates in untreated individuals. Although including baseline treatment within
the model provided some protection from this, only the MSM resulted in valid risk estimates, given no current or future
intervention. Since CPMs are often used in the context of stop-go clinical decision making regarding treatment, these
results demonstrate that current approaches to developing CPMs are ill-suited to common uses and provide misspecified
covariate-outcome associations in the presence of (time-dependent) treatment. Failing to account for treatment drop-ins
led to significant underprediction in risk E3 and a corresponding underallocation to treatment. While the literature
on handling treatments in CPM development is sparse, the results from this paper support those of previous studies.””’
As reported previously, within a simple two-armed randomized controlled trial (with no treatment drop-ins), all of the
modeling strategies except ignoring treatment provided valid estimates of E3.” Nevertheless, observational data sets are
needed to capture the high variability in treatment initiation, adherence, and duration that occur in practice. While
explicitly modeling baseline treatment is preferred to modeling within a treatment-naive cohort,” the current study sug-
gests that CPMs need to be framed within a counterfactual causal framework to truly support using them in treatment
initiation settings. To the best of our knowledge, this is the first study to propose such a counterfactual framework for
developing a CPM.

Postdevelopment CPMs need to be validated in samples similar to (internal validation) and distinct from (external vali-
dation) the development cohort.? Performance setting MT in the current simulation study aimed to represent an internal
validation of models within a cohort driven by the same underlying processes and with the same ratio of treated to non-
treated observations. In such a situation, the treatment-naive modeling method was miscalibrated, which is unsurprising
given that performance setting MT tests this model in both treated and nontreated observations, and agrees with previous
findings.?” However, poor performance can be expected if models ignoring treatment or only modeling baseline treatment
are then applied/validated in treatment-naive populations (performance setting: NTT). Importantly, all published CPM
validation studies, whether internal or external, focus on the model's ability to estimate E2. If aiming to guide treatment
initiation, one needs to assess the ability to estimate E3. Here, the MSM was well calibrated in all circumstances we con-
sidered since it can include the full treatment pathway. Based on such findings, we recommend that MSMs be used to
develop CPMs where treatment drop-ins are expected.

We acknowledge some limitations. First, we assume no residual confounding. Particularly, when using routinely col-
lected observational data for causal inference, sensitivity analyses to explore residual confounding are advisable.?® Second,
the requirements for building a deployable CPM would need more careful consideration. For example, considering the
implications of introducing a causal structure on model performance and validity. Third, we note that using a CPM is
itself an intervention, suggesting that a metamodel with rapid feedback may be required to understand how the use of the
CPM may be changing patient care.?? Fourth, we have only considered a single treatment. In principle, the extension to
multiple treatments sits within the methodology; although, model complexity may become an issue. Fifth, we have not
modeled interaction between treatment and prognostic factors; although, it is straightforward to do this within the pro-
posed framework.*> Sixth, in our statin example, we did not explicitly model statin discontinuation, doing so would allow
more detailed counterfactual modeling of treatment histories and allow us to determine the optimal time to commence
statins given the risk of subsequent discontinuation.** Finally, in routinely collected observational data, risk factors may
be observed at different times and are likely to be subject to informative observation and missingness*® (eg, patients being
measured more often when they are sicker**). Methods are needed to overcome such challenges within this framework.

In conclusion, we have shown that MSMs can improve treatment-naive risk estimation through better adjustment
for treatment-drop-ins, avoiding a potentially serious underestimate of treatment-naive risk. This approach should be
explored further in the development of CPMs.
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