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ABSTRACT
....................................................................................................................................................

Objective The objective of the Strategic Health IT Advanced Research Project area four (SHARPn) was to develop open-source tools that could be
used for the normalization of electronic health record (EHR) data for secondary use—specifically, for high throughput phenotyping. We describe
the role of Intermountain Healthcare’s Clinical Element Models ([CEMs] Intermountain Healthcare Health Services, Inc, Salt Lake City, Utah) as nor-
malization “targets” within the project.
Materials and Methods Intermountain’s CEMs were either repurposed or created for the SHARPn project. A CEM describes “valid” structure and
semantics for a particular kind of clinical data. CEMs are expressed in a computable syntax that can be compiled into implementation artifacts.
The modeling team and SHARPn colleagues agilely gathered requirements and developed and refined models.
Results Twenty-eight “statement” models (analogous to “classes”) and numerous “component” CEMs and their associated terminology were
repurposed or developed to satisfy SHARPn high throughput phenotyping requirements. Model (structural) mappings and terminology (semantic)
mappings were also created. Source data instances were normalized to CEM-conformant data and stored in CEM instance databases. A model
browser and request site were built to facilitate the development.
Discussion The modeling efforts demonstrated the need to address context differences and granularity choices and highlighted the inevitability of
iso-semantic models. The need for content expertise and “intelligent” content tooling was also underscored. We discuss scalability and sustain-
ability expectations for a CEM-based approach and describe the place of CEMs relative to other current efforts.
Conclusions The SHARPn effort demonstrated the normalization and secondary use of EHR data. CEMs proved capable of capturing data originat-
ing from a variety of sources within the normalization pipeline and serving as suitable normalization targets.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
The Clinical Element Model ([CEM] Intermountain Healthcare Health
Services, Inc, Salt Lake City, Utah)1,2 is Intermountain Healthcare’s for-
malism for authoring Detailed Clinical Models.3–5 Models authored un-
der this formalism are called CEMs. A CEM provides a specification of
“valid data” for a particular clinical element—the valid attributes for
the element (and the valid values for those attributes), the valid data
type, the valid physiologic range, etc.

The Strategic Health IT Advanced Research Project (SHARP)6 was
a program funded by the Office of the National Coordinator for Health
Information Technology. Its focus was enhancing the quality, safety,
and efficiency of health care through information technology. The au-
thors participated in “area four” of the SHARP program, which specifi-
cally focused on data normalization.7 Thus, SHARP area four was
nicknamed “SHARPn,” the “n” reflecting “normalization.”

OBJECTIVE
Traditionally, a patient’s clinical data (medical history, examination
data, hospital visits, and physician notes, etc) are stored inconsistently
and in multiple locations, both electronically and nonelectronically.
SHARPn’s task was to develop a “normalization framework” of open-
source components that could be dynamically configured to accept
electronic health record (EHR) data in various formats—eg, HL7
Version 28 (Health Level Seven International, Ann Arbor, Michigan)
messages, text documents, and HL7 Consolidated Clinical

Document Architecture ([C-CDA] Health Level Seven International, Ann
Arbor, Michigan)9 documents—and normalize them into common,
standards-conformant structures and codes that would, as a result,
contain comparable information suitable for secondary uses. High
throughput phenotyping was the secondary use that drove
requirements.

CEMs were chosen as the normalization targets for SHARPn. A
framework was developed to accept data in various formats and con-
verted them to CEM instances. While the overall SHARPn project has
been described elsewhere,10,11 this paper focuses particularly on the
CEM modeling and terminology aspect of the project.

MATERIALS AND METHODS
Clinical Element Models
The CEM strategy is based on a very generic Abstract Instance Model,
shown in figure 1. This model constitutes the general structure for ev-
ery model (and hence every instance of data). It declares that every
model has a “type” (an identifier for the model), a “key” (the “real
world” concept that is the focus of the model, often mapping to a
code in a standard terminology), and a “value choice” (either a single
“data” or a collection of “items”). Values are defined using HL7
Version 3 data types (with some practical constraints). A CEM may
optionally contain qualifiers (which amend the meaning of the data,
eg, the body location from which a heart rate measurement was taken),
modifiers (which drastically change the meaning of the instance, eg, the
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heart rate measurement pertains to a subject of “fetus” instead of to the
patient of record), and attributions (which capture the “who,” “when,”
“where,” and “why” of an action, such as “observed,” “documented,”
etc, related to an instance of data). Items, qualifiers, modifiers, and attri-
butions are themselves defined as CEMs.

An abbreviated depiction of the CEM “COREStandardLabObs,” rep-
resenting a standard laboratory test result, is provided in figure 2 as il-
lustration of a CEM conforming to the Abstract Instance Model. (The
prefix “CORE” will be explained later during the discussion of speciali-
zation.) In this CEM, the type is a code that identifies this model, ie, a
code that means “the CEM for a standard laboratory test result.” The
CEM’s key is bound to a value set of LOINC ([Logical Observation
Identifier Names and Codes] Regenstrief Institute, Indianapolis,
Indiana) codes representing the various laboratory tests used in clini-
cal care. The value choice in the case of this CEM is a single data
value. Its data type is “physical quantity,” which consists of a number
and a unit of measure. The CEM’s valid qualifiers are “result status,”
“delta flag,” and “lab interpretation,” and its valid attributions are
structures for capturing the who/when/where information about the
specimen collection and results of the laboratory test.

Controlled terminologies play a fundamental role in the CEMs.
Valid codes for the keys and in many cases the data values are se-
lected from standard terminologies wherever possible. Hence, not just
the structure but the semantics of the normal CEMs are definitively
declared.

Regardless of the type of information source (text document, HL7
message, etc) or of the particular system (Intermountain Healthcare’s
EHR, Mayo Clinic’s laboratory system, etc), all laboratory test results
would be normalized to instances of this model. Those laboratory test
results would then be available in a common form to phenotyping
algorithms.

A syntax for expressing the CEM (ie, the constraints) is required.
During the SHARPn project, we used the GE Healthcare-developed

Constraint Definition Language (CDL) to represent the CEMs. (GE
Healthcare [General Electric Company, Fairfield, Connecticut] has not
published documentation of the CDL language. The language is GE
Healthcare-owned, but the CEM artifacts expressed in CDL for the
SHARPn project are publicly free for use under the Intermountain
license.) An example of that language is shown in figure 3. We used
an Eclipse-based plugin to author in CDL and a Subversion (SVN)
repository to store the models.

Operating mechanisms
The SHARPn phenotyping subteam dictated modeling requirements,
requesting the models that they anticipated would be needed by their
phenotyping algorithms. Specifically, they planned to support 2
National Quality Forum (NQF) Quality Measures—NQF 0018 NCQA:
Controlling High Blood Pressure12 and NQF 0064 NCQA: Diabetes: LDL
Management & Control (NQF endorsement since removed).13 Once
presented with the requirements, representatives from the
Intermountain Healthcare modeling team, the Mayo Clinic/AgileX team
building the SHARPn normalization pipeline and the CEM database,
and the project principal and coprincipal investigators followed an ag-
ile approach to developing and implementing the CEMs: (1) the partici-
pants would discuss requirements; (2) the Intermountain team would
create new models or modify existing ones; (3) the Mayo/AgileX partic-
ipants would implement them in XSDs; and (4) iterative refinement
would take place as necessary.

RESULTS
The place of models in the framework
The SHARPn framework and the place of CEMs and terminology in the
framework are shown in figure 4. At step 1, the framework used Mirth
(Quality Systems, Inc, Irvine, California),14 an open-source health care
integration engine, to accept the various input data (HL7 Version 2
messages, C-CDA documents, and text) from a file system or from ex-
ternal entities via the Nationwide Health Information Network and
channel them to components of the normalization “pipeline” (step 2).
The pipeline was based on the Apache Unstructured Information
Management Architecture15 (The Apache Software Foundation, Forest
Hill, Maryland) platform. The component responsible for normalizing
text was the Apache clinical Text Analysis and Knowledge Extraction
System16 (The Apache Software Foundation, Forest Hill, Maryland)
natural language processing (NLP) system. The pipeline incorporated

Figure 1: The Abstract Instance Model Figure 2: An example CEM as a constraint on the Abstract
Instance Model
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Common Terminology Services 2,17 services to access terminology
content. The SHARPn CEMs were compiled into EXtensible Markup
Language Schema Definitions (XSDs), and the pipeline normalized the
input patient data to XSD-conformant Extensible Markup Language
(XML) documents. The resulting XML documents/CEM instances were
then sent back to Mirth (step 3), which serialized them and routed
them to a database designed to store CEM instances (step 4). Several
databases were incorporated in the framework, including MySQL and
CouchDB. The normalized CEM instances were then available to be re-
trieved by the algorithms that executed phenotyping logic (step 5).
During the execution phase, 273 patients’ EHR data were normalized
and a phenotyping algorithm was executed over those data. One thou-
sand medication order messages were also normalized. Pathak et al10

describes the execution and its results in more detail.

Tooling
We developed a web-based browser (clinicalelement.com) from which
CEMs could be viewed and downloaded. This tool allowed all SHARPn
team members to view existing models and also allowed the modeling
team to deliver new models developed for the project. We also devel-
oped a web-based request tool from which team members could re-
quest new models or modifications to models and with which the
modeling team could track the requests.

The models
As a result of the phenotyping team’s requests, 28 “statement” mod-
els (analogous to “classes”) and numerous “component” models
(analogous to “attributes”) were created or repurposed. Table 1 lists
the statement models. As mentioned, when model requirements were
identified, existing models were first examined. Those models marked
with an “R” are models that were created for other projects but that
we found could be repurposed for SHARPn. Those models marked
with an “N” in the table were created especially for the project be-
cause no existing model satisfied the requirements.

For most models, a “core” version and a “secondary use” version
were created. Those models are indicated by an asterisk after the
model name. The notion of a core version was an attempt to support
multiple contexts. Models intended for specific contexts could start with

the same core model and constrain the model according to its specific
needs. Context-specific model requirements are addressed further in
the Discussion section. Where no context-specific differences were an-
ticipated, no separate core and secondary use versions were created.

“Metadata” was modeled outside the logical CEM models, in “ref-
erence classes.” The reference class attributes captured context and
provenance information. For example, “patientExternalId” and
“clinicalEncounterId” captured the patient and encounter context to
which the data pertained, respectively. Since SHARPn’s objective was
to normalize data coming from EHRs for secondary use purposes,
provenance information identifying the source system of the data and
the kind of process that normalized the data (NLP, messaging inter-
face, etc) were important to capture. The “sourceDataInfo” and “nor-
malized” structures captured these data. The reference class
attributes used for most SHARPn CEMs are shown in table 2.

These reference classes were “added” to a CEM when it was com-
piled. The separation of these reference classes from the CEMs forces
the separation between logical model and implementation, and it
allows different implementations to add their own implementation-
specific attributes to a CEM.

Terminology content
Coded terminology plays an essential role in normalization, providing
semantics to the models and their attributes. The SHARPn project’s
approach was to directly support the terminology standards declared
by the US government. Guided by prescribed or de facto standards,
we selected a particular code system for each clinical area. The se-
lected code systems are shown in table 3.

A number of codes could not be found in the standard terminolo-
gies, such as codes for “permanent” (for an address use), “significant
change up” (for a measure of change in a laboratory value), and “re-
sulted” (for a type of attribution). A SHARP code system was created
to maintain these codes.

Model mappings
For the models to be used as normalization targets, mappings from
HL7 messages, NLP structures, and C-CDA documents to the CEMs
were required. These mappings were created in spreadsheets and di-
agrams. The logic was then transferred into the pipeline code. The

Figure 3: An example of a CEM in CDL
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pipeline was designed in a modular fashion such that new mappings
could be “plugged in” as needed.

CEMs were also successfully mapped to the NQF’s Quality Data
Model (QDM),18 since phenotyping algorithms executed the logic of
QDM-based clinical quality measures.19

Terminology mappings
We also needed to develop mappings from local codes that would be
received in messages to the normalized terminology content refer-
enced in the CEMs. An example of a terminology mapping is shown in
figure 5. The figure shows a local code “2” for a patient’s race
mapped to the normal CEM code “2106-3” (“white”). When a mes-
sage contains “2,” the pipeline would call terminology mapping ser-
vices that would normalize the code to “2106-3,” and that code would
be stored in the SHARP CEM instance database. The benefit of normal-
ized codes is that secondary use applications such as the phenotyping
algorithms need to only understand 1 structure and code system for
medications rather than myriad possibilities. The drawback is potential
information loss, as terminology mappings are sometimes lossy. This
is ameliorated by the fact that the original code is preserved in the
CEM’s data type.

DISCUSSION
Context differences and core models
SHARPn’s secondary use context had slightly different model require-
ments from the EHR context for which the CEMs were initially created.
For example, in an EHR, the “reporting priority” and “updated time”
are necessary to track the progress of the result through its lifecycle.
On the other hand, these attributes are useless in the secondary use
context because by the time the result reaches a secondary use data-
base, it is essentially static data—it has already undergone its life-
cycle. Similarly, an EHR needs to record such patient demographic
information as “religious congregation” and “disabilities” because it
impacts the accommodations given to a patient during care. While
such demographics might also be useful in secondary use, we made

the simplifying assumption that such demographic attributes would
not be needed for our particular phenotyping requirements, and we
omitted them from the SHARPn models.

Given these discussions, it appeared that creation of a single, con-
text-independent model for each element would be unachievable. The
question, then, was how to create models for different contexts yet
facilitate as much interoperability between them as possible. One obvi-
ous solution would be a traditional object-oriented extension ap-
proach—create parent models that contain only the attributes that are
common across all contexts, extending them with context-specific
models that add context-specific attributes. The other obvious approach
would be a constraint strategy in which a common parent model con-
tains all attributes needed by any and all contexts while the child con-
text-specific models constrain out of the common model those
attributes not pertinent to the context. A disadvantage of this latter ap-
proach is that whenever any new attribute is identified as necessary
(for any context), it needs to be added to the parent superset. The
maintainers of all the constraining context models would then need to
assess whether the new attribute would be applicable to their contexts
and if not, constrain it out. The advantage is that tighter control would
be possible; in the extension approach, maintainers of child context
models could add attributes to their models unbeknownst to the other
maintainers of child models. They could add similar attributes in slightly
different ways, diluting interoperability. And the proliferation of different
hierarchies of classes could easily become unwieldy and difficult to
understand.

Consequently, since interoperability is a prime objective, we de-
cided on the restriction approach even though it would require more
review and oversight. We surmised that the required review and over-
sight would even prove beneficial to the process, as stakeholders
would need to communicate and collaborate.

Under this approach, in cases where a model that would meet
SHARPn requirements already existed in the Intermountain set, we
copied it and saved it as a core SHARPn CEM. We then created a

Figure 4: The SHARPn Framework

RESEARCH
AND

APPLICATIONS
Oniki TA, et al. J Am Med Inform Assoc 2016;23:248–256. doi:10.1093/jamia/ocv134, Research and Applications

251



secondary use SHARPn model that constrained out of the core model
those attributes that the SHARPn team deemed not applicable to sec-
ondary use. Asterisks after the model names in table 1 indicate those
models for which this core/secondary use strategy was implemented.
Figure 6 shows an example. The top of this figure shows a core model
(for a numeric standard laboratory test result). The attributes that were
constrained out to achieve a secondary use model have been struck

out. The bottom of the figure shows the resulting secondary use (nu-
meric standard laboratory test result) model.

Other context differences called for different models, as opposed
to a common model whose attributes were constrained differently. For
example, SHARPn had a requirement for a “medication” model. For its
EHR context, Intermountain had developed a medication order model
and anticipated developing a medication administration model also. In

Table 1: CEMs used in the SHARPn project

Model Name Description New (N) or
Repurposed (R)

Statement CEMs: “Statements” are independent facts in a patient’s record. Heart rate measurements, diagnoses, procedure re-
cords, documentation of allergies, etc are all statements.

GenericStatement A generic structure that serves as the parent of the other statement models. N

AdministrativeDiagnosis Statement of a diagnosis for administrative purposes. R

AdministrativeProcedure Statement of a procedure for administrative purposes. N

AllergyIntolerance* Statement that a patient has an allergy or intolerance. R

Assertion* Statement of a symptom or finding that exists in a patient. The value is a code representing the symptom or find-
ing, eg, “nausea,” “fever,” etc.

R

Assessment* (and its 3
data type-specific variants)

Statement of a symptom or finding that follows an attribute/value pattern, eg, heart rate/numeric heart rate value,
hair color (blonde, black, brown, etc), APGAR pulse score (“0,” “1,” “2”), etc. The data type may be a code, a nu-
meric, or an ordinal.

R

DiseaseDisorder* Statement of a disease/disorder existing in a patient. R

NotedDrug* Statement of a medication the patient is noted to have taken or be taking. N

Procedure* Statement of a procedure performed on the patient. R

StandardLabObs* (and its 6
data type-specific variants)

Statement of a standard laboratory result. The 6 variants of the model support the result value being coded, quan-
titative, ordinal, string, interval, or titer.

R

Patient CEM: A “Patient,” because of its central position in the health care record, is a special type of CEM.

Patient* CEM for capturing the identity and demographics of a patient. R

Links: A “Link,” or “Semantic Link,” is an association between 2 instances. Just as is the case for all other data in-
stances, semantic link instances must conform to a CEM.

ComponentToComponentLink A CEM defining the structure of a link between 2 instances of component CEMs. N

StatementToComponentLink A CEM defining the structure of a link between an instance of a statement CEM and an instance of a component
CEM.

N

StatementToStatementLink A CEM defining the structure of a link between 2 instances of statement CEMs. N

Collections: “Collections” are loose groupings of CEM instances; all instances are related to the same patient but not necessar-
ily recorded at the same time, by the same provider, etc.

AllergyIntoleranceConcern* A collection of allergy/intolerance instances. N

NotedDrugList* A collection of notedDrug instances. N

ProblemConcern* A collection of problem instances. N

Panels: “Panels” are strong groupings of CEM instances; all instances are related to the same patient and derived from
the same source (specimen or instrument) and associated with the same or closely-related timestamp.

StandardLabPanel* A panel of StandardLabObs instances. R

VitalSignPanel* A panel of Assessment instances where the assessments represent vital sign measurements. R

Components: “Components” are analogous to “attributes” in traditional modeling/programming; they are only used within other
CEMs and cannot stand by themselves. They themselves are CEMs, eg, the “StartTime” component within the
“NotedDrug” CEM is itself defined by a separate CEM.

A number of “component”
models were also created or
repurposed for SHARP.

Abbreviations: SHARPn, Strategic Health IT Advanced Research Project area four; APGAR, appearance, pulse, grimace, activity, respiration; CEM,
Clinical Element Model.
*Both a “Core” version and a “Secondary Use” version of these models were created, as explained in the section “Context differences and core
models.”
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SHARPn discussions, we realized that what was needed for secondary
use was neither an order nor an administration but rather a level of
abstraction higher than the EHR models—something to note that the
patient was taking “drug X,” the amount taken, and whether the infor-
mation was known via a clinical note, a prescription, an order, or an
administration. In the case of secondary use of EHR data, summary in-
formation such as average daily dose of a medication and daily dose
count of a medication are very useful rather than the information re-
garding individual administrations or orders that would be found in the
EHR. Hence, a new model called “noted drug” was created.

Model granularity
In the EHR context, Intermountain modeled CEMs very specifically.
We created models for “heart rate measurement,” “nausea,” “serum
glucose result,” “serum potassium result,” etc. We were very specific
in order to capture all detail needed to specify valid data. For example,
the serum glucose and serum potassium models are very similar, both
containing a “reference range” attribute, a “status” attribute, etc. The
only differences of note are that the serum glucose model specifies
that the valid unit of measure for a serum glucose measurement is
“mg/dL” with a “physiological limit” of “0–3000,” while the potassium
result model specifies “mEq/L” for the unit of measure and “0–10” for
the physiologic limit.

Similarly, a model for a heart rate measurement and a systolic
blood pressure measurement share much the same structure.
However, the valid (or at least the common) values captured for a
heart rate measurement’s measurement location differ from those of a

systolic blood pressure measurement. The same is true for the
method/device. And, perhaps most significantly, the 2 are clinically
very different measurements. Consequently, in the EHR context, we
created different models for the heart rate measurement and systolic
blood pressure measurement.

In the EHR context, CEMs would govern data storage. All incoming
data (whether from applications, NLP, messages, or structured docu-
ments) would be submitted to validation against the CEMs. If data in-
stances do not pass validation, the intent is to store the data in an
alternate form and alert the modeling team. The team would then investi-
gate whether a new model or modifications to the existing model would
be needed and make changes if necessary. Depending on the kind of
data, the stored instance may be migrated to the new or modified model.

In contrast, in the secondary use of EHR data, the data would be
generated without surveillance and immediate reaction as in the EHR
case. The focus would be more on normalizing structure and high-
level semantics rather than the very fine-grained validation of the EHR
context. Consequently, for the SHARPn project, we created models at
a higher abstraction level. We created models such as “assertion”
(used to assert the existence of a condition/disease/disorder in a pa-
tient) instead of “nausea” and “diabetes”; “assessment” (used for ob-
servations that have a value, whether it be numeric or categorical)
instead of “heart rate measurement” and “urine description”; and
“standard lab result” instead of “glucose result” and “hematocrit re-
sult.” We even created a “generic statement” model to support cases
in which the pipeline received data that could not even be distin-
guished as one of the aforementioned types.

We acknowledged that the type of granular specification available
in our EHR CEMs would only improve the normalization and hence the
interoperability of the data, but we left this level of normalization to a
future exercise. With more attention towards high-quality EHR data,
we envisioned that that type of granular normalization could take place
as a second phase of processing. The very specific CEMs could be
used in that phase.

Table 2: Reference class attributes used in most SHARPn
CEMs

Attribute Definition

attribRecordedTime The time this CEM instance was stored in
the CEM instance database.

clinicalEncounterId External (business) identifier(s) for the clini-
cal encounter associated with this CEM
instance.

externalId External (business) identifier(s) for this CEM
instance.

instanceId Internal identifier for this CEM instance.

normalized A structure containing information related to
the process of normalizing input data into
this CEM instance.

patientExternalId External (business) identifier(s) for the pa-
tient associated with this CEM instance.

patientGloballyUniqueId An identifier for this CEM instance that is not
duplicated in any internal or external system.

sourceDataInfo A structure containing information about the
original data before normalization into this
CEM instance.

sourceSystemId An identifier for the system that originated
the original data normalized to this CEM
instance.

status The status of this CEM instance.

Abbreviations: SHARPn, Strategic Health IT Advanced Research Project
area four; CEM, Clinical Element Model.

Table 3: Code systems referenced by the SHARPn models

Domain Standard Terminology

Drug names RxNorm

Clinical drugs RxNorm

Ingredients RxNorm

Forms RxNorm

Routes HL7

Units SNOMED CTa

Frequencies SNOMED CT

Disease/disorder SNOMED CT

Alleviating/exacerbating factor SNOMED CT

Laboratory test results LOINC

Abbreviations: SHARPn, Strategic Health IT Advanced Research Project
area four; HL7, Health Level Seven International; SNOMED CT,
Systematized Nomenclature of Medicine–Clinical Terms; LOINC,
Logical Observation Identifiers Names and Codes.
aSNOMED CT (The International Health Terminology Standards
Development Organisation, Copenhagen, Denmark)
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CEMs vs other modeling efforts
There is a number of health care information modeling projects cur-
rently underway or recently completed20–28 as well as a number of
projects whose principal effort was not modeling but during which
model creation was a necessary component.29–32 The Clinical
Information Modeling Initiative (CIMI)33 is an effort to unify such
modeling efforts, and representatives of many of the aforementioned
efforts are participating. CIMI’s objective is to provide an open collec-
tion of information models in an agreed-upon format. Intermountain
Healthcare intends to migrate its CEMs to that format at the point CIMI
models are mature. A major objective of CIMI is to move beyond the
level of modeling addressed by SHARPn, creating not just higher-level
models akin to the SHARPn models but also very specific models as
Intermountain has done. Had the CIMI higher-level models been avail-
able, the SHARPn project would likely have used those as normaliza-
tion targets instead of CEMs. Instead, SHARPn chose CEMs because of
Intermountain’s experience in developing them for EHR data represen-
tation and converting them into computable artifacts.

Two efforts presently prominent in the US are the QDM and
C-CDA. As part of the SHARPn project, both were successfully mapped
to the SHARPn CEMs. A valid question would be why 1 of them was
not used as the normalization targets for the project. C-CDA has been
designed to represent documents, and the QDM has been designed to
facilitate expression of quality measures. In contrast, we designed the
CEMs to be implementable as discrete EHR data instances, and thus
felt they were better suited for the pipeline and instance database.
Using CEMs also gave us the freedom to design the models according
to pipeline implementation requirements. For example, in some cases,
C-CDA is more granular than the pipeline context and does not ad-
dress the use case of receiving unknown elements. In retrospect, we
could have patterned the CEMs more closely to 1 of these efforts.
Which of the 2 (or of the other modeling efforts cited above) to select,
however, would have been a somewhat arbitrary choice. We look to
the CIMI effort to provide a set of common logical models that then
can be mapped to C-CDA, QDM, or any of the other contexts.

Iso-semantic models
Ideally, we would create just 1 model for each clinical element to be
stored. However, that proves to be a difficult proposition. We have
mentioned, for example, that the SHARPn models were more generic
than the Intermountain CEMs originally created. The consequence is
that we now have 2 models under which a data element such as heart
rate measurement might be stored—1 specific and the other generic.
Many more situations of needing to create iso-semantic34 models will
arise, especially as we consider more granular models. Interoperability
with models from other projects further compounds the problem. The
conclusion is that mechanisms for mapping between these iso-se-
mantic models are critical to a coherent normalization strategy.

Expertise required
The SHARPn project’s contribution of open-source software components
is significant to the normalization effort. However, normalization soft-
ware alone will not completely solve the problem. We observed that
implementation of the components in a multi-institution environment
would still require a fair amount of manual labor involving content exper-
tise. For example, mapping the Mayo Clinic’s medication order mes-
sages (which sent First Databank codes in HL7 Version 2 message
structures) to CEM attributes (which reference RxNorm codes) requires a
deep understanding of HL7 Version 2, the CEMs, RxNorm, and FDB. It is
highly unlikely that a typical institution will have human resources that
possess the necessary content knowledge or the wherewithal to train
and hire such resources. To overcome this barrier to adoption, an ex-
tremely beneficial follow-on to the SHARPn project would be to develop
open-source mapping tools with “embedded intelligence”—tools that
“understand” the structures and semantics of the input sources and the
normalization targets, and that can guide and assist users as they create
structural and semantic mappings. They could use sophisticated lexical
and probabilistic matching algorithms, incorporating large amounts of
an institution’s historical data to assist them in suggesting matches, and
leverage creative visualization techniques (heat maps, bubble charts,
etc) to present possible matches.

Figure 5: An example of a SHARPn terminology mapping
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Scalability and sustainability
The models evolved as we practiced an agile development approach.
For instance, we added a “drug vehicle” attribute to the noted drug
model when the phenotyping team anticipated that need. We also
made changes to the models to make them more robust to the variety
of system capabilities, such as adding a precoordinated “clinical drug”
attribute to the existing postcoordinated attributes in the noted drug
model to accommodate systems that might not support representing

medication information in postcoordinated fashion. We also made
changes to support future requirements, such as creating the ability to
add “extension” attributes to models. Consequently, by the time the
last pipeline executions took place, the models were capable of serv-
ing as targets for most/all data typically stored in an EHR and no errors
attributable to the models were encountered.

This initial set of 28 models fulfilled the phenotyping team’s narrow
requirements for the project’s algorithms. Certainly, more classes of mod-
els (eg, “allergy,” “radiology order,” etc) will be needed. (In fact, many
CEMs not used in the SHARPn project already exist.) And it may not be
feasible to represent more complex, presently-less-understood areas (eg,
-omics data) in present CEM structures. But within the realm of typically
stored EHR data, CEMs appear to be a promising and scalable option.

The issues discussed in the “Iso-semantic models” and “Expertise
required” sections, however, are hindrances to scalability and sustain-
ability. Even if the CEMs themselves were robust and scalable, imple-
mentations would need to map their systems to the CEMs. The
systems’ models and the CEMs constitute iso-semantic models that
need to be mapped. The terminologies used by the systems may need
to be mapped to the CEMs’ terminologies, requiring effort and exper-
tise. As stated, robust, intelligent tools to aid mapping and hiding com-
plexity are a critical need.

A library of models will evolve and expand over time. It will require
governance and financial and human resources. It is likely that the
CIMI library will supplant the CEMs, curated under the auspices of a
yet-to-be-determined standards organization, but its maintenance will
likely be a community effort. As has been discussed, the CIMI library
will include models several orders of magnitude more than this
SHARPn set at a higher level of granularity. Its maintenance will pre-
sent a challenge to scalability and sustainability, but the development
effort will settle over time (as the greater part of common EHR are rep-
resented); and with adequate governance structures and creative
community incentivizing, the challenge should not be insurmountable.

CONCLUSION
We have described the role of CEMs in the SHARPn project, which pro-
vided structures to which data from HL7 Version 2 messages, NLP
outputs, and C-CDA documents could be normalized. They were also
shown to be mappable to QDM-based quality measures for high
throughput phenotyping. Use of standardized terminology enhanced
the normalization. Very specific semantic normalization via very granu-
lar CEMs was left to a future exercise.

Recognition of context differences stimulated different model con-
straints and granularity. Mechanisms for mapping between iso-se-
mantic models and how to reduce the amount of content expertise
needed to implement and use the normalization pipeline remain issues
to be solved by the community.
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