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ABSTRACT Positive natural selection can lead to a decrease in genomic diversity at the selected site and at linked sites, producing a
characteristic signature of elevated expected haplotype homozygosity. These selective sweeps can be hard or soft. In the case of a hard
selective sweep, a single adaptive haplotype rises to high population frequency, whereas multiple adaptive haplotypes sweep through
the population simultaneously in a soft sweep, producing distinct patterns of genetic variation in the vicinity of the selected site.
Measures of expected haplotype homozygosity have previously been used to detect sweeps in multiple study systems. However, these
methods are formulated for phased haplotype data, typically unavailable for nonmodel organisms, and some may have reduced power
to detect soft sweeps due to their increased genetic diversity relative to hard sweeps. To address these limitations, we applied the H12
and H2/H1 statistics proposed in 2015 by Garud et al., which have power to detect both hard and soft sweeps, to unphased multilocus
genotypes, denoting them as G12 and G2/G1. G12 (and the more direct expected homozygosity analog to H12, denoted G123) has
comparable power to H12 for detecting both hard and soft sweeps. G2/G1 can be used to classify hard and soft sweeps analogously to
H2/H1, conditional on a genomic region having high G12 or G123 values. The reason for this power is that, under random mating, the
most frequent haplotypes will yield the most frequent multilocus genotypes. Simulations based on parameters compatible with our
recent understanding of human demographic history suggest that expected homozygosity methods are best suited for detecting recent
sweeps, and increase in power under recent population expansions. Finally, we find candidates for selective sweeps within the
1000 Genomes CEU, YRI, GIH, and CHB populations, which corroborate and complement existing studies.
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POSITIVE natural selection is the process by which an
advantageous genetic variant rises to high frequency in

a population, thereby reducing site diversity and creating a
tract of elevated expected homozygosity and linkage disequi-
librium (LD) surrounding that variant (Sabeti et al. 2002). As
beneficial alleles increase to high frequency in a population,
the signature of a selective sweep emerges, which we can
characterize from the number of haplotypes involved in the
sweep (Maynard Smith and Haigh 1974; Schweinsberg and
Durrett 2005; Hermisson and Pennings 2017). A hard sweep

is an event in which a single haplotype harboring a selectively
advantageous allele rises in frequency, while in a soft sweep,
multiple haplotypes harboring advantageous mutations can
rise in frequency simultaneously. Thus, selective sweeps rep-
resent a broad and nonhomogenous spectrum of genomic
signatures. A selective event that persists until the beneficial
allele reaches fixation is a complete sweep, while a partial
sweep is one in which the selected allele does not reach
fixation. Consequently, expected haplotype homozygosity
surrounding the selected site is greatest once the selected
allele has fixed and before recombination and mutation break
up local LD (Przeworski 2002).

Twomodes of soft sweeps have been proposed across three
seminal papers, consisting of sweeps from standing genetic
variation that becomes beneficial in a changing environment,
or new recurrent de novo adaptive mutations (Hermisson
and Pennings 2005; Pennings and Hermisson 2006a,b), and
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these can be complete and partial as well. Unlike hard
sweeps, where haplotypic diversity is decreased, in a soft
sweep, haplotypic diversity remains, since multiple haplo-
types carrying the adaptive allele rise to high frequency
(Przeworski et al. 2005; Berg and Coop 2015). Patterns of
diversity surrounding the selected site begin to resemble
those expected under neutrality as the number of unique
haplotypic backgrounds carrying the beneficial allele (the
softness of the sweep) increases, potentially obscuring the
presence of the sweep. Accordingly, the effect of a soft
sweep may be unnoticeable, even if the selected allele has
reached fixation.

Popular modern methods for identifying recent selective
sweeps from haplotype data identify distortions in the hap-
lotype structure following a sweep, making use of either the
signature of elevated LD or reduced haplotypic diversity
surrounding the site of selection. Methods in the former
category (Kelly 1997; Kim and Nielsen 2004; Pavlidis et al.
2010) can detect both hard and soft sweeps, as neighboring
neutral variants hitchhike to high frequency under either
scenario. Indeed, LD-based methods may have an increased
sensitivity to softer sweeps (Pennings and Hermisson
2006b), especially relative to methods that do not use hap-
lotype data, such as composite likelihood approaches (Kim
and Stephan 2002; Nielsen et al. 2005; Chen et al. 2010; Vy
and Kim 2015; Racimo 2016). Haplotype homozygosity-
based methods include iHS (Voight et al. 2006), its ex-
tension, nSL (Ferrer-Admetlla et al. 2014), and H-scan
(Schlamp et al. 2016). These approaches identify a site un-
der selection from the presence of a high-frequency haplo-
type. Additionally, Chen et al. (2015) developed a hidden
Markov model-based approach that similarly identifies sites
under selection from the surrounding long, high-frequency
haplotype.

While the aforementioned methods are powerful tools
for identifying selective sweeps in the genome, they lack the
ability to distinguish between hard and soft sweeps. It is this
concern that Garud et al. (2015) address with the statistics
H12 and H2/H1. H12, a haplotype homozygosity-based
method, identifies selective sweeps from elevated expected
haplotype homozygosity surrounding the selected site. It is
computed as the expected haplotype homozygosity, with the
frequencies of the twomost frequent haplotypes pooled into
a single frequency:

H12 ¼ ðp1 þ p2Þ2 þ
XI

i¼3

p2i ; (1)

where there are I distinct haplotypes in the population, and
pi is the frequency of the ith most frequent haplotype, with
p1 $ p2 $⋯$ pI: Pooling the two largest haplotype frequen-
cies provides little additional power to detect hard sweeps
relative to H1, the standard measure of expected haplotype
homozygosity, where H1 ¼ PI

i¼1p
2
i (Figure 1A, left panel).

However, pooling provides more power to detect soft sweeps,
in which at least two haplotypes rise to high frequency, and

the distortion of their joint frequency produces an elevated
expected haplotype homozygosity consistent with a sweep
(Figure 1A, right panel).

In conjunction with an elevated value of H12, the ratio
H2/H1 serves as a measure of sweep softness, and is not
meaningful on its own. H2 is the expected haplotype ho-
mozygosity, omitting the most frequent haplotype, com-
puted as H2 ¼ H12 p21; and is larger for softer sweeps. In
the case of a soft sweep, the frequencies of the first- and
second-most frequent haplotypes are both large, and omitt-
ing the most frequent haplotype still yields a frequency
distribution in which one haplotype predominates. Under
a hard sweep, the second through Ith haplotypes are likely
to be at low frequency and closer in value, such that their
expected homozygosity is small. Thus, while H2,H1 in all
cases, the value of H2 is closer to that of H1 under a soft
sweep.

To leverage the power of H12 andH2/H1 to detect sweeps
in nonmodel organisms, for which phased haplotype data are
often unavailable,we extend the application of these statistics
to unphased multilocus genotype (MLG) data as G12 and
G2/G1. MLGs are single strings representing a diploid indi-
vidual’s allelic state at each site as homozygous for the
reference allele, homozygous for the alternate allele, or het-
erozygous. Similarly to H12, we define G12 as

G12 ¼ ðq1 þ q2Þ2 þ
XJ

j¼3

q2j ; (2)

where there are J distinct unphased MLGs in the population,
and qj is the frequency of the jth most frequent MLG, with
q1 $ q2 $⋯$ qJ: As with haplotypes, pooling the most fre-
quent MLGs only provides marginally more resolution to de-
tect hard sweeps, as only a single predominant unphased
MLG is expected under random mating (Figure 1B,
left panel). However, because the input data for G12 and
G2/G1 are unphased MLGs, we define another statistic that
is uniquely meaningful in this context. The presence of mul-
tiple unique haplotypes at high frequency under a soft sweep
implies not only that the frequency of individuals homozy-
gous for these haplotypes will be elevated, but also that the
frequencies of their heterozygotes will be elevated. When
haplotypes X and Y both exist at high frequency, diploid indi-
viduals of type XX; YY ; and XY will also exist at high fre-
quency, assuming individuals mate randomly within the
population (Figure 1B, right panel). Therefore, we can define
a statistic truly analogous to H12 for unphased MLG data,
G123. This statistic is calculated as

G123 ¼ ðq1 þ q2 þ q3Þ2 þ
XJ

j¼4

q2j : (3)

We note, however, that with this approach, we do not explic-
itly enforce a constraint on the presence of particular high-
frequency MLGs in the sample. That is, we only assume that
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the presence of one or more high-frequency MLGs implies a
sweep, even if any one of the XX; YY ; or XY MLGs is absent.

We show through simulation and empirical application
that the MLG identity statistics G12 and G123, in conjunction
with the ratioG2/G1,bothmaintain thepowerof theexpected
haplotype homozygosity statistic H12 to detect and classify
sweeps, without requiring phased haplotype input data.
Furthermore, as a closer analog to H12, the use of G123 with
G2/G1 more closely maintains the classification ability of
H12 with H2/H1 than does G12. Generally, we find that
the selective events visible with H12 in phased haplotype
data are visible to G12 and G123 in unphased MLG data,
with trends in power and genomic signature of the applica-
tions remaining consistent with one another. Accordingly,
we recover well-documented sweep signatures at LCT and
SLC24A5 in individuals with European ancestry (Bersaglieri
et al. 2004; Sabeti et al. 2007; Gerbault et al. 2009), with the
latter also detected in South Asian individuals (Coop et al.
2009; Mallick et al. 2013), as well as the region linked to

EDAR in East Asian populations (Fujimoto et al. 2007; Bryk
et al. 2008; Pickrell et al. 2009), and SYT1 in African individ-
uals (Voight et al. 2006). In addition, we identify novel can-
didates RGS18 in African individuals, P4HA1 in South Asian
individuals, and FMNL3 in East Asian individuals.

Materials and Methods

Simulation parameters

To compare the powers of G12 and G123 to detect sweeps
relative to H12 and H123 (Garud et al. 2015), we performed
simulations for neutral and selection scenarios using SLiM
2 (version 2.6) (Haller and Messer 2017). SLiM is a gen-
eral-purpose forward-time simulator that models a popula-
tion according to Wright-Fisher dynamics (Fisher 1930;
Wright 1931; Hartl and Clark 2007) and can simulate com-
plex population structure, selection events, recombination,
and demographic histories. For our present work, we used
SLiM 2 to model scenarios of recent selective sweeps, long-
term background selection, and neutrality, additionally
including models of population substructure and pulse admix-
ture. Our models of sweeps comprised complete and partial
hard sweeps, as well as soft sweeps from selection on stand-
ing variation (SSV). For background selection, we simulated
a gene with introns, exons, and untranslated regions (UTRs)
in which deleterious mutations arose randomly. We addition-
ally tested the effect of demographic history on power by
examining constant population size, population expansion,
and population bottleneck models for hard sweep scenarios.

General approach

We first simulated data according to human-specific param-
eters for a constant population size model. For simulated
sequences (Figure 2, A and D), we chose a mutation rate of
m ¼ 2:53 1028 per site per generation, a recombination rate
of r ¼ 1028 per site per generation, and a diploid population
size of N ¼ 104 (Takahata et al. 1995; Nachman and Crowell
2000; Payseur and Nachman 2000). All simulations ran for a
duration of 12N generations, where N is the starting popula-
tion size for a simulation, equal to the diploid effective pop-
ulation size. The duration of simulations is the sum of a 10N
generation burn-in period of neutral evolution to generate equi-
librium levels of variation across simulated individuals (Messer
2013), and the expected time to coalescence for two lineages of
2N generations. Simulation parameters were scaled, as is com-
mon practice, to reduce runtime while maintaining expected
levels of population-genetic variation, such that mutation and
recombination rates were multiplied by a factor l, while pop-
ulation size and simulation duration were divided by l. For
simulations of constant population size, we used l ¼ 20:

Scenarios involving population expansion and bottleneck
were modeled on the demographic histories inferred by
Lohmueller et al. (2009). For population expansion (Figure
2, B and D), we used l ¼ 20; and implemented the expansion
at 1920 unscaled generations before the simulation end time.
After expansion, the size of the simulated population doubled

Figure 1 Visual representation of the haplotype- and MLG-based statis-
tics. For all panels, the total area of the orange or blue squares within a
panel represents the value of the statistics. Hard sweep scenarios are in
orange, and soft sweeps are in blue. (A) Under a hard sweep (left), a
single haplotype rises to high frequency, p1; so the probability of sam-
pling two copies of that haplotype is p21: Choosing p1 as the largest
frequency yields H1 (dark orange area), while pooling p1 þ p2 as the
largest frequency yields H12 (total orange area). Under a soft sweep
(right), pooling the largest haplotype frequencies results in a large shaded
area, and therefore H12 has a similar value for both hard and soft
sweeps. (B) Under Hardy-Weinberg equilibrium, a single high-frequency
haplotype produces a single high-frequency MLG (frequency q1). Pooling
frequencies up to q3 has little effect on the value of the statistic, thus G1,
G12, and G123 have similar values. When two haplotypes exist at high
frequency, three MLGs exist at high frequency. Under a soft sweep,
pooling the largest two MLGs (G12) may provide greater resolution of
soft sweeps than not pooling (G1), and pooling the largest three creates a
statistic (G123) truly analogous to H12.
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from 104 to 2 3 104 diploid individuals. This growth in size
corresponds to the increase in effective size of African pop-
ulations that occurred �48,000 years ago (Lohmueller et al.
2009), assuming a generation time of 25 years. Population
bottleneck simulations (Figure 2, C and D) were scaled by
l ¼ 10; began at 1200 generations before the simulation end
time, and ended at 880 generations before the simulation end
time. During the bottleneck, population size fell to 550 dip-
loid individuals. This drop represents the �8000-year bottle-
neck that the population ancestral to non-African humans
experienced as it migrated out of Africa (Lohmueller et al.
2009), assuming a generation time of 25 years.

Simulating selection

Our simulated selection scenarios encompassed a variety of se-
lection modes and parameters. Though we primarily focused on

selective sweeps, we additionally modeled a history of long-
term background selection to test the specificity of methods for
sweeps. Background selection may decrease genetic diversity
relative to neutrality. For sweep experiments specifically, we
tested the power of methods to detect selection occurring
between 40 and 4000 generations prior to the simulation
end time (thus, within 2N generations prior to sampling).
We set the site of selection to be at the center of the simulated
chromosome, and performed two categories of simulations,
allowing us to answer two distinct types of questions about
the power of our approach: whether G12 and G123 properly
identify the signature of a selective sweep (the detection
experiments), and whether G12 or G123 in conjunction with
G2/G1 can distinguish between hard and soft sweeps, and
ultimately infer the number of selected haplotypes (k; the clas-
sification experiments), and hence “softness” of the sweep.

Figure 2 Simulated demographic models. Selection events, where applicable, occurred within 2N generations of sampling, indicated by small black bars
on the right side of (A–C) corresponding to selection 4000, 2000, 1000, and 400 generations before sampling. (A) Constant-size model. Diploid
population size is 104 individuals throughout the time of simulation. (B) Model of recent population expansion. Diploid population size starts at 104

individuals and doubles to 2 3 104 individuals 1920 generations ago. (C) Model of a recent strong population bottleneck. Diploid population size starts
at 104 individuals and contracts to 550 individuals 1200 generations ago, and subsequently expands 880 generations ago to 104 individuals. (D) View of
the final 3000 generations across demographic models, highlighting the effects of changing demographic factors on simulated populations.
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For the detection experiments (see Detecting sweeps), we
simulated chromosomes of length 100 kb under neutrality
and for each set of selection parameters, performed 103 rep-
licates of sample size n = 100 diploids (and n = 25 for hard
sweep experiments in Supplemental Material, Figure S19).
Here, we fixed the times (t) at which selected alleles arise to
be 400, 1000, 2000, or 4000 generations prior to sampling
(Figure 2), and selection coefficients (s) to be either 0.1 or
0.01, representing strong and moderate selection, respec-
tively. The parameters t and s were common to all selection
simulations of the first type, with additional scenario-specific
parameters, which we subsequently define. For the classifi-
cation experiments (see Differentiating between hard and soft
sweeps), we performed two types of simulations. First, we
simulated 106 replicates of n = 100 diploids for each sce-
nario, with s 2 ½0:005; 0:5�; drawn uniformly at random from
a natural log-scale, and t 2 ½40; 2000� (also drawn uniformly
at random from a natural log-scale), across chromosomes of
length 40 kb. With these simulations, we assessed the occu-
pancy of specific hard and soft sweeps among (G12, G2/G1),
(G123, G2/G1), (H12, H2/H1), and (H123, H2/H1) test
points. Second, we simulated 5 3 106 replicates with
s 2 ½0:05; 0:5� and t 2 ½200; 2000� and all other parameters
as previously. Here, we assigned the most probable k to each
test point from the posterior distribution of k among nearby
test points, drawing k 2 f1; 2; . . . ; 16g uniformly at random.
We scaled selection simulations as previously described.

We first examined hard sweeps, in which the beneficial
mutationwas added one randomly-drawnhaplotype from the
population at time t, remaining selectively advantageous un-
til reaching a simulation-specified sweep frequency (f) be-
tween 0.1 and 1.0 at intervals of 0.1, where f , 1:0
represents a partial sweep and f ¼ 1:0 is a complete sweep
(to fixation of the selected allele). Although we conditioned
on the selected allele not being lost during the simulation, we
did not require the selected allele to reach f. We additionally
modeled soft sweeps from SSV. For this scenario, we intro-
duced the selected mutation to multiple different, but not
necessarily distinct, randomly -drawn haplotypes (k) such
that k ¼ 2; 4, 8, 16, or 32 haplotypes out of 2N ¼ 103 (scaled
haploid population size) acquired the mutation at the time of
selection. We did not condition on the number of remaining
selected haplotypes at the time of sampling as long as the
selected mutation was not lost.

For hard sweeps only, we additionally examined the ef-
fects of three common scenarios—population substructure,
pulse admixture, and missing data—on performance. The
population substructure model consisted of six demes in a
symmetric island migration model in which migration be-
tween each deme is constant at rate m per generation for
the duration of the simulation (Figure S21A). We simulated
m 2 f1025; 1024; 1023; 1022; 1021g All demes were identi-
cal in size at N ¼ 1660 (unscaled) diploid individuals, and
samples consisted of n ¼ 100 diploid individuals, with 50 in-
dividuals sampled from each of two demes. Thus, as m in-
creases, the structured model converges to the unstructured

model of N ¼ 104 (unscaled) diploid individuals. Our admix-
ture scenarios examined a single pulse of gene flow from
an unsampled donor population into the sampled target at
ratem 2 f0:05; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40g; occur-
ring 200 generations prior to sampling (Figure S21B). We
performed experiments in which the donor had a (unscaled)
diploid size of N ¼ 103; 104; or 105; keeping the size of the
target fixed at N ¼ 104: For admixture simulations, a single
population of size 104 diploids evolves neutrally until it splits
into two subpopulations at 4000 generations before sam-
pling. We selected the divergence and admixture times to
approximately match the timing of these events in sub-
Saharan African populations (Veeramah et al. 2011; Busby
et al. 2016). Sample sizes were of n ¼ 100 diploids, matching
the standard hard sweep experiments.

To simulate missing data in the sampled population, we
followed a random approach. Using data generated for the
previous simple hard sweep experiment, we removed data
from a random number of SNPs in each replicate sample,
between 25 and 50, drawing these sites from locations
throughout the simulated sequence uniformly at random.
At each missing site, we assigned a number of the sampled
individuals, between one and five, uniformly at random, to
have their genotypes missing at the site. We then accounted
formissing data in one of twoways. First, we omitted any SNP
with missing data in each analysis window. This reduced the
number of SNPs included in each computation. Second, we
assigned any haplotype or MLG with missing data as an
entirely new string. Thus, the number of distinct haplotypes
andMLGs increases when sites are missing, providing a more
conservative approach than the first.

Finally, our single scenario of background selection was
intended to quantify the extent to which the long-term re-
moval of deleterious alleles in a population, which reduces
nearby neutral genetic diversity, would mislead each method
to make false inferences of selective sweeps. We generated a
100 kb chromosome containing an 11 kb gene at its center
and allowed it to evolve over 12N generations under a con-
stant-size demographic model. The gene was composed of
10 exons of length 100 bases with 1 kb introns separating
each adjacent exon pair. The first and last exons were flanked
by UTRs of length 200 bases at the 59 end and 800 bases at
the 39 end. Strongly deleterious mutations ðs ¼ 2 0:1Þ arose
at a rate of 50% in the UTRs, 75% in exons, and 10% in
introns, while mutations occurring outside of the genic re-
gion were neutral. To measure the confounding effect of
background selection, we observed the overlap between the
distributions of maximum G12, G123, H12, and H123 values
of 103 simulated replicates under neutrality and background
selection. Our model here is identical to that of Cheng et al.
(2017), with the sizes of genetic elements based on human
mean values (Mignone et al. 2002; Sakharkar et al. 2004).

Detecting sweeps

We performed scans across simulated 100 kb and 1 Mb
chromosomes with all methods using sliding genomic
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windows of length 40 kb, advancing by 4 kb increments. We
chose this window size primarily because the mean value of
LD between pairs of loci across the chromosome decays be-
low one-third of its maximum value over this interval (Figure
S1), and because this was the window size with which we
analyzed all non-African populations from the 1000Genomes
dataset. Window size also affects sensitivity to sweeps by
constraining the minimum strength of selective sweeps we
can detect. That is, with our chosen window size, we are
likely to detect sweeps with s.0:004; because such sweeps
will generate genomic footprints on the order of 40 kb for
our simulated population size of N ¼ 104:We computed this
value as F ¼ s=ð2r  lnð4NsÞÞ; where F is the size of the foot-
print in nucleotides, s is the per-generation selection coeffi-
cient, r is the per-base, per-generation recombination rate,
and N is the effective population size (Gillespie 2004; Garud
et al. 2015; Hermisson and Pennings 2017).

For experiments measuring power at defined time points,
we recorded the chromosomalmaximumvalue of G12, G123,
H12, or H123 across all windows as the score for each of
103 replicates of 100 kb chromosomes. Selection simulation
scores provided us with a distribution of values that we com-
pared with the distribution of scores generated under neutral
parameters. We define a method’s power for each of our
specified time intervals at the 1% false positive rate (FPR).
This measures the proportion of our 1000 replicates gener-
ated under selection parameters with a score greater than the
top 1% of scores from the neutral replicates. The method
performs ideally if the distribution of its scores under a sweep
does not overlap the distribution of scores for neutral simu-
lations; i.e., if neutrality can never produce scores as large as
a sweep.

In addition to power, we also tracked the mean scores of
G12 and G123 across simulated 1 Mb chromosomes at each
40 kb window for all selection scenarios at the time point for
which power was greatest. In situations where G12 or G123
had the same power at more than one time point (this oc-
curred for strong selection within 1000 generations of sam-
pling), we selected the most recent time point in order to
represent the maximum signal, since mutation and recombi-
nation erode expected haplotype homozygosity over time.
This analysis allowed us to observe the interval over which
elevated scores are expected, and additionally define the
shape of the sweep signal.

Differentiating between selection scenarios

Experiments to test the ability of G2/G1 to correctly differ-
entiate between soft and hard sweeps, as H2/H1 can (condi-
tioning on aG12 or G123 value for G2/G1, or anH12 orH123
value for H2/H1), required a different simulation approach
than did the simple detection of selective sweeps. Whereas
multiple methods exist to identify sweeps from extended
tracts of expected haplotype homozygosity, the method of
Garud et al. (2015) classifies this signal further to identify it
as deriving from a soft or hard sweep. As did Garud et al.
(2015), we undertook an approximate Bayesian computation

(ABC) approach to test the ability of our method to distin-
guish soft and hard sweeps. To demonstrate the ability of
G2/G1 conditional on G12 and G123 to differentiate be-
tween sweep scenarios and establish the basic properties of
the (G12, G2/G1) and (G123, G2/G1) distributions, we sim-
ulated sequences of length 40 kb under a constant popula-
tion size demographic history (Figure 2A) with a centrally
located site of selection. Here, we treated the whole simu-
lated sequence as a single window.

For ABC experiments to classify test points as hard or
soft from a fixed number of different selected haplotypes k,
we performed 106 simulations for each selection scenario,
drawing selection coefficients s and selection times t uni-
formly at random from a log-scale as previously described.
Soft sweeps from SSV were generated for k ¼ 5 and k ¼ 3
starting haplotypes (out of a scaled 2N ¼ 103 haploids).
Soft sweeps generated under random t and swere compared
with hard sweeps generated under random t and s, with
completion of the sweep possible but not guaranteed. From
the resulting distribution of scores for each simulation type,
we computed Bayes factors (BFs) for direct comparisons
between a hard sweep scenario and either soft sweep
scenario.

For two selection scenarios A and B and a (G12, G2/G1) or
(G123, G2/G1) test point (or haplotype statistic test point),
we compute BFs as the number of simulations of type A yield-
ing results within a Euclidean distance of 0.1 from the test
point, divided by the number of simulations of type B within
that distance. Here, test values of (G12, G2/G1) and (G123,
G2/G1) are each plotted as a 100 3 100 grid, with both
dimensions bounded by ½0:005; 0:995� at increments of
0.01. In the work of Garud et al. (2015), soft sweeps were
of type A and hard sweeps were of type B, and we retain this
orientation in our present work. Following these definitions,
a BF less than one at a test coordinate indicates that a hard
sweep is more likely to generate such a (G12, G2/G1) or
(G123, G2/G1) pair, whereas a BF larger than one indicates
greater support for a recent soft sweep generating that value
pair. As do Lee and Wagenmakers (2013), we define BF$ 3
as representing evidence for selection scenario A producing a
similar paired (G12, G2/G1) or (G123, G2/G1) value as the
test point, and BF$ 10 to represent strong evidence. Simi-
larly, BF# 1=3 is evidence in favor of scenario B, and
BF# 1=10 is strong evidence. We performed analyses for
both MLG and haplotype data to demonstrate the effect of
data type on sweep type inference.

We followed a similar approach for ABC experiments to
assign a most probable k to test points within the aforemen-
tioned 100 3 100 grids. Here, we generated 5 3 106 repli-
cates, drawing t and s uniformly at random on a log scale as
previously, and k 2 f1; 2; . . . ; 16g uniformly at random. For
each (G12, G2/G1), (G123, G2/G1), (H12, H2/H1), or
(H123, H2/H1) test point, we retained the value of k for each
replicate within a Euclidean distance of 0.1, and assigned the
most frequently occurring k as the most probable value for
the test point. Thus, unlike for BF experiments, no test point
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yielded an ambiguous result, and all test points were
assigned a most probable k.

Analysis of empirical data

We evaluated the ability of G12, G123, and H12 to corroborate
and complement the results of existing analyses on human
data. Because G12 and G123 take unphased diploid MLGs as
input, we manually merged pairs of haplotype strings for this
dataset [1000 Genomes Project, Phase 3 (1000 Genomes
Project Consortium et al. 2015)] into MLGs, merging haplo-
type pairs that belonged to the same individual. We also
complemented the individual-centered approach by ran-
domly merging pairs of haplotypes to produce a sample of
individuals that could arise under random mating. Our ap-
proaches therefore allowed us to determine the effect of us-
ing different data types to infer selection. Unlike biallelic
haplotypes, MLGs are triallelic, with an indicator for each
homozygous state and the heterozygous state. Thus, there
are at least as many possible MLGs as haplotypes, such that
a sample with I distinct haplotypes can produce up to
IðI þ 1Þ=2 distinct MLGs.

We scanned all autosomes using nucleotide-delimited ge-
nomic windows, proportional to the effective size of the study
population, and the interval over which the rate of decay in
pairwise LD plateaus empirically (see Jakobsson et al. 2008).
For the 1000 Genomes YRI population, we employed a win-
dow of length 20 kb sliding by increments of 2 kb, whereas
for non-African populations (effective population size ap-
proximately half of YRI) we used a window of 40 kb sliding
by increments of 5 kb (see Results). This means that we were
sensitive to sweeps from approximately s$ 0:002 for YRI,
and approximately s$ 0:004 for the others. We recorded
G12, G123, and H12 scores for all genomic windows, and
subsequently filtered windows for which the observed num-
ber of SNPs was less than a certain threshold value in order
to avoid biasing our results with heterochromatic regions for
which sequence diversity is low in the absence of a sweep.
Specifically, we removed windows containing fewer SNPs
than would be expected (Watterson 1975) when two line-
ages are sampled, which is the extreme case in which the
selected allele has swept across all haplotypes except for
one. For our chosen genomic windows and all populations,
this value is 4Nem3 ðwindow size in nucleotidesÞ ¼ 40
SNPs, where Ne is the diploid effective population size and
m is the per-site per-generation mutation rate. As in Huber
et al. (2016), we additionally divided each chromosome into
nonoverlapping 100 kb bins and removed sites within bins
whose mean CRG100 score (Derrien et al. 2012), a measure
of site mappability and alignability, was ,0.9. Filtering
thereby removed additional sites for which variant calls were
unreliable, making no distinction between genic and non-
genic regions.

Following a scan, we intersected selection signal peaks
with the coordinates for protein- and RNA-coding genes and
generated a ranked list of all genomic hits discovered in the
scan for each population. We used the coordinates for human

genome build hg19 for our data, to which Phase 3 of the
1000 Genomes Project is mapped. The top 40 candidates for
each study population were recorded and assigned P-values
and BFs. Specifically, we simulated sequences following the
estimates of population size generated by Terhorst et al.
(2017) from smc++ using ms (Hudson 2002) to assign
P-values and SLiM 2 to assign BFs, with per-generation,
per-site mutation and recombination rates of 1:253 1028

and 3:1253 1029 (Narasimhan et al. 2017; Terhorst et al.
2017), and sample sizes for each population matching those
of the 1000 Genomes Project. For P-value simulations, we
selected a sequence length uniformly at random from the
set of all hg19 gene lengths, appended the window size used
for scanning that population’s empirical data to this se-
quence, and used a sliding window approach, retaining in-
formation from the window of maximum G12, G123, or H12
value. For BF simulations, we used simulated sequence
lengths of either 20 kb for YRI or 40 kb for others, to match
the strategy of empirical scans. That is, once we have identi-
fied an elevated sweep signal within a window, we then seek
to classify it as hard or soft.

We assigned P-values by generating 106 replicates of neu-
trally evolving sequences, where the P-value for a gene is the
proportion of maximum G12 (or G123 or H12) scores gener-
ated under neutrality that is greater than the score assigned
to that gene. After Bonferroni correction for multiple test-
ing (Neyman and Pearson 1928), a significant P-value was
p, 0:05=23; 735 � 2:106593 1026; where 23,735 is the
number of protein- and RNA-coding genes for which we
assigned a G12 (or G123 or H12) score. To assign BFs, we
simulated 106 replicates of hard sweep and SSV ðk ¼ 5Þ sce-
narios for each study population (thus, 2 3 106 replicates
for each population), wherein the site of selection was at
the center of the sequence. We drew t 2 ½40; 2000� and
s 2 ½0:005; 0:5� uniformly at random from a log-scale, and
defined BFs as previously. Additionally, we assigned the most
probable values of k from the posterior distribution for each
top 40 sweep candidate for each population, following the
previous protocol. Values of twere chosen to reflect selective
events within the range of detection of G12, G123, and H12,
while also being after the out-of-Africa event, whereas values
of s represent a range of selection strengths from weak to
strong. We once again conditioned on the selected allele
remaining in the population throughout the simulation,
though not on its frequency beyond this constraint.

Data availability

We affirm that all data necessary for confirming the conclu-
sions of the article are present within the article, figures, and
tables. Supplemental material available at Figshare: https://
doi.org/10.25386/genetics.7128560.

Results

To detect selective sweeps, we must have power to identify
loci with elevated haplotype homozygosity relative to

Detecting Hard and Soft Sweeps 1435

https://doi.org/10.25386/genetics.7128560
https://doi.org/10.25386/genetics.7128560


expectations under neutral demographic scenarios. We com-
pared the power of theMLG-basedmethods G12 and G123 to
that of the haplotype-based methods H12 and H123 (Garud
et al. 2015), at the 1% FPR obtained from simulations under
neutral demographic models (see Materials and Methods).
We performed simulations under population-genetic pa-
rameters inferred for human data (Takahata et al. 1995;
Nachman and Crowell 2000; Payseur and Nachman 2000)
with the forward-time simulator SLiM 2 (Haller and Messer
2017). Because SLiM outputs paired phased haplotypes for
each diploid individual, we manually merged each individu-
al’s haplotypes to apply the MLG-based methods. Our simu-
lated replicates included scenarios of selective neutrality,
hard sweeps, and soft sweeps. We evaluated methods
across simulations of constant demographic history, as well
as realistic human models of bottleneck and expansion
(Lohmueller et al. 2009) (Figure 2). We then used an ABC
approach to evaluate the ability of the MLG-based methods
with G2/G1, and the haplotype-based methods with H2/H1,
to differentiate between hard and soft sweeps. Finally, we
evaluated empirical data from the 1000 Genomes Project
(1000 Genomes Project Consortium et al. 2015), manually
merging each study individual’s phased haplotypes into
MLGs to observe the effect of phasing on our ability to detect
selective events. See Materials and Methods for a detailed
explanation of experiments.

Using G12 and G123 to detect sweeps

We demonstrate the range of sensitivity of G12 and G123
relative to H12 and H123 for selective sweeps occurring at
time points between 400 and 4000 generations before the
time of sampling.We evaluatedG123 to determinewhether it
is a more direct analog of H12 as we expected, while our
application of H123 follows from the work of Garud et al.
(2015), which suggested that H123 yields little difference
in power to detect sweeps relative to H12 for given sample
and window size parameters. In the following experiments,
we simulated 100 kb chromosomes carrying a selected allele
at their center (sweep simulations), or carrying no selected
allele for neutrality, performing 103 replicates for each sce-
nario with sample size n ¼ 100 diploid individuals.

For each series of simulations, we detected sweeps using a
sliding window of size 40 kb shifting by 4 kb increments
across the chromosome. We selected this window size to
ensure that the effect of short-range LD would not inflate
the values of our statistics (Figure S1). This additionally
matched the window size we selected for analysis of empir-
ical data in non-African populations (see Analysis of empirical
data for signatures of sweeps). According to theoretical expec-
tations (Gillespie 2004; Garud et al. 2015; Hermisson and
Pennings 2017), a window of size 40 kb under our simulated
parameters is sensitive to sweeps with selection strength
s$ 0:004 (seeMaterials andMethods). Additionally, although
we used a nucleotide-delimited window in our analysis, one
can also fix the number of single-nucleotide polymorphisms
(SNPs) included in each window (SNP-delimited window),

though this somewhat changes the properties of the methods
(see Discussion). A SNP-delimited window corresponding to
�40 kb for our simulated data contains on average 235 SNPs
under neutrality. To supplement experiments measuring the
power of each method, we also assessed the genomic distri-
bution of G12 and G123 values to characterize their patterns
under sweep scenarios.

Tests for detection of hard sweeps

Methods that detect selective sweeps typically focus on the
signature of hard sweeps, though many can detect soft sweeps
as well. Accordingly, we began by measuring the ability of G12,
G123, H12, and H123 to detect both partial and complete hard
sweeps, under scenarios in which a single haplotype acquires a
selected mutation and rises in frequency. We examined selec-
tion start times (t) of 400, 1000, 2000, and 4000 generations
before the time of sampling. These values of t span the time
periods of various sweeps in human history (Przeworski
2002; Sabeti et al. 2007; Beleza et al. 2012; Jones et al.
2013; Clemente et al. 2014; Fagny et al. 2014). For each t,
we simulated hard sweeps under the aforementioned param-
eters to sweep frequencies (f) between 0.1 and 1 for the
selected allele (Figure 3 and Figure S2). Sweeps to smaller
f have a smaller effect on the surrounding expected haplotype
homozygosity and are more difficult to detect. We performed
hard sweep simulations for a large selection coefficient of
s ¼ 0:1 and a more moderate selection coefficient of
s ¼ 0:01:

The values of t and f both impact the ability of methods to
identify hard sweeps (Figure 3). At the 1% FPR, all methods
are suited to the detection of more recent sweeps for simu-
lated data, losing considerable power to resolve hard sweep
events occurring prior to 2000 generations before sampling,
and losing power entirely for hard sweeps occurring prior to
4000 generations before sampling. For selection within
2000 generations of sampling, trends in the power of the
MLG-based methods resemble those of the haplotype-based
methods, with the power of the MLG-based methods either
matching or approaching that of the haplotype-based meth-
ods for s ¼ 0:1 (Figure 3A and Figure S2A), and following
similar trends in power for s ¼ 0:01 (though with slightly
reduced power overall; Figure 3B and Figure S2B), indicating
that the two highest-frequency MLGs and the two highest-
frequency haplotypes have a similar ability to convey the
signature of a sweep.

For data simulated under strong selection, s ¼ 0:1 (Figure
3A), G12 and H12 achieve their maximum power for recent
selective sweeps originatingwithin the past 1000 generations
(with little to no power lost over this interval for sweeps to
large f). This result is expected because sweeps with such a
high selection coefficient quickly reach fixation, at which
point mutation and recombination break down tracts of ele-
vated expected homozygosity until the signal fully decays,
obscuring more ancient events. For a given value of s, selec-
tive sweeps to larger values of f for the selected allele addi-
tionally produce a stronger signal because more diversity is
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ablated the longer a sweep lasts. Thus, G12 and H12 are best
able to detect sweeps over recent time intervals, especially as
the sweep goes to larger values of f. Strong hard sweeps
additionally create a peak in signal surrounding the site of
selection that increases in magnitude with increasing dura-
tion of a sweep. This signal is broad and extends across the
1 Mb interval that we modeled in Figure 3C. These patterns
repeat for G123 and H123 (Figure S2A), yielding little dif-
ference in power between H12 and H123, and no difference
in power between G123 and G12 (along with a nearly iden-
tical spatial signature along the chromosome; Figure S2C).

At a smaller selection coefficient of s ¼ 0:01 (Figure 3B),
G12 and H12 have a distinct range of sweep detection from
s ¼ 0:1: The reduced strength of selection here leads bene-
ficial mutations to rise more slowly in frequency than
for stronger selection. Consequently, after 400 generations
of selection, the distribution of haplotype (and therefore
MLG) frequencies has scarcely changed from neutrality, and
G12 and H12 cannot reliably detect the signal of a sweep.
However, the powers of G12 and H12, as well as G123 and
H123 (Figure S2B), are greatest for a moderate sweep to
f $ 0:9 starting 2000 generations prior to sampling. As with
stronger selection, pooling the three largest frequencies had
little effect on power relative to pooling the two largest fre-
quencies (Figure S2). We could not detect adaptive muta-
tions appearing more anciently than 2000 generations
before sampling, indicating that all methods lose power to

detect sweeps for smaller values of s, and that haplotype
methods may outperform MLG methods for smaller values
of s as well. Furthermore, the range of time over which meth-
ods detect a sweep narrows and shifts to more ancient time
periods with decreasing s. Weaker selection nonetheless pro-
duces a signal peak distinct from the neutral background and
proportional in magnitude to the value of f (Figure 3D and
Figure S2D), though the sweep signal for both haplotypes,
and therefore MLGs, is reduced for moderate selection (com-
pare vertical axes of Figure 3, C and D and of Figure S2, C
and D).

Tests for detection of sweeps on standing variation

Wecharacterized theproperties ofG12,G123,H12, andH123
for simulated soft sweeps from SSV. We generated results
analogous to those for hard sweeps: measures of power for
each method, and the chromosome-wide spatial distribution
of the G12 and G123 signals. Across identical times of selec-
tion (t) and selection coefficients (s) as for hard sweep sim-
ulations, we simulated SSV scenarios by introducing the
selected mutation on multiple haplotypes simultaneously.
We evaluated method ability to correctly distinguish sweeps
on k ¼ 2; 4, 8, 16, and 32 initially selected different haplo-
types from neutrality. One copy of the selected allele is guar-
anteed to remain in the population for the entire simulation,
but we do not condition on the number of sweeping haplo-
types at the time of sampling. Indeed, we do not expect that

Figure 3 Capabilities of H12 (orange)
and G12 (blue) to detect hard sweeps
from simulated chromosomes, sample
size n ¼ 100 diploids, and window size
of 40 kb for selection across four time
points (400, 1000, 2000, and 4000 gen-
erations before sampling) and 10 sweep
frequencies (f, frequency to which the
selected allele rises before becoming se-
lectively neutral). Selection simulations
conditioned on the beneficial allele not
being lost. (A) Powers at a 1% FPR of
H12 and G12 to detect strong sweeps
ðs ¼ 0:1Þ in a 100 kb chromosome. (B)
Powers at a 1% FPR of H12 and G12 to
detect moderate sweeps ðs ¼ 0:01Þ in a
100 kb chromosome. (C) Spatial G12
signal across a 1 Mb chromosome for
strong sweeps occurring 400 genera-
tions prior to sampling. (D) Spatial G12
signal across a 1 Mb chromosome for
moderate sweeps occurring 2000 gener-
ations prior to sampling. Lines in (C and
D) are mean values generated from the
same set of simulations as (A and B), and
contain only results for f $0:7: Note
that vertical axes in (C and D) differ.
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for larger values of k, all haplotypes carrying the selected
allele will remain at high frequency, or remain at all by the
time of sampling (Figure S4). For our scaled (see Materials
and Methods) simulated population size of 500 diploids
(unscaled 104 diploids), this corresponds to having the ben-
eficial allele present on 0.2–3.2% of haplotypes at the onset
of selection. Our results for these tests mirror those for hard
sweeps, with stronger selection on fewer distinct haplotypes
yielding the most readily detectable genomic signatures (Fig-
ure 4 and Figure S3).

SSV once again produces a signal of elevated MLG identity
for s ¼ 0:1 that all methods most readily detect if it is recent,
and rapidly lose power to detect as t increases. G12 and H12
reliably detect signals of SSV in simulated 100 kb chromo-
somes, retaining power for SSV on as many as k#16 haplo-
types within thefirst 400 generations after the start of selection
(Figure 4A). However, the relatively smaller expected homo-
zygosity under SSV leads the power of each method to decay
more rapidly than under a hard sweep. The levels of expected
homozygosity produced under SSV are consequently smaller in
magnitude than those generated under hard sweeps, but un-
ambiguously distinct from neutrality for at least one combina-
tion of each tested k and t, with k ¼ 2 most closely resembling
a hard sweep throughout (Figure 4C). As with the hard sweep
scenario, G123 and H123 yield little change in resolution for
detecting strong soft sweeps from SSV, suggesting that pooling
additional frequencies may hold little importance in detect-

ing sweeps (Figure S3, A and C). Once again, H123maintains
slightly greater power than does G123.

G12 and H12 perform comparably well for moderate
ðs ¼ 0:01Þ sweeps from SSV (Figure 4B). Similarly to hard
sweep scenarios for s ¼ 0:01; G12 and H12 detected soft
sweeps from SSV occurring between 1000 and 2000 genera-
tions before sampling. Once again, the power of H12 was
greater than that of G12, with trends in power for G12 fol-
lowing those of H12. For both MLG and haplotype data,
the inclusion of additional selected haplotypes at the start
of selection up to k ¼ 8 only slightly reduced the maximum
power of G12 and H12 to detect sweeps, but with time at
which maximum power is reached shifting from 2000 gener-
ations before sampling for k# 8 to 1000 generations before
sampling for k$16: Additionally, the spatial signal for mod-
erate sweeps was comparable between SSV and hard sweep
scenarios (Figure 4D). This result may be because at lower
selection strengths, haplotypes harboring adaptive alleles are
more likely to be lost by drift, leaving fewer distinct selected
haplotypes rising to appreciable frequency. These trends per-
sist for G123 and H123, which display similar powers to G12
and H12 across all scenarios (Figure S3, B and D).

Effect of population size changes on detection
capabilities of G12 and G123

Changes in population size that occur simultaneously with or
after the time of selection may impact the ability of methods

Figure 4 Capabilities of H12 (orange)
and G12 (blue) to detect soft sweeps
(SSV) from simulated chromosomes gen-
erated for selection times, sample size,
and window size as in Figure 3, and five
initially selected haplotype values (k,
number of haplotypes on which the se-
lected allele arises at time of selection).
Selection simulations conditioned on
the beneficial allele not being lost. (A)
Powers at a 1% FPR of H12 and G12
to detect strong sweeps ðs ¼ 0:1Þ in a
100 kb chromosome. (B) Powers at a
1% FPR of H12 and G12 to detect mod-
erate sweeps ðs ¼ 0:01Þ in a 100 kb
chromosome. (C) Spatial G12 signal
across a 1 Mb chromosome for strong
sweeps occurring 400 generations prior
to sampling. (D) Spatial G12 signal
across a 1 Mb chromosome for moder-
ate sweeps occurring 2000 generations
prior to sampling. Lines in (C and D) are
mean values generated from the same
set of simulations as (A and B), and con-
tain only results for k# 16: Note that
vertical axes in (C and D) differ.
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to detect sweeps because haplotypic diversity may decrease
under a population bottleneck, or increase under a population
expansion (Campbell and Tishkoff 2008). To test the robust-
ness of the haplotype- and MLG-based methods to these po-
tentially confounding scenarios, we modeled hard sweeps
following the human population bottleneck and expansion
parameters inferred by Lohmueller et al. (2009) (Figure 2).
We measured the powers of G12, H12, G123, and H123
across our previously tested parameters, using simulated
100 kb chromosomes and sliding windows, and approaching
these scenarios in two ways.

First, we applied a 40-kb window as previously to evaluate
the effect of population size change on the power of each
method. Under a bottleneck, a 40-kb window is expected to
carry fewer SNPs than under a constant-size demographic
history, whereas an expansion results in greater diversity per
window. Second, we examined whether we could increase
the robustness of all methods to population size changes by
adjusting the window size for each scenario to match the
expected number of segregating sites for a 40-kb window
under constant demographic history. To do this, we followed
the approach outlined in DeGiorgio et al. (2014), increasing
window size for bottleneck simulations and decreasing win-
dow size for expansion simulations. We employed windows
of size 56,060 nucleotides for bottleneck, and of size 35,048
nucleotides for expansion scenarios (see DeGiorgio et al.
2014).

A recent population bottleneck reduces the powers of all
methods to detect sweeps, whereas a recent population
expansion enhances power (Figures S5 and S6). This results
from the genome-wide reduction in haplotypic diversity
under a bottleneck relative to the constant-size demographic
history. Thus, the maximum values of both the haplotype-
and MLG-based statistics in the absence of a sweep are
inflated, resulting in a distribution ofmaximumvalues under
neutrality that has increased overlap with the distribution
under selective sweeps. In contrast, haplotypic diversity is
greater under the population expansion than what is
expected for the constant-size demographic history, render-
ing easier the detection of reduced genetic diversity due to
a sweep.

For strong selection ðs ¼ 0:1Þ under a population bottle-
neck, all methods using unadjusted windows have reliable
power to detect only recent hard sweeps to large f occurring
within 1000 generations of sampling (Figures S5A and S6A).
Adjusting window size has little effect on this trend, with
powers for sweeps beginning 400 generations before sam-
pling increasing only slightly (Figures S5C and S6C). This
result indicates that we can apply the haplotype- and
MLG-based methods to populations that have experienced
a severe bottleneck and make accurate inferences about their
selective histories. Similarly, adjusting window size had little
effect on the power of all methods to detect a sweep under a
population expansion, wherein power is already elevated. As
with the bottleneck scenario, reducing the size of a 40-kb
window (Figure S5B and S6B) to 35,048 bases (Figure S5D

and S6D) provided a minor increase in power to detect se-
lective events occurring within 2000 generations of sam-
pling, with high power for larger values of f extending to
2000 generations prior to sampling.

Distinguishing hard and soft sweeps with G2/ G1

Having identified selective sweeps with the statistics G12 or
G123, our goal is to make an inference about the number of
sweeping haplotypes. To distinguish between hard and soft
sweeps, Garud et al. (2015) defined the ratio H2/H1, which is
larger under a soft sweep and smaller under a hard sweep.
The H2/H1 ratio leverages the observation that haplotypic
diversity following a soft sweep is greater than that under a
hard sweep. Garud and Rosenberg (2015) showed that the
value of H2/H1 is inversely correlated with that of H12, and
that identical values of H2/H1 have different interpretations
depending on their associated H12 value. Therefore, H2/H1
should only be applied in conjunction with H12 when H12 is
large enough to be distinguished from neutrality.

Here,we extend the applicationofH2/H1 toMLGs. Aswith
the haplotype approach, G2/G1 is larger under a soft sweep
and smaller under a hard sweep, because MLG diversity
following a soft sweep is greater than under a hard sweep.
G2/G1 should therefore distinguish between hard and soft
sweeps similarly toH2/H1, conditional on ahighG12orG123
value. To demonstrate the classification ability of the MLG-
based methods with respect to the haplotype-based methods,
we began by generating 106 simulated replicates of 40 kb
chromosomes with sample size n ¼ 100 diploids for hard
sweep and SSV scenarios, treating each chromosome as a
single window and recording its G12, G123, and G2/G1 val-
ues (see Materials and Methods).

We evaluated the ability of G2/G1 with G12 or G123 to
distinguish between hard sweeps and soft sweeps from SSV
specifically from k ¼ 3 and k ¼ 5 drawn haplotypes, both
within the range of method detection (Figure 4 and Figure
S3), with all sweeps allowed but not guaranteed to go to
fixation. We examined two values of k, distinct from one an-
other and from hard sweeps, to illustrate the effect of model
choice on sweep classification. Each experiment evaluated the
likelihood that a soft sweep scenario would produce a partic-
ular paired (G12, G2/G1) or (G123, G2/G1) value relative to
a hard sweep scenario. We measured this relative likelihood
by plotting the BFs for paired (G12, G2/G1) and (G123, G2/G1)
test points generated from anABCapproach (seeMaterials and
Methods). A BF. 1 indicates a greater likelihood of a soft
sweep generating the paired values of a test point, and a
BF, 1 indicates that a hard sweep is more likely to have
generated such values. In practice, however, we only assign
BF# 1=3 as hard and BF$ 3 as soft to avoid making infer-
ences about borderline cases (Figure 5). For each replicate,
time of selection (t) and selection strength (s) were drawn
uniformly at random on a log-scale from t 2 ½40; 2000� gen-
erations before sampling and s 2 ½0:005; 0:5�:

The comparison of hard sweep and SSV scenarios provides
a distribution of BFs broadly in agreement with expectations
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for the haplotype-based approaches (Garud et al. (2015),
Garud and Rosenberg (2015); Figure 5). In Figure 5, colored
in blue are the values most likely to be generated under SSV,
and colored in red are the values most likely to be generated
under hard sweeps. In all scenarios tested, hard sweeps pro-
duce relatively smaller G2/G1 values than do soft sweeps.
Intermediate G12 and G123 paired with large values of
G2/G1 are more likely to result from soft sweeps than from
hard sweeps. SSV cannot generate large values of G12 or
G123 because these sweeps are too soft to elevate homozy-
gosity levels to the extent observed under hard sweeps. This
is particularly so when soft sweeps are simulated with k ¼ 5:
Therefore, the majority of test points with extreme values of
G12 and G123, regardless of G2/G1, have BF# 1=3 (mean-
ing only one SSV observation within a Euclidean distance of
0.1 for every three or more hard sweep observations),
and this is in line with the results from the constant-size de-
mographic model of Garud et al. (2015) for comparisons
between hard sweeps and the softest soft sweeps. Addition-
ally, we cannot classify sweeps if the values of G12 and G123
are too low, as these values are unlikely to be distinct from
neutrality. Thus, our ability to distinguish between hard
and soft sweeps is greatest for intermediate values of G12
and G123. In practice, our empirical top sweep candidates
all converge over this range of the (G12, G2/G1) and

(G123, G2/G1) values (Figure 6), meaning that we can con-
fidently classify sweeps from outlying values of G12 and
G123 in our data as hard or soft.

In Figure S7, we repeat our ABC procedure for the phased
haplotype data corresponding to our preceding analyses.
We find that a small proportion of (G12, G2/G1) and
(G123, G2/G1) values for which we lack the ability to distin-
guish hard and soft sweeps (gray points), corresponds to
(H12, H2/H1) values that do classify sweeps as soft. Addi-
tionally, the (H123, H2/H1) values yielded a still larger pro-
portion of SSV-classified (blue) values. This result may
indicate that the haplotype approaches maintain a some-
what greater ability to classify sweeps than do the MLG ap-
proaches. Accordingly, the skew toward larger BFs among the
(G123, G2/G1) values relative to (G12, G2/G1)may indicate
that classification with the former maymore closely resemble
classification using (H12, H2/H1) values.

To further characterize the classification properties of both
theMLG-andhaplotype-basedapproaches,wenextemployed
an alternative ABC approach in which we determined the
posterior distribution of k for a range of (G12, G2/G1),
(G123, G2/G1), (H12, H2/H1), and (H123, H2/H1) value
combinations. For these experiments, we generated 5 3 106

replicates of sweep scenarios with k 2 f1; 2; . . . ; 16g drawn
uniformly at random for each replicate, maintaining all other

Figure 5 Assignment of BFs to tested
paired values of (G12, G2/G1) and
(G123, G2/G1). Plots represent the rela-
tive probability of obtaining a paired
(G12, G2/G1) or (G123, G2/G1) value
within a Euclidean distance of 0.1 from
a test point for hard vs. soft sweeps, de-
termined as described in Materials and
Methods. Selection coefficients (s) and
times (t) were drawn as described in
Materials and Methods. Red regions
represent a higher likelihood for hard
sweeps, while blue regions represent a
higher likelihood for soft sweeps. Col-
ored bars along the axes indicate the
density of G12 or G123 (horizontal)
and G2/G1 (vertical) observations within
consecutive intervals of size 0.025
for hard sweep (magenta) and SSV
(purple) simulations. (A) BFs of paired
(G12, G2/G1) values for hard sweep sce-
narios and SSV scenarios ðk ¼ 5Þ: (B) BFs
of paired (G12, G2/G1) values for hard
sweep scenarios and SSV scenarios
ðk ¼ 3Þ: (C) BFs of paired (G123,
G2/G1) values for hard sweep scenarios
and SSV scenarios ðk ¼ 5Þ: (D) BFs of
paired (G123, G2/G1) values for hard
sweep scenarios and SSV scenarios
ðk ¼ 3Þ: Only test points for which at
least one simulation of each type was
within a Euclidean distance of 0.1 were
counted (and therefore colored).
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relevant parameters identical to the BF experiments (see
Materials and Methods). From the posterior distribution of k
values, we assigned the most probable k for a wide range of
points using both MLG and haplotype data (Figure S8), and
generated probability density functions across H12, H2/H1,
G123, and G2/G1 for each value of k (Figure S9). G12, G123,
H12, and H123 values were larger for sweeps with smaller k,
while G2/G1 and H2/H1 values were smaller for these
sweeps, as expected. Thus, our inference of the most proba-
ble values of k across test points was concordant with the
BF-based results. Also matching the BF experiments, we
achieved a finer resolution between sweep classifications
from haplotypes than from MLGs, resulting from the greater
number of discrete values that exist for the haplotype-
based statistics. Because all of the statistics are computed
as the sum of squared frequencies in the sample, their
values depend on the sample size and the haplotype or
MLG frequency spectrum. This property of the MLG iden-
tity and expected haplotype homozygosity statistics is ap-
parent when comparing the probability density functions
for H2/H1 (Figure S9B) and G2/G1 (Figure S9D). The
probability density functions of G2/G1 demonstrate that
as k increases, particular values of the statistic are rare or
impossible in the upper tail of the distribution for sam-
ple size n ¼ 100 individuals, contrasting with the distri-
butions of the H2/H1 probability density functions
ð2n ¼ 200Þ; which have fewer modes. As previously, hard
sweeps ðk ¼ 1Þ occupied larger values of G12, G123, H12,
and H123 and smaller values of G2/G1 and H2/H1, with
inferred k (similarly to inferred BF) increasing with in-
creasing G2/G1 and H2/H1, regardless of G12, G123,
H12, and H123 value. Thus, our alternative ABC ap-
proach can assign a most probable k from the entire tested
range of k 2 f1; 2; . . . ; 16g; allowing for sweep classifica-
tion without the ambiguity of BFs.

Analysis of empirical data for signatures of sweeps

We applied G12, G123, and H12 to whole-genome variant
calls on human autosomes from the 1000 Genomes Project
(1000 Genomes Project Consortium et al. 2015) to compare
the detective properties for each method on empirical data
(Figure 7, Figures S11–S18, and Tables S3–S14). This ap-
proach allowed us to understand method performance in
the absence of confounding factors such as missing data and
small sample size. The choice of human data additionally
allowed us to validate our results from the wealth of identi-
fied candidates for selective sweeps within human popula-
tions worldwide that has emerged from more than a decade
of research (e.g., Sabeti et al. 2002; Bersaglieri et al. 2004;
Voight et al. 2006; Bhatia et al. 2011; Chen et al. 2015;
Schrider and Kern 2016; Cheng et al. 2017). To apply our
MLG-based methods to the empirical dataset, consisting of
haplotype data, we manually merged the haplotypes for each
study individual to generate MLGs. Thus, all comparisons
of G12 and G123 with H12 were for the same data, as in
our simulation experiments.

For our analysis of human data, we focused on individuals
from European (CEU), African (YRI), South Asian (GIH), and
East Asian (CHB) descent. Across all populations, we assigned
P-values and BFs, as well as maximum posterior estimates
and Bayesian credible intervals on k, for the top 40 selection
candidates (see Materials and Methods). Our Bonferroni-
corrected significance threshold (Neyman and Pearson
1928) was 2:106593 1026; with critical values for each sta-
tistic in each population displayed in Table S1. We defined
soft sweeps as those with BF $ 3 or inferred k$ 2; and hard
sweeps as those with BF # 1=3 or inferred k ¼ 1: Following
each genome-wide scan, we filtered our raw results using a
mappability and alignability measure (see Materials and
Methods), following the approach of Huber et al. (2016).
We additionally omitted genomic windows from our analysis
with,40 SNPs, the expected number of SNPs in our genomic
windows (Watterson 1975) under the assumption that a
strong recent sweep has affected all but one of the sampled
haplotypes. This is thus a conservative approach. We display
the filtered top 40 outlying sweep candidates for G12, G123,
and H12, including P-values, BFs, and inferred k (with cred-
ible interval), in Tables S3–S14. We also overlay the top
40 selection candidates for each population onto (G123,
G2/G1) test points (Figure 6 and Figure S10). For all popu-
lations, we see that top candidates, regardless of assignment
as hard or soft, generate broadly similar G123 values within a
narrow band of paired (G123, G2/G1) values. Finally, we
indicate the top 10 selection candidates in chromosome-wide
Manhattan plots for both G12 and G123 (Figures S11–S18).
Expectedly, G12 and G123 plots are nearly identical in their
profiles.

We recovered significant signals from the well-
documented region of CEU chromosome 2 harboring the
LCT gene, which confers lactase persistence beyond child-
hood (Bersaglieri et al. 2004). Although filtering removed
SLC24A5, another expected top candidate controlling skin
pigmentation, the adjacent SLC12A1 gene remained.
Assigned BFs and inferred values of k suggest that hard
sweeps in each of these regions yield the observed signals
(Tables S3 and S4). In YRI (Tables S6 and S7), we most
notably found the previously identified SYT1, HEMGN, and
NNT (Voight et al. 2006; Pickrell et al. 2009; Fagny et al.
2014; Pierron et al. 2014). SYT1 andHEMGNwere significant
for G12, G123, and H12 analyses, with SYT1 yielding the
strongest signal by a large margin, while NNT was not signif-
icant. Of these, we could only confidently classify HEMGN,
which we uniformly identified as hard. Though we were
more likely to confidently classify candidate sweeps in YRI
as hard from their MLG-based BFs, the proportion of top
candidates assigned as hard from the posterior distribution
of k remained comparable across data types, and generally
greater than the levels we observed in other populations (see
Discussion for further analysis). The most outlying target of
selection in GIH (Tables S9 and S10) for all methods was at
SLC12A1, a significant signal corresponding to a sweep
shared among Indo-European populations (Mallick et al.
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2013), which we also recovered as a top candidate in CEU.
We could classify this signal as hard from haplotype data, but
we assigned k ¼ 2 from MLGs, despite a BF, 1: Finally, our
analysis of CHB returned EDAR-adjacent genes among the
top sweep candidates, including LIMS1, CCDC138, and
RANBP2 (each below the significance threshold), though
not EDAR itself (Tables S12 and S13), and additionally
MIR548AE2 and LONP2, adjacent to the site of a proposed
sweep on earwax texture within ABCC11 (Ohashi et al.
2010), which we recovered as another top candidate.

In Figure 7, we highlight for each population one example
of a sweep candidate, including its G12 signal profile, with
the genomic window of maximum value highlighted, and
a visual representation of the MLG diversity within that re-
gion. For the CEU population, we present LCT ðP, 1026Þ;
and additionally highlight the nearby outlying candidates, each
of which was within the top 10 outlying G12 signals in the
population (Figure 7A, left panel). The distribution of MLGs
surrounding LCT in the sample showed a single predominant
MLG comprising approximately half of individuals, consistent
with a hard sweep (Figure 7A, right panel). Accordingly, LCT
yielded a BF � 0:1; indicating that a hard sweep is tenfold
more likely to yield this signal than a soft sweep (from k ¼ 5),
and an inferred k ¼ 1 supports this result. For the YRI pop-
ulation, the top selection signal for all analyses was SYT1
ðp ¼ 1026Þ; previously identified by Voight et al. (2006)

(Figure 7B, left panel). Here, one high-frequency and one
intermediate-frequency MLG predominated in the popula-
tion (Figure 7B, right panel), but we could not confidently
assign the signal as hard or soft, with haplotypes suggesting
k ¼ 1 and MLGs suggesting k ¼ 2: This is because one high-
frequency haplotype exists in the population, carried by
approximately half of individuals, while another haplotype
exists in approximately one-quarter of individuals. In GIH, we
found P4HA1 as a selection candidate exceeding the signifi-
cance threshold for haplotype data ðP ¼ 1026Þ; but not for
MLG data. Althoughwewere unable to confidently assign the
putative sweep on P4HA1 as hard or soft from BFs, we note
that two MLGs, as well as two haplotypes, exist at elevated
frequency here, and that all methods yielded BF . 1 and
k. 1; suggesting that P4HA1 is likely the site of a soft sweep,
but on fewer than k ¼ 5 haplotypes (Figure 7C, right panel).
Finally, our scan in CHB returned the undocumented
FMNL3 gene as a top candidate from the G12 analysis
(P ¼ 53 1026; Figure 7D, left panel). A single high-fre-
quency MLG predominated at this site, and this yielded a
BF fromMLG data of 0.147, and inferred k ¼ 1 from all data,
indicating a hard sweep (Figure 7D, right panel).

Through the application of G123 and G2/G1, we have
identified and classified a number of interesting sweep can-
didates. We further explored the existence of a more gen-
eral relationship between top sweep candidates and the

Figure 6 (G123, G2/G1) values used to
distinguish hard (red) and soft (blue)
sweeps in human empirical data
using demographic models inferred
with smc++ (Terhorst et al. 2017).
Points representing the top 40 G123
selection candidates (Tables S4, S7,
S10, and S13) for the (A) CEU, (B)
YRI, (C) GIH, and (D) CHB populations
are overlaid onto each population’s
specific (G123, G2/G1) distribution.
Candidates exceeding the significance
threshold (Table S1; different for each
population) are colored in gold. Col-
ored bars along the horizontal (G123)
and vertical (G2/G1) axes are defined as
in Figure 5.
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prevalence and length of runs of homozygosity. Previous
research has indicated that short-to-intermediate runs of
homozygosity spanning tens to hundreds of kilobases are
characteristic of recent sweeps (Pemberton et al. 2012;
Blant et al. 2017), and we sought to examine whether there
was a correlation of G123 or sweep softness [using log10ðBFÞ

as proxy] with the proportion of individuals falling in a run of
homozygosity of specific length. To this end, we intersected
our top candidates lists with the inferred coordinates of short
to intermediate runs of homozygosity from Blant et al.
(2017). We found that the proportion of individuals with
runs of homozygosity of intermediate length (class 4) is

Figure 7 Outlying G12 signals in
human genomic data. For each
population, we show a top selec-
tion candidate and display its
sampled MLGs within the geno-
mic window of maximum signal.
Red and black sites are homozy-
gous genotypes at a SNP within
the MLG, while gray are hetero-
zygous. Green lines separate
MLG classes in the sample. (A)
CEU chromosome 2, centered
around LCT, including other outly-
ing loci (labeled). LOC100507600
is nested within LCT (left). A sin-
gle MLG exists at high frequency,
consistent with a hard sweep
(right). (B) YRI chromosome 12,
centered on SYT1 (left). This sig-
nal is associated with two ele-
vated-frequency MLGs (right).
(C) GIH chromosome 10, cen-
tered on P4HA1 (left). Two MLGs
exist at high frequency (right).
(D) CHB chromosome 12, cen-
tered on FMNL3 (left). A single
MLG predominates in the sample
(right).
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positively correlated (correlation coefficient = 0.32, P-value =
3:663 1025) with G123 (Table S2), likely due to stronger
and more recent sweeps generating larger G123. Moreover,
the proportion of individuals with runs of homozygosity of
intermediate length is negatively correlated (correlation co-
efficient = 20.26, P-value = 1:023 1023) with log10ðBFÞ
(Table S2), likely due to the narrower genomic signature left
behind by soft sweeps relative to hard sweeps. In contrast, we
observe no significant correlation for smaller runs of homo-
zygosity (classes 2 and 3), which have also been proposed to
potentially be affected by selective sweeps (Pemberton et al.
2012; Blant et al. 2017).

Discussion

Selective sweeps represent an important outcome of adapta-
tion in natural populations, and detecting these signatures is
key tounderstanding thehistoryofadaptation inapopulation.
We have extended the existing statistics H12 and H2/H1
(Garud et al. 2015) from phased haplotypes to unphased
MLGs as G12, G123, and G2/G1, and demonstrated that
the ability to detect and classify selective sweeps as hard or
soft remains. Across simulated selective sweep scenarios cov-
ering multiple selection start times and strengths, as well as
sweep types and demographic models, we found that both
G12 and G123maintain comparable power to H12. The most
immediate implication of these results is that signatures of
selective sweeps can be identified and classified in organisms
for which genotype data are available, without the need to
generate phased haplotypes. Because phasing may be diffi-
cult or impossible given the resources available to a study
system, while also not being error-free (Browning and
Browning 2011; O’Connell et al. 2014; Castel et al. 2016;
Laver et al. 2016; Zhang et al. 2017), the importance of our
MLG-based approach is apparent. Although phased haplo-
types tend to be the preferable data type for detecting selec-
tive sweeps based on our findings, we nonetheless observe a
high degree of congruence in practice between the lists of
selection candidates for human empirical data emerging
from analyses on haplotypes and MLGs (Tables S3–S14).

Performance of G12 and G123 for simulated data

G12 and G123, similarly to H12 and H123, are best suited to
the detection of recent and strong selective sweeps in which
the beneficial allele has risen to appreciable frequency. This is
as expected because haplotype (and thereforeMLG) diversity
decreases under sweeps, which results in a distinct signature
fromwhich to infer the sweep.This extended tract of sequence
identity within the population erodes over time and returns to
neutral levels due to the effects of recombination and muta-
tion. The strength of selection and range of time over which
the haplotype- and MLG-based methods can detect selection
are inversely correlated. Our approach detects weaker selec-
tive events only if they started far enoughback in time, andhas
a narrower time interval of detection than do stronger events
(compare panels A and B across Figure 3, Figure 4, and Fig-

ures S2 and S3). This is because alleles under weaker selec-
tion increase in frequency toward fixation more slowly than
those under stronger selection, and so more time is required
to generate a detectable signal. In the process, the size of the
genomic tract that hitchhikes with the beneficial allele de-
creases due to recombination and is smaller than under a
hard sweep. Panels C and D from Figure 3, Figure 4, and
Figures S2 and S3 motivate this point. Across all simulation
scenarios, stronger selection produces on average a wider
and larger signature surrounding the site of selection, while
weaker sweeps are more difficult to detect and classify. For
empirical analyses, this means we are more likely to detect
stronger sweeps, as reductions in diversity from strong selec-
tion persist for hundreds of generations and can leave foot-
prints on the order of hundreds of kilobases (Gillespie 2004;
Garud et al. 2015; Hermisson and Pennings 2017).

Expectedly, the signatures of sweeps, and the power of the
haplotype- and MLG-based methods to detect them, vary
across selective sweep scenarios, with nearly identical trends
in haplotype and MLG data. Strong ðs ¼ 0:1Þ hard sweeps to
high sweep frequency f are easiest to detect, as the single,
large tract of sequence identity generated under a strong
hard sweep remains distinct from neutrality for the longest
time interval relative to other scenarios (Figure 3, A and C
and Figure S2, A and C). Nonetheless, power to distinguish
soft sweeps is large for the most recent simulated sweeps.
Indeed, a soft sweep yields a smaller tract of sequence iden-
tity that requires a shorter time to break apart, but for strong
selection on up to k ¼ 16 different haplotypic backgrounds
(1.6% of the total population), both the MLG and haplotype
methods have perfect or near-perfect power (Figure 4A and
Figure S3A). While this power rapidly fades for selection
within 1000 generations of sampling for k. 4; our strong-
sweep results illustrate that the selection coefficient s, more
than the partial sweep frequency f or the number of initially
selected haplotypes k, influences the power of our methods,
and that pooling can allow for similar detection of hard and
soft sweeps. Our moderate-selection ðs ¼ 0:01Þ results fur-
ther highlight this. Once again, we see a distinct concordance
in power trends between hard (Figure 3, B and D and Figure
S2, B and D) and soft (Figure 4, B and D and Figure S3, B and
D) sweeps that depends primarily on the value of s and sec-
ondarily on f or k.

Because genomic scans using G12, G123, H12, and H123
are window-based, the choice of window size is an impor-
tant determinant of the methods’ sensitivity. As do Garud
et al. (2015), we recommend a choice of window size
that minimizes the influence of background LD on window
diversity, while maximizing the proportion of sites in the win-
dow affected by the sweep. Windows that are too small may
contain extended homozygous tracts not resulting from a
sweep, while windows that are too large will contain an ex-
cess of neutral diversity leading to a weaker signal, while
overlooking weaker selective events (Gillespie 2004; Garud
et al. 2015; Hermisson and Pennings 2017). Accordingly, our
choice of a 40 kb sliding window to analyze simulation
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results derives from our observation that the value of LD be-
tween pairs of SNPs separated by 40 kb in these simulations is
less than one-third of the LD between pairs separated by
1 kb, as measured from the squared correlation, r2 (Figure
S1). We also found that for recent selection within 400 gen-
erations of sampling, power under a bottleneck or an expan-
sion does not change for a 40 kb analysis window (Figures
S5 and S6). This is especially important in the context of a
population bottleneck, in which levels of short-range LD are
elevated beyond their expected value under a constant-size
demographic history (Slatkin 2008; DeGiorgio et al. 2009).
Thus, our experiments investigating population size changes
indicated that for sufficiently large analysis windows, further
adjusting window size does not improve power. The trends in
power that we observed for samples of n ¼ 100 diploids and
40 kb genomic windows also persisted for experiments with
a smaller sample size of n ¼ 25 (Figure S19). Both the hap-
lotype and the MLG-based methods are therefore suitable for
detecting sweeps from a wide range of sample sizes, though
samples need to be large enough to capture the difference in
variation between selected and neutral regions of the ge-
nome, as smaller samples result in fewer sampled haplotypes
(Pennings and Hermisson 2006a). Accordingly, the classifica-
tion of sweeps requires substantially larger sample sizes, as
differentiating between hard and soft sweeps requires the
detection of a more subtle signal than does distinguishing
selection from neutrality.

Although we presently only used a nucleotide-delimited
window, it is possible to search for signals of selection using
a SNP-delimited window, as did Garud et al. (2015). Similarly
to our present approach, the number of SNPs to include in a
SNP-delimited window could be determined based on the de-
cay in pairwise LD between two sites separated by a SNP-
delimited interval. Here, each analyzed genomic window
would include a specified number of SNPs. Thus, the range
of physical window sizes may be broad. SNP-delimitation pre-
vents the inclusion of SNP-poor windows, and may be inher-
ently robust to the effect of bottlenecks, or to misidentifying of
heterochromatic regions as sweeps. In practice, however, we
can filter out nucleotide-delimited windows carrying too few
SNPs to overcome confounding signals. More importantly,
allowing for a variable number of SNPs per window allows
the genomic scan to identify sweeps from distortions in the
haplotype frequency spectrum, and also from reductions in
the total number of distinct haplotypes, which are more con-
strained in their range of valueswhen conditioned on a specific
number of SNPs. Because both of these signatures can indicate
a sweep, it may be useful to consider each. The use of a SNP-
delimited window may still be preferable for SNP chip data.
That is, SNP density can be low relative towhole-genome data,
resulting in an excess of regions spuriously appearing to be
under selection within a nucleotide-delimited window. In-
deed, Schlamp et al. (2016) employ a SNP-delimited window
approach for their canine SNP array dataset.

During a genomic scan, itmay also behelpful to account for
sources of uncertainty in the data. Foremost among these is

uncertainty in genotype calls (Marchini and Howie 2010;
Nielsen et al. 2011). Modern genotype calling methods pro-
vide a posterior probability for each genotype (He et al. 2014;
Fumagalli et al. 2014; Korneliussen et al. 2014), and so it may
be possible to assign to each analysis window a weighted
mean G12 or G123 score from this posterior to produce a
more accurate representation of sweep events throughout
the study population’s genome. It is also possible that win-
dows of elevated G12 and G123 value may arise in the ab-
sence of random mating. That is, although our approach
assumes elevated MLG identity derives from elevated haplo-
type homozygosity as a result of random mating, we do not
specifically evaluate whether observed patterns of MLG di-
versity are compatible with the random mating assumption.
Such an approach could condition on the presence of one
high-frequency MLG with only homozygous sites in the case
of a hard sweep, or at least two high-frequency homozygous
MLGs in the case of a soft sweep. To further consider this
point, we rescanned the 1000 Genomes dataset, but ran-
domly paired haplotypes into diploid MLGs to simulate ran-
dom mating. Our lists of outlying sweep candidates for G123
across each study population after random reshuffling were
highly concordant with the lists for the true set of diploid
individuals (Tables S5, S8, S11, and S14).

While power to detect hard and soft sweeps is comparable,
the possible values of G12 and G2/G1 that can be generated
under hard vs. soft sweeps for a variety of k values are dis-
tinct. Thus, we can properly classify sweeps from MLG data
(Figure 5, Figure 6, and Figures S8 and S10). This result
matched our theoretical expectations (Figure 1), and corre-
sponded to the results from haplotype data as well (Figure
S7). However, we note that with the BF-based ABC ap-
proach, there is substantial ambiguity in classification
over which 1=3#BF# 3 (where BF is computed as
ProbabilityðsoftÞ=ProbabilityðhardÞ), meaning that distin-
guishing between hard and soft sweeps for these paired val-
ues remains difficult or not meaningful. In addition, we find
that MLGs (Figure 5) provide a greater proportion of BF
# 1=3 than do haplotypes (Figure S7), which yield a greater
proportion of BF $ 3: This observation may indicate that a
hard sweep with a small associated BF for MLGs will also
have a small haplotype-based BF, while a hard sweep with
an associated BF closer to 1, may be called as ambiguous or
soft from haplotypes. We were able to address the issue of
classification ambiguity with our alternative ABC approach,
which assigned each test point a most probable underlying
k. Although haplotypes provided better ability over MLGs
to assign a posterior value of k, our results here were as
expected, showing a clear increase in assigned k as G2/G1
or H2/H1 increased (Figure S8). For application to empirical
data, however, most top sweep candidates are likely to be
classifiable as hard or soft from BFs (Tables S3–S14). Pooling
frequencies beyond the greatest two also increased the occu-
pancy associated with larger BFs, and this effect was greater
for haplotype data. Ultimately, the use of G123with G2/G1 to
classify sweeps and assign k from MLGs may be preferable
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because (G123, G2/G1) classification more closely resembles
(H12, H2/H1) than does (G12, G2/G1). The true value of
pooling additional frequencies may thus lie in sweep classi-
fication rather than detection, as G123 and H123 are not
appreciably more powerful than G12 and H12 (Figures S2
and S3).

Application of G12 and G123 to empirical data

Our analysis of humanempirical data from the 1000Genomes
Project (1000 Genomes Project Consortium et al. 2015) re-
covered multiple positive controls from each study popula-
tion, as well as novel candidates. Across many of these
candidates, a single high-frequency MLG predominated (Fig-
ure 7). Additionally, more top candidates in CEU appear as
hard sweeps than in other populations (Tables S3 and S4),
though all populations had more hard sweeps than soft. The
top outlying genes we detected in CEU following the appli-
cation of a filter to remove heterochromatic regions with low
mappability and alignability consisted of LCT and the adja-
cent loci of chromosome 2 (Figure 7A), as well as SLC12A1
of chromosome 15 (Table S3). All of these sites are well-
represented in the literature as targets of sweeps (Bersaglieri
et al. 2004; Sabeti et al. 2007; Liu et al. 2013; Chen et al. 2015).
Diet-mediated selection on LCT likely drives the former signal
cluster, as dairy farming has been a feature of European civi-
lizations since antiquity (Itan et al. 2009; Edwards et al.
2011; Ermini et al. 2015). Accordingly, we see that most
individuals in the sample carry the most frequent MLG,
and we assign this signal to be a hard sweep from its BF
and from the posterior distribution of k generated under
our demographic model for CEU (see Materials and Meth-
ods; Tables S3 and S4). Meanwhile, the latter signal peak
is associated with the known target of selection SLC24A5,
a melanosome solute transporter responsible for skin pig-
mentation (Lamason et al. 2005), also a hard sweep.

The assignment of sweeps as hard or soft in CEU, as well as
their assigned k, were highly concordant between haplotype
and MLG approaches, with the sole exception of PRKDC, a
protein kinase involved in DNA repair (Fushan et al. 2015).
Our haplotype results indicate the presence of k ¼ 3 high-
frequency haplotypes at PRKDC, but MLG results suggest a
hard sweep. This is because the window of maximum signal
differs between both data types. The maximal haplotype-
based window features multiple haplotypes and MLGs at
high frequency, while the maximal MLG window �35 kb
upstream more closely resembles a hard sweep for both data
types. We found such classification discrepancies to be rare
across our top candidates, and typically inverted, with the
MLG signal more often appearing softer (see SYT1 and
RGS18; Figure 7). Furthermore, we emphasize that classifi-
cation discrepancies do not appear to impact the power of
MLG-based methods to detect sweeps, as we generated
highly concordant lists of outlying candidates for both hap-
lotype and MLG data.

Large tracts of MLG homozygosity surround the SYT1,
RGS18, HEMGN, KIAA0825, and NNT genes in YRI. Unlike

for CEU, we found that assigning BFs to top signals was dif-
ficult, both for haplotype and MLG data (Tables S6 and S7).
We also note a greater proportion of soft sweeps among top
signals in YRI relative to other populations (Tables S6 and
S7). This is likely due to the greater ease of detecting soft
sweeps in more genetically diverse populations rather than
any nonadaptive confounding factor (see next subsection),
and we indeed see a larger occupancy of soft BFs among
(G123, G2/G1) values (Figure 6). In addition, BFs for the
two top candidates, SYT1 and RGS18, yielded values close
to 1/3 (hard) for haplotype data, but closer to 3 (soft, k ¼ 2)
for MLG data, indicating disproportionately large MLG
diversity resulting from low haplotypic diversity, as the pres-
ence of a high-frequency haplotype alongside one or more
intermediate-frequency haplotypes may generate compara-
tively more diversity among MLGs than haplotypes. Voight
et al. (2006) previously identified our strongest selection tar-
get, SYT1, as a target of selection in the YRI population, and
results from The International HapMap Consortium (2007)
corroborated this, but neither speculated as to the implica-
tions of selection at this site. SYT1 (Figure 7B) is a cell surface
receptor by which the type B botulinum neurotoxin enters
human neurons (Connan et al. 2017). Selection here may
be a response to pervasive foodborne bacterial contamination
by Clostridium botulinum, similar to what exists in modern
times (Chukwu et al. 2016). Pierron et al. (2014) named
HEMGN [which Pickrell et al. (2009) also identified], in-
volved in erythrocyte differentiation, as a selection signal
common to Malagasy populations derived from common an-
cestry with YRI. Racimo (2016) also identified KIAA0825 as a
target of selection, but in the ancestor to African and Eurasian
populations. Our identification of NNT in YRI matches the
result of Fagny et al. (2014), who identified this gene using
a combination of iHS (Voight et al. 2006) and their derived
intra-allelic nucleotide diversity (DIND) method. Fagny et al.
(2014) point out that NNT is involved in the glucocorticoid
response, which is variable among global populations. Our
most noteworthy candidate of selection in YRI, RGS18, has
not been previously characterized as the location of a sweep.
However, Chang et al. (2007) point to RGS18 as a contributor
to familial hypertrophic cardiomyopathy (HCM) pathogene-
sis. HCM is the primary cause of sudden cardiac death in
American athletes (Barsheshet et al. 2011), and particularly
affects African-American athletes (Maron et al. 2003).

Our scan for selection in the GIH population once again
revealed the SLC12A1 site as the strongest sweep signal (Ta-
bles S9 and S10). Because this signal is common to Indo-
European populations (Liu et al. 2013; Ali et al. 2014), this
was expected. However, we found that we could not confi-
dently classify this sweep from MLG data (with inferred
k ¼ 2), though haplotype data suggests that this is a hard
sweep. We additionally find P4HA1 (Figure 7C) as a novel
sweep candidate in GIH that exceeds the significance thresh-
old for haplotype data, and appears as a near-soft sweep for
MLGs (BF . 2:5) with inferred k$ 2 for both haplotype and
MLG data. Two high-frequency MLGs predominate at the
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location of this candidate sweep, and their pooled frequency
yields a prominent signal peak. P4HA1 is involved in collagen
biosynthesis, with functions including wound repair (Baxter
et al. 2013), and the population-variable hypoxia-induced
remodeling of the extracellular matrix (Chakravarthi et al.
2014; Petousi et al. 2014). Because selection on P4HA1 has
been documented among both the tropical forest-dwelling
African pygmy population (Mendizabal et al. 2012; Amorim
et al. 2015), and now in individuals of Gujarati descent, and is
known to present a differing expression profile among low-
and high-altitude populations (Petousi et al. 2014), this gene
may be involved in a number of adaptations to harsh climatic
conditions, potentially in wound repair, which is more diffi-
cult in tropical climates.

Of the sweep candidates we identified in the CHB popu-
lation (Tables S12 and S13), we found that the inference of
significance from G123 was considerably more concordant with
H12 than was G12. We recovered as top candidates EXOC6B,
which produces a protein component of the exocyst (Evers
et al. 2014) and LONP2, both previously documented (Baye
et al. 2009; Ohashi et al. 2010; 1000 Genomes Project Consor-
tium et al. 2011; Pybus et al. 2014). EXOC6B is a characteristic
signal in East Asian populations alongside EDAR, which we did
not specifically recover in our scan (but nearby candidates
LIMS1, CCDC138, and RANBP2 did appear), while LONP2 is
adjacent to ABCC11, which controls earwax texture. FMNL3
yielded elevated values of G12 and G123 in CHB, but was only
significant from its H12 value. A single MLG predominates at
FMNL3 in the sample (Figure 7D), and all approaches assign
this sweep as hard. The function of FMNL3 is related to actin
polymerization (Hetheridge et al. 2012; Gauvin et al. 2015),
and has a role in shaping the cytoskeleton, which it shares with
EXOC6B. Moreover, the signal at FMNL3 may be additionally
associatedwith the outlierRANBP10, which also interacts with
the cytoskeleton, but with microtubules (Schulze et al. 2008).
Though it is unclear why we identify an enrichment in cyto-
skeleton-associated genes, future studies may shed light on
why variants in such genes could be phenotypically relevant
specifically in individuals of East Asian descent. Finally, we
found SPATA31D3 as a hard sweep within the top H12 sig-
nals in CHB, as well as in GIH, and, while it did not exceed
our significance threshold, this is in line with the results of
Schrider and Kern (2017).

Addressing confounding scenarios

A variety of processes, both adaptive and nonadaptive, may
misleadingly produce elevated values of expected homozy-
gosity in the absence of selective sweeps in a sampled pop-
ulation, or small values of expected homozygosity despite a
sweep. To understand the impacts of potentially confounding
processes on the power of the haplotype- and MLG-based
methods, we evaluated the effects of long-term back-
ground selection, long-term population substructure, and
pulse admixture on G12, G123, H12, and H123. We ad-
ditionally considered the confounding effect of missing data,
as the manner in which missing sites is addressed during

computations can change analyzed patterns of MLG and
haplotype diversity.

We first addressed long-term background selection as a
potentiallycommonconfoundingfactorwithabriefexperiment
to determine the susceptibility of all methods to the misiden-
tification of background selection as a sweep. Signatures of
background selection are ubiquitous in a number of systems
(McVicker et al. 2009; Comeron 2014), and the effect of back-
ground selection is a reduction in nucleotide diversity and a
distortion of the site frequency spectrum,which tomanymeth-
ods may spuriously resemble a sweep (Charlesworth et al.
1993, 1995; Seger et al. 2010; Charlesworth 2012; Cutter
and Payseur 2013; Nicolaisen and Desai 2013; Huber et al.
2016). Here, we simulated chromosomes containing a cen-
trally located genic region of length 11 kb in which deleteri-
ous alleles arise throughout the course of the simulation. Our
model involved a gene with exons, introns, and UTRs with
parameters based on human-specific values (see Materials
and Methods). In agreement with the result of Enard et al.
(2014), we found that background selection did not distort
the haplotype (and therefore MLG) frequency spectrum to re-
semble that of a sweep, such that G12 and G123 were thor-
oughly robust to background selection. We demonstrate this
by displaying the concordance in the distributions of maxi-
mumG12, G123, H12, and H123 scores for background selec-
tion and neutral evolution scenarios (Figure S20). Thus, we
do not expect that outlying G12, G123, H12, or H123 values
can result from background selection.

Methods to detect recent sweeps may be confounded by
the effect of long-term population substructure, as well as
from admixture. Structured populations contain a greater pro-
portion of homozygous genotypes than would be expected un-
der an equally sized, randomly mating population
(Sinnock 1975), thereby increasing the chance that an ele-
vated level of expected homozygosity will arise in the ab-
sence of a sweep. We examined the possibility that a
symmetric island migration model with six demes (Figure
S21A), and migration rates (m) between demes of
m 2 f1025; 1024; 1023; 1022; 1021g per generation (a pro-
portion m of the haplotypes in a deme derives from each of
the other five demes for a total proportion of 5m haplotypes)
could yield elevated values of H12 and G123 under neutrality.
We found that compared to amodel with no substructure, H12
and G123 values were moderately impacted for a model with
population substructure (Figure S22). These values were sub-
stantially lower than expected H12 and G123 values under a
recent strong hard sweep (Figure S22, A and C). However,
these values are more comparable to an ancient sweep (Figure
S22, B and D), and so caution is warranted in the study of
structured populations for all but the most outlying signals.

The haplotype- and MLG-based methods are similarly
robust to the effect of admixture under most tested scenarios.
We evaluated whether any admixture scenario can falsely
generate a signature of a sweep, simulating a model in which
a single ancestral population diverges into two descen-
dants (Figure S21B; see also Materials and Methods). We
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maintained the size of one descendant (the target) at N ¼ 104

diploid individuals, and varied the size of the unsampled (do-
nor) population (N ¼ 103; 104; or 105 diploids), admixing at
rate m 2 f0:05; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40g as a
single pulse 200 generations (0.01 coalescent units of 2N gen-
erations) before sampling. Admixture with donor sizes
N ¼ 105 or N ¼ 104 produced only small values of H12 (Fig-
ure S23, left and center) and G123 (Figure S24, left and cen-
ter) in the sampled population in the absence of a sweep.
However, admixture with a donor population of small size
ðN ¼ 103Þ can in this model produce elevated values of H12
and H2/H1, as well as G123 and G2/G1 when migration is
sufficiently large ðm$ 0:15Þ; thus spuriously resembling a soft
sweep in the absence of selection (Figures S23 and S24, right).
In this scenario, with a large enough admixture fraction, there
will be a high probability that many sampled lineages will
derive from the donor population, which will coalesce rapidly
due to the donor’s small effective size, in turn leading to ele-
vated homozygosity in the sample. Scenarios of small donor
population sizes with largemigration rates under ourmodel of
recent divergence and admixture times therefore represent the
only admixture examples that we considered under which all
methods are susceptible to misclassifying neutrality as selec-
tion, specifically as a soft sweep. Otherwise, our methodology
remains robust under thewide range of other tested admixture
scenarios. The elevated number of soft sweeps we detected
within the YRI population (Tables S6 and S7) is therefore un-
likely to be due to the admixture described in Busby et al.
(2016), as this would produce a genome-wide pattern that
we do not observe (Figures S13 and S14).

Finally, we note that accounting for missing data are a
practical consideration that must be undertaken when searching
for signals of selection, and themanner in whichmissing data are
removed affects our ability to identify sweeps. We explored the
effects of two corrective strategies to account for missing data.
Ourstrategieswere to removesiteswithmissingdataor todefine
MLGs and haplotypes with missing data as new distinct MLGs
and haplotypes. Relative to the ideal of no missing data (Figure
3A), removing sites resulted in a slight inflation of power ob-
served in the absence ofmissing data. This was true for G12 and
H12 (Figure S25A), as well as G123 and H123 (Figure S25C).
After removing sites, the overall polymorphism in the sample
decreases, but windows containing the site of selection are still
likely to be the least polymorphic, and therefore identifiable.
Even so, weaker sweeps are likely to be obscured by the lower
background diversity after removing sites. Conservatively de-
fining MLGs and haplotypes with missing data as new distinct
MLGs and haplotypes inflates the total observed diversity and
results in a more rapid decay of power compared to complete
data (Figures S25, B and D). This result is because individuals
affected by the sweep may have different patterns in their miss-
ing data, and therefore different assigned sequences after ac-
counting for missingness. Overall, the choice of strategy will
likely depend on the level of missing data in the sample. Re-
moving toomany sites is likely to generate false positive signals,
while removing no sites may lead to false negatives.

Concluding remarks

Our results emphasize that detecting selective sweeps does
not require phased haplotype data, as distortions in the
frequency spectrumofMLGs capture the reduction indiversity
under a sweep similarly well to phased haplotypes. Accord-
ingly, the advent of rapid and cost-effective genotyping-by-
sequencing technologies (Elshire et al. 2011) across diverse
taxa including bovine, marine-dwelling, and avian popula-
tions means that the adaptive histories of myriad organisms
may now be inferred from genome-wide data (Daetwyler
et al. 2014; Drury et al. 2016; Zhu et al. 2016). Furthermore,
we have shown that the inferences emerging from MLG-
based scans align with those of phased haplotype-based scans,
with empirical analyses of human populations yielding concor-
dant top outlying candidates for selection, both documented
and novel. We demonstrate as well that paired (G12, G2/G1)
and (G123, G2/G1) values properly distinguish hard sweeps
from soft sweeps. In addition to identifying sweeps from single
large values of G12 and G123, we find that the genomic sig-
nature of these MLG-based statistics surrounding the site of
selection provides a means of distinguishing a sweep from
other types of selection (e.g., balancing selection). This addi-
tional layer of differentiationmotivates the use ofMLG identity
statistics as a signature in a statistical learning framework, as
such approaches have increasing in prominence for genome
analysis (Grossman et al. 2010; Pavlidis et al. 2010; Lin et al.
2011; Ronen et al. 2013; Pybus et al. 2015; Ronen et al. 2015;
Schrider and Kern 2016; Sheehan and Song 2016; Akbari et al.
2018; Kern and Schrider 2018; Mughal and DeGiorgio 2018).
We expect that the MLG-based approaches G12 and G123, in
conjunction with G2/G1, will be invaluable in localizing and
classifying adaptive targets in bothmodel and nonmodel study
systems.
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