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Abstract

Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Advancing age 

is a major risk factor for developing cardiovascular disease because of the lifelong exposure to 

cardiovascular risk factors and specific alterations affecting the heart and the vasculature during 

ageing. Indeed, the ageing heart is characterized by structural and functional changes that are 

caused by alterations in fundamental cardiomyocyte functions. In particular, the myocardium is 

heavily dependent on mitochondrial oxidative metabolism and is especially susceptible to 

mitochondrial dysfunction. Indeed, primary alterations in mitochondrial function, which are 

subsequently amplified by defective quality control mechanisms, are considered to be major 

contributing factors to cardiac senescence. In this Review, we discuss the mechanisms linking 

defective mitochondrial quality control mechanisms (that is, proteostasis, biogenesis, dynamics, 

and autophagy) to organelle dysfunction in the context of cardiac ageing. We also illustrate 

relevant molecular pathways that might be exploited for the prevention and treatment of age-

related heart dysfunction
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Cardiovascular disease is the main cause of morbidity and mortality in the general 

population and is especially prevalent among older adults1. Approximately 20% of people 

aged ≥80 years are at risk of heart failure, and those aged ≥65 years are at high risk of atrial 

fibrillation and related stroke1. Indeed, advancing age is associated with the progressive 

degeneration of blood vessels and the heart, making them more vulnerable to stressors and 

contributing to increased morbidity and mortality2. In particular, the aged heart has 

increased mass, ventricular wall thickness, and cardiomyocyte cross-sectional area despite 

decreased cell number3–5.

Aged cardiomyocytes show abnormalities in mitochondrial structure (enlarged organelles, 

matrix derangement, and loss of cristae) and increased generation of reactive oxygen species 

(ROS)6. These modifications are, in turn, associated with functional impairments at the 

organ and whole-body levels, including diastolic dysfunction, left ventricular hypertrophy, 

increased risk of atrial fibrillation, valvular degeneration, and decreased exercise capacity7. 

As such, alterations in mitochondrial function, amplified by dysfunctional quality control 

mechanisms, are considered to be major contributing factors to heart senescence8.

In this Review, we discuss the mechanisms linking defective mitochondrial quality control 

(MQC) (FIG. 1) to organelle dysfunction in the context of cardiac ageing. Relevant 

molecular pathways that might be exploited for the prevention and treatment of age-related 

heart dysfunction are also summarized.

Cellular senescence and cardiac ageing

An increase in the number of cardiac, muscular, endothelial, and endothelial progenitor 

senescent cells occurs in several disease conditions associated with cardiovascular 

dysfunction, including hypertension, atherosclerosis, heart failure, and stroke9. Cellular 

senescence is characterized by genome instability (that is, nuclear DNA damage), telomere 

attrition, and mitochondrial dysfunction8. In particular, genome instability and telomere 

attrition are underlying causes of molecular damage and are indicated as primary hallmarks 

of cell senescence8 (BOX 1). Conversely, antagonistic hallmarks in the ageing heart include 

mitochondrial dysfunction and cellular senescence, which exert beneficial or protective 

effects at low levels but are deleterious at high levels8. Finally, when the accumulating 

damage cannot be compensated for by homeostatic mechanisms, stem-cell exhaustion and 

altered intercellular communication occur, contributing to ageing (integrative hallmarks)8 

(BOX 1).

Mitochondrial dysfunction is a core feature of ageing and forms the crossroads for several 

pathways related to senescence10. For instance, genomic instability causes metabolic 

disarrangements that favour cellular senescence and organismal ageing through a complex 

response to persistent DNA damage11. This response affects pathways that regulate 

bioenergetic metabolism and block cell anabolism induced by insulin, insulin-like growth 

factor I (IGF1), and somatotropin12.

Similarly, telomere attrition promotes activation of cellular tumour antigen p53 and inhibits 

m itochondrial biogenesis and function in mice deficient in either telomerase reverse 
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transcriptase (Tert−/−) or telomerase RNA component (Terc−/−)13. Therefore, telomere 

shortening might limit mitochondrial turnover despite age-related metabolic perturbations. 

In humans, leukocyte telomere length negatively correlates with γ-glutamyltyrosine and γ-

glutamylphenylalanine, two markers of oxidative stress14. Conversely, lysolipids have been 

found to be associated with phospholipase A2 expression, which might indicate poor 

membrane fluidity14. Furthermore, deficiency in the recycling autophagic machinery 

contributes to cell senescence through the accumulation of intracellular toxic waste15.

Mitochondrial-derived oxidative stress is thought to have a pivotal role in the development 

of age-related conditions through irreversible damage to macromolecules and bioenergetic 

failure16,17. In addition, the activation of redox-sensitive mediators, including nuclear factor-

κB (NF-κB), modulates the transcription of several pro-inflammatory cytokines18. Under 

normal conditions, transient NF-κB activation in response to oxidative stimuli ceases with 

resolution of the inflammatory reaction18. However, long-term exposure to high levels of 

oxidants, as occurs during ageing, results in chronic activation of the NF-κB-mediated 

inflammatory response and cellular damage18. A set of NF-κB-responsive cytokines and 

chemokines has been identified as part of the senescence-associated secretory phenotype 

(SASP)19 (FIG. 2). An increase in inflammatory mediators leads to the expression of 

inflammatory proteins involved in extracellular matrix remodelling and of pro-inflammatory 

cytokines (such as tumour necrosis factor, IL-1α, IL-1β, and IL-6). SASP mediators or their 

products (such as inducible nitric oxide synthase, cytochrome c oxidase, and prostaglandin 

E2) are prominent sources of ROS20,21. Indeed, endothelial damage, vascular smooth muscle 

cell proliferation, and extracellular matrix remodelling are associated with the genesis and 

progression of atherosclerosis and hypertension22,23.

Increases in pro-inflammatory mediators are necessary for senescent cell removal. However, 

accumulation of senescent cells is paralleled by stem-cell exhaustion and loss of function of 

regenerative cell lineages, which contribute to ageing24,25. The senescent state is under the 

control of two complex pathways (p53–p27 (cyclin-dependent kinase inhibitor 1) and 

p16INK4A (cyclin-dependent kinase inhibitor 2A)–retinoblastoma-related protein)24,25, but 

their role in the cardiovascular system is currently undetermined.

A role for crosstalk between the endoplasmic reticulum (ER) and mitochondria has been 

proposed in the context of mitochondrial dysfunction (reviewed previously26). A major 

mediator in this crosstalk is Ca2+, which is mainly stored in the ER. Following stress, Ca2+ 

is released from the ER, enters the mitochondria, and increases both oxidative 

phosphorylation27 and ROS generation28. ROS themselves can alter Ca2+ homeostasis by 

regulating the function of inositol 1,4,5-trisphosphate receptors and ryanodine receptors29,30.

Oxidative stress is also modulated by steroidogenesis in the adrenal glands and by energy 

metabolism in the heart and brown adipose tissue. This control is exerted through the 

concerted activity of the antioxidant enzymes sulfiredoxin 1 and mitochondrial thioredoxin-

dependent peroxide reductase (also known as peroxiredoxin III; PRDX3)31. PRDX3 is the 

most abundant and efficient mitochondrial hydrogen peroxide (H2O2) scavenger in these 

tissues, and mitochondrial H2O2 is buffered within the organelle with concomitant 

accumulation of its oxidized form, PRDX3-SO2H. When PRDX3 antioxidant capacity is 
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overwhelmed, H2O2 is delivered into the cytosol and triggers the phosphorylation of 

mitogen-activated protein kinase (MAPK) 11–14, collectively known as p38 MAPK, 

resulting in downregulation of cortisone production31. The levels of both PRDX3-SO2H and 

phosphorylated p38 MAPK have a daily oscillation in several tissues, including the heart. 

This variation suggests that mitochondrial H2O2 is released into the cytosol in a rhythmic 

manner and supports the concept of a link between mitochondrial biology and circadian 

rhythms31,32.

Oxidative stress and mtDNA mutations

Reactive oxygen species.

According to the ROS theory of ageing, mitochondria are the primary source and the 

immediate target of ROS within the cell33. However, the extent to which oxidative stress is 

involved in heart senescence remains to be conclusively established.

Increased mitochondrial size, reduced mitochondrial respiratory capacity, and higher ROS 

production have been reported in cardiac ageing34. Because of their postmitotic nature, 

cardiomyocytes are devoid of replicative dilution of damage and are, therefore, particularly 

vulnerable to ROS-mediated lesions. Indeed, defective electron transport chain (ETC) 

subunits, including sites in complexes I and III, contribute to ROS generation35,36. However, 

a causative role for ROS in mitochondrial dysfunction is debated. Although ROS have been 

linked to mitochondrial DNA (mtDNA) damage (FIG. 2), a number of findings indicate 

mtDNA mutations primarily arising from errors during mtDNA replication as a major factor 

in cardiac ageing37,38. Indeed, mice expressing a proofreading-deficient mtDNA 

polymerase- γ (mtDNA mutator mice) have increased rates of mtDNA mutation and several 

features of ageing, including increased risk of cardiac disease39–41. Furthermore, long-lived 

naked mole rats reach very old age despite oxidative stress through uncertain cytoprotective 

mechanisms42. Of note, antiageing and ROS-limiting calorie restriction interventions alone 

are not sufficient to rescue the ageing phenotype of mutator mice, which questions the idea 

that oxidative stress is the primary mechanism determining ageing phenotypes in this 

experimental model43. Collectively, these findings indicate that accumulation of mtDNA 

mutations during ageing might compromise cell signalling and promote cell impairment 

independently of oxidative stress.

Most of the concerns raised against this hypothesis pertain to the extent to which increased 

ROS production causes mtDNA damage40. Deep sequencing and PCR-based mutation-

detection methods have not identified a mutation spectrum consistent with ROS-mediated 

mutagenesis in mtDNA from flies and humans37,38. In this regard, a 50% reduction in 

manganese superoxide dismutase, one of the main mitochondrial antioxidant enzymes, in 

older mice did not affect mitochondrial function44.

Nevertheless, several findings still support the ROS theory of ageing. The implementation of 

redox-sensitive mass spectrometry approaches allowed the detection of increased production 

of ROS in mutator mice and indicated the existence of a mitochondrial redox signalling 

cascade in response to chronic exposure to ROS40. Such a signalling system would operate 

through the generation of a pro-inflammatory environment and is hypothesized to contribute 
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to the accelerated ageing of mutator mice45. Indeed, expression of the antioxidant enzyme 

catalase rescues some of the age-related features in this model (such as heart enlargement 

and cardiomyopathy)39,41. Furthermore, superoxide production correlates with ageing and 

damage to mitochondrial lipids and proteins3.

In further support of a role for ROS-mediated damage and mitochondrial decline in cardiac 

ageing is the finding that supplementation with the natural polyamine spermidine 

counteracts age-related declines in the expression and function of ETC complex I in mice46. 

Although the mechanism of action of spermidine might be multifactorial, current evidence 

indicates that spermidine acts as an antioxidant46.

Additional studies showed that B2 bradykinin receptor deficiency exacerbates cardiac 

dysfunction in aged mice via increased p53 expression, reduced mitochondrial biogenesis 

through lower proliferator-activated receptor- γ co-activator 1 α (PG C 1α) expression, 

increased inflammation, and increased oxidative stress47.

The equivocal results about the role of ROS in mitochondrial dysfunction during ageing 

might be explained, at least in part, by the experimental approaches followed by different 

studies. For instance, variability in time points of measurements, degree of mitochondrial 

purity, assays and techniques used, data analyses, and samples used to determine ROS 

concentrations might all affect the results. Nevertheless, although low levels of 

mitochondrial-derived ROS potentially promote autophagy signalling and organelle clearing, 

high and sustained levels of ROS clearly cause mitochondrial and cellular toxicity48. 

Therefore, low levels of ROS are beneficial and instrumental for normal cellular function 

and cardioprotection through a hormetic response49–51. In particular, the leakage of ROS 

outside mitochondria activates a H2O2-mediated cell-warning system for oxidative stress 

that acts as a retrograde signal to nuclear-targeted cytosolic pathways52. When intracellular 

ROS concentrations overwhelm antioxidant defences, the resulting oxidative stress can 

induce loss of ROS signal localization and disruption of cell homeostasis53. However, the 

relationship between endogenous levels of ROS and ‘healthy’ cardiac ageing is an area that 

requires further clarification for therapeutic exploitation.

mtDNA mutations.

Cells have hundreds to thousands of copies of mtDNA. The accrual of mtDNA mutations 

exceeding a certain threshold (that is, >60–80% heteroplasmy based on the type of mutation) 

results in the synthesis of a critical mass of defective ETC components54. This eventually 

leads to mitochondrial dysfunction and phenotypic expression54. mtDNA mutations can be 

present in only a subset of genome copies (heteroplasmy) or in all copies (homoplasmy). 

These mutations can be either inherited or formed de novo in the oocyte or embryo. Unless 

point mutations affect regions that are relevant to regulating mtDNA replication55, negative 

selection does not seem to occur against low levels of heteroplasmic mtDNA point 

mutations. Under these circumstances, clonal expansion of mtDNA mutations in somatic 

tissues follows the neutral drift principle56,57. As subsequent cycles of mtDNA replication 

occur, levels of mutated mtDNA can either increase or decrease. For a mutation to cause 

oxidative phosphorylation dysfunction, its relative levels must exceed a certain threshold that 

is dependent on the type of mutation and the energy demand of the affected cell type58.
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In the setting of cardiac ageing, the accumulation of heteroplasmic mtDNA mutations can 

result in a mosaic of cells that can reach a critical threshold of mtDNA mutations59. mtDNA 

deletions accumulate steadily in cardiomyocytes of Twnk (encoding twinkle mtDNA 

helicase) mutant mice during ageing53. Notably, the mutational load is paralleled by 

mitochondrial deficiency, as measured by cytochrome c oxidase staining, and is associated 

with arrhythmias4. These findings support the ideas that foci of dysfunctional mitochondria 

in cardiomyocytes are sufficient for inducing whole-organ dysfunction and that mtDNA 

damage contributes to cardiac ageing.

However, several findings indicate that the abundance of mtDNA mutations rarely exceeds 

1% in aged humans, which is well below the phenotypic expression threshold60,61. 

Moreover, the idea of mtDNA deletions causing ageing and age-related diseases is 

contradicted by the study of so-called Mito-mice that harbour a 4,696 bp mtDNA deletion 

uniformly distributed across various tissues. These mice, despite showing accumulation of 

up to 60% mtDNA deletion in different tissues, have no signs of mitochondrial dysfunction 

or disease manifestation, whereas tissues with >85% mtDNA deletion show mitochondrial 

dysfunction and disease phenotypes62,63.

Another study argued against a central role for mtDNA mutations in the ageing process by 

using a highly sensitive random mutation capture assay64. In this study, mtDNA mutation 

frequency in the brain and heart of aged, wild-type mice was approximately tenfold lower 

than previously reported. This finding is in contrast to the 500-fold higher mtDNA mutation 

load of heterozygous mutator mice, which have a normal lifespan and no signs of premature 

ageing64. However, a caveat of this study is that large-scale mtDNA deletions were not 

detected, which instead have been shown to accumulate in aged human tissues65. 

Furthermore, species-specific differences that might causally relate mtDNA mutations to 

ageing in humans could not be ruled out66,67. Therefore, further studies are needed to clarify 

species-specific differences in somatic mtDNA mutation accumulation during ageing and to 

determine whether the lower frequency of mtDNA mutation reported in aged mice might be 

functionally relevant to human ageing68.

Computational approaches support the idea that only mtDNA mutations occurring early in 

life have sufficient time to undergo clonal expansion and cause focal oxidative 

phosphorylation dysfunction during human ageing56,69. Indeed, focal oxidative 

phosphorylation dysfunction is observed over the age of 30 years, and the prevalence of 

oxidative phosphorylation-deficient cells in the affected tissues (for example, colonic 

epithelium and skeletal muscle) increases with age70.

Taken together, mitochondrial respiratory deficiency, ROS generation, and mtDNA damage 

are central to age-associated dysfunction of cardiomyocytes (FIG. 2). Mitochondrial-

targeted or untargeted antioxidant therapies, activation of organelle-specific autophagy, 

particularly mitophagy, and additional strategies for the selective elimination of mtDNA 

mutations in the aged heart might, therefore, be promising areas of investigation for 

developing treatments against cardiovascular disease.
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Mitochondrial quality control failure

The heart tissue includes cardiomyocytes, fibroblasts, smooth muscle cells, and endothelial 

cells, with a contractile component accounting for about 30–40% of these cells in number 

and 75% in volume71,72. Like neurons and skeletal myocytes, adult cardiomyocytes are 

postmitotic cells with very limited regenerative capacity73. Therefore, damaged organelle 

clearing to ensure organ integrity and maintenance relies on the recycling of cardiomyocyte 

components.

Cardiac muscle cells have a high energy demand and are, therefore, enriched in 

mitochondria (35% of cell volume). Most of the ATP generated through oxidative 

phosphorylation is required to sustain the Ca2+-dependent contraction of cardiomyocytes. 

Consequently, the maintenance of mitochondrial homeostasis is crucial to proper heart 

function. However, mitochondrial function is not limited to energy provision. This organelle 

is a hub for many other activities within the cell, including metabolic signalling, iron-sulfur 

cluster and haem biosynthesis, regulation of programmed cell death, and Ca2+ and iron 

buffering74. The intimate dependence of the heart on mitochondrial function highlights the 

vulnerability of cardiac tissue to mitochondrial dysfunction in ageing and disease39,40,75. 

MQC mechanisms are, therefore, crucial to preserving cardiomyocyte homeostasis by 

preventing the expansion of the primary mitochondrial defect(s). MQC involves the 

coordinated regulation of a hierarchical network of pathways acting sequentially from 

individual molecules to the whole organelle76. Antioxidant systems function as the primary 

line of defence to prevent mitochondrial molecular damage. When damage has occurred, a 

second battery of MQC pathways is engaged, which includes mitochondrial repair processes 

(that is, mtDNA-repair systems, reductase systems, and chaperones)77. An 

intramitochondrial proteolytic system intervenes to clear irreversibly damaged mitochondrial 

proteins for their subsequent replacement. Sustained insults that overwhelm molecular MQC 

trigger pathways acting at the whole organelle level. Indeed, damaged mitochondria can fuse 

with neighbouring, intact organelles to dilute focal dysfunction, whereas severely damaged 

mitochondria are segregated from the network through fission and eventually degraded by a 

specialized form of autophagy78,79 (FIG. 2). Derangements at any level of the MQC axis can 

result in amplification of mitochondrial dysfunction, energy shortage, and ultimately loss of 

cell viability (FIG. 2). The following sections describe mitochondrial proteostasis, 

biogenesis, dynamics, and autophagy as core MQC mechanisms.

Proteostasis.

Cardiac homeostasis and activity are dependent on the tight regulation of protein synthesis 

and degradation, given that cardiomyocytes are enriched in the myofibrillar proteins myosin 

and actin that form, in association with other protein components, the contractile subunit 

known as the sarcomere80. In the context of cardiac workload, the demands of high 

contractile activity result in increased protein synthesis, and this enhanced rate of synthesis 

can lead to physiological or pathological cardiac hypertrophy. Reduced cardiac mass has 

been shown to result from either a substantial decrease in protein synthesis (by as much as 

50% in <2 weeks)81 or an elevated activity of the ubiquitin-proteosome system (UPS)82. 

These responses suggest the existence of mechanosensors in cardiomyocytes ensuring a 
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mechanoproteostasis link between the intensity of contraction and the molecular pathways 

regulating protein synthesis and degradation82.

Regulation of protein turnover, from synthesis to degradation, is also relevant to tissue 

architecture. Whereas mature myofibrils are confined to the perinuclear region, the Z-disc is 

located in a subcellular region where defined sarcomeric structures are assembled80. 

Through a highly dynamic process that depends on proper protein conformations and 

interactions, the addition of new sarcomeres to the structure occurs on a short timescale. In 

response to external mechanical stressors (pressure or volume overload), sarcomeric addition 

occurs either in parallel (concentric hypertrophy) or in series (eccentric hypertrophy). The 

production of functional proteins requires the completion of protein folding and 3D 

organization, which involves transient associations with molecular chaperones. An increased 

oxidative environment in cardiomyocytes might contribute to primary sequence 

modifications and protein misfolding.

Protein synthesis operates only through the ribosomal machinery, but three distinct and 

complementary systems have been identified for degrading and recycling cellular 

components and organelles: the calpain-calpastatin system, the UPS, and 

macroautophagy83–85. These three processes are intimately interconnected and orchestrate 

cardiac sarcomere degradation83–85. Cardiac proteostasis is also under circadian control. 

This observation is particularly relevant during periods of low activity when heart rate and 

blood pressure are low, creating optimal conditions for sarcomere repair and regeneration80.

Along with the UPS, mitoproteases act as a first line of defence against mild mitochondrial 

damage86. In the mitochondrial matrix, protein turnover is controlled by three AAA 

proteases: the soluble mitochondrial Lon protease homologue (LONP1) and mitochondrial 

ATP-dependent Clp protease (CLPP), and the mitochondrial inner membrane-bound m-

AAA protease87. In the intermembrane space, mitochondrial protein quality is ensured by 

the membrane-bound ATP-dependent zinc metalloproteinase YME1L1, the soluble 

mitochondrial serine protease HTRA2, the mitochondrial metalloendopeptidase OMA1, and 

the mitochondrial presenilins-associated rhomboid-like protein (PARL)86. The level and 

activity of these mitoproteases change during ageing. For instance, the expression and 

function of LONP1 decrease with age88. The relevance of mitoprotease activity is 

epitomized by the deletion of genes encoding AFG3-like protein 2, CLPP, and PARL, which 

causes severe defects in mice (such as axonal degeneration, multisystem disorder, and 

cachexia) and ultimately shortens murine lifespan through mitochondrial dysfunction89–91.

A role for ER stress in mitochondrial proteostasis has also been acknowledged. cAMP-

dependent transcription factor ATF4, which is involved in the unfolded protein response, has 

been shown to induce the expression of E3 ubiquitin-protein ligase parkin, which regulates 

mitochondrial fission, bioenergetics, and mitophagy92 by favouring transient Ca2+ transfer 

from the ER to mitochondria93. Another mediator of the unfolded protein response, 

eukaryotic translation initiation factor 2α-kinase 3, which is enriched at the mitochondria-

associated ER membranes, favours the propagation of ROS from the ER to the 

mitochondria94.
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Cardiac dysfunction of different aetiologies (including ischaemia, pressure or volume 

overload, and arrhythmia) has been associated with redox imbalance that affects several 

processes, including ROS-mediated regulatory pathways, the expression and/or function of 

proteins involved in Ca2+ homeostasis, and structural alterations of myofibrillar 

proteins95,96. In the context of an oxidative environment, post-translational modifications 

(such as disulfide bonds and carbonylation) alter the conformation of myofibrillar proteins 

and are likely to induce functional changes of the sarcomeric contractile apparatus. 

Furthermore, specific subunits of the 19S proteasome become oxidized, which results in a 

significant reduction in the 26S proteasome activity97.

As a countermeasure to the accumulation of damaged macromolecules within the cell, 

elevated levels of ROS have been reported to trigger autophagy by mechanisms that are not 

fully understood98,99. A deeper understanding of the molecular pathways (both deleterious 

and protective) that are activated by redox imbalance and that regulate cardiac proteostasis is 

highly important to develop therapeutic approaches aimed at reducing their harmful 

consequences and to prevent cardiac dysfunction.

Mitochondrial bioenergetics and biogenesis.

Several studies have reported a decline in mitochondrial respiration and decreases in 

mitochondrial membrane potential during ageing both in laboratory rodents and in 

humans34,41. However, the extent to which ETC complex I-IV-supported respiration is 

reduced and the tissue-specificity of these reductions are controversial34,100,101. 

Furthermore, whether ETC functional decline and increased ROS generation are upstream or 

secondary to age-related changes in mitochondrial energy transfer systems (for example, 

creatine kinase (CK) energy exchange) or organelle content variations is uncertain100.

A causal link between the age-dependent decline in heart muscle performance and the 

decrease in the CK transfer system is plausible considering both its role in supplying high-

energy compounds to the cytosol and substrate to the ETC and the observation of decreased 

phosphocreatine:ATP ratios in aged human and rodent tissues100,102–105. However, 

additional explanations are available for the age-related decline in ETC function, including 

changes in diffusion barriers within the myocardium that limit mitochondrial substrate 

availability and variations in paracrine signalling103,106. In addition, the increased 

susceptibility to heart disease in male animals suggests a role for age-related changes in sex 

hormone levels differentially influencing ETC function in the two sexes107. Indeed, 

mitochondria from the heart of ovariectomized rats show aberrant mitochondrial 

morphology, overproduction of ROS, and impairment in basal and stress-induced 

mitochondrial fission, which are prevented by treatment with oestrogens and 

progesterone107. Oestrogens can also modulate ATP synthesis107. Moreover, results from 

muscle-specific oestrogen receptor knockout (Esrl−/−) mice suggest a link between nuclear 

receptor signalling and hormonal control of mitochondrial function and metabolism107. The 

role of sex hormones in the bioenergetic decline observed during ageing is an attractive area 

of investigation106,108.

Cardiac mitochondriogenesis is a complex nuclear-mitochondrial process that orchestrates 

both genome transcription and replication109 (FIG. 1). PGC1α is amaster regulator of 

Picca et al. Page 9

Nat Rev Cardiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial biogenesis and energy metabolism110,111. In the heart, PGC1α is induced at 

birth to support the metabolic shift in fuel preference from glucose and lactate during the 

fetal period to fatty acids after birth112. The transcriptional activities of a set of factors, 

including peroxisome proliferator-activated receptor-α, steroid hormone receptor ERR1, and 

nuclear respiratory factor 1 (NRF1), are under the control of PGCtα111. Through this 

regulation, PGC1α modulates mitochondrial biogenesis and energy metabolism. 

Mitochondrial content is substantially reduced in the failing hearts of both rodents and 

humans113,114. Moreover, downregulation of PGC1α signalling has been observed in the 

setting of experimental heart failure115. As such, discovering the cardiac mechanisms 

regulating PGC1α signalling might lead to the development of therapies aimed at 

stimulating mitochondrial biogenesis and increasing energy production in the setting of 

higher contractile demand114. Hydrogen sulfide has been indicated as an important regulator 

of cardiac mitochondrial content and an inducer of mitochondrial biogenesis via a 5’-AMP-

activated protein kinase (AMPK)-PGC1α signalling cascade116.

In addition to PGC1α, the mitochondrial transcription factor A (TFAM), through its binding 

to mtDNA, has been indicated as a relevant modulator of mitochondrial biogenesis117 (FIG. 

1). This interaction is modulated by several mechanisms, including regulation of TFAM 

expression and turnover, post-translational modifications and differential affinity of TFAM 

to specific mtDNA regions, TFAM sliding on mtDNA filaments and cooperative binding 

among TFAM molecules, and modulation of protein-protein interactions117.

Apart from the specific mechanisms responsible for mitochondrial functional impairment, 

differential decline in ETC activity has been found between inter-fibrillar mitochondria and 

subsarcolemmal mitochondria44, suggesting that subclasses of mitochondria are 

differentially susceptible to dysfunction118. Indeed, studies by Hoppel and colleagues 

reported increased activity of mitochondrial citrate synthase and ETC complexes, state 3 

respiration rates, and abundance of respiratory cytochromes in interfibrillar mitochondria 

isolated from the rat heart119,120. This possibility suggests that distinct therapeutic 

approaches are necessary to restore bioenergetics in the two mitochondrial subpopulations.

Mitochondrial dynamics.

Mitochondria exist in a reticular state in the myocardium, allowing electrochemical 

conductance of the proton motive force throughout the mitochondrial network tofacilitate 

network-wide ATP synthesis121–123 (FIG. 1). This structural organization, reminiscent of an 

electrical power grid, has been revealed from classic electron microscopy-based studies and 

more recent fluorescence and 3D focused ion beam scanning electron microscopy structural 

analyses122–124. Mitochondrial-mitochondrial contact sites — gap junction-like structures — 

are thought to facilitate energy distribution between organelles. However, the molecular 

structure of these junctions and how they change during ageing remain important 

unanswered aspects. Morphometric analysis of mitochondrial structure has demonstrated 

that cardiomyocyte mitochondrial networks deteriorate with age125,126. In particular, the 

area of the inner mitochondrial membrane substantially decreases with age, as shown by 

morphometric analysis of electron microscopy images of rodent heart muscle sections125. 

The inner mitochondrial membrane houses the ETC, the site of respiration and ATP 
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production; ETC functional changes can, therefore, be expected to accompany changes in 

inner membrane morphology.

An important area of future research will be to determine the role of fission factors, such as 

dynamin 1-like protein (DNM1L) and mitochondrial fission factor (MFF)127, and fusion 

factors, such as mitochondrial dynamin-like 120 kDa protein (OPA1) and mitofusin 1 

(MFN1) and MFN2, in regulating mitochondrial morphology, Ca2+, and energy conductance 

inside adult cardiomyocytes. Towards this understanding, murine knockout of Dnm1l results 

in dilated cardiomyopathy128. Similarly, heart-specific Mfn1 and Mfn2 double knockout 

results in cardiac dysfunction in mice128. However, heart-specific Dnm1l, Mfn1, and Mfn2 
triple-knockout mice show a partial rescue of myocardial function, demonstrating that the 

balance between fission and fusion is an important requirement for maintaining heart 

health129.

Mechanistically, impairment of mitochondrial dynamics enhances mitophagy128,130,131. 

Excess mitophagy might lead to loss of healthy mitochondria and energy decline128,130. 

However, because active mitochondrial dynamics and mitophagy have not been observed in 

vivo in the heart, the role of mitochondrial dynamics factors in the heart remains unclear. In 

addition, because heart-specific knockout of essential genes is expected to result in 

pathological phenotypes, how more subtle alterations in mitochondrial dynamics factors 

contribute to cardiovascular disease susceptibility and cardiac ageing remains to be shown. 

When a molecular understanding of the role of mitochondrial dynamics in the heart is 

obtained, therapeutic manipulation of mitochondrial fission and fusion might become a 

powerful tool to combat cardiovascular disease and promote ‘healthy’ cardiac ageing.

Mitochondrial autophagy.

Autophagy is an evolutionarily conserved catabolic pathway that selectively or 

nonselectively eliminates long-lived, unnecessary, or damaged proteins and organelles to 

ensure cell homeostasis132. Of the three known types of autophagy (including 

macroautophagy, chaperone-mediated autophagy, and microautophagy), macroautophagy is 

the best-understood pathway. When autophagy is stimulated by starvation and other stresses, 

a double-membrane phagophore proximal to the cellular cargos expands to generate the 

autophagosome, which ultimately fuses with the late endosome or lysosome to hydrolyse the 

engulfed constituents132.

Mitophagy is a form of selective autophagy that not only prevents the accumulation of 

abnormal or damaged mitochondria but also promotes the maintenance of a stable number of 

healthy mitochondria within cells (FIG. 1). A study in mito-Keima-expressing mice 

demonstrated that the heart was one of the most robust mitophagic organs, substantiating the 

importance of mitophagy for normal cardiac function133. The onset of mitophagy can be 

triggered by at least three different mechanisms in the cell134. Type I mitophagy largely 

resembles canonical autophagy and utilizes the classical autophagy machinery, involving 

phosphatidylinositol 3-kinase class III (PI3K-III) and phagophore assembly.

Type II mitophagy is instigated by recruitment and activation of the mitochondrial serine/

threonine-protein kinase PINK1 and the E3 ubiquitin-protein ligase parkin to the outer 
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mitochondrial membrane135 (FIG. 1). In healthy polarized mitochondria, PINK1 is imported 

into the inner mitochondrial membrane and matrix via the translocase of the inner membrane 

(TIM)-translocase of the outer membrane (TOM) complex, where it is degraded by PARL. 

Upon depolarization, PINK1 is stabilized within the TOM complex in the outer 

mitochondrial membrane. Outer membrane stabilization prevents matrix-localized proteases 

from cleaving PINK1, resulting in its accumulation on the outer membrane of mitochondria 

with compromised membrane potential136,137. Under these conditions, PINK1 can 

phosphorylate ubiquitin138,139, which in turn recruits and activates parkin. PINK1-induced 

phosphorylation of parkin at its Ser65 residue140 further drives the activation of parkin 

activity, resulting in a feedforward phosphor-ubiquitylation cascade, which drives mitophagy 

to completion. Ubiquitylated targets then interact with mitophagy receptors, including 

sequestosome 1 (p62)141, optineurin, tax1-binding protein 1, calcium-binding and coiled-

coil domain-containing protein 2 (REF142), next to BRCA1 gene 1 protein, and histone 

deacetylase 6 (REF142). In the heart, PINK1 might have a role in phosphorylating MFN2 at 

Thr11 and Ser442 (REF138), and phosphorylated MFN2 is a well-characterized substrate of 

parkin137. However, mitophagy can occur independently of parkin and PINK1. BCL-2-like 

protein 13, BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3, and FUN14 

domain-containing 1 are known to induce mitophagy in a parkin-independent manner143146.

Type III m itophagy refers to unconventional mitophagy in which damaged regions of an 

individual mitochondrion selectively bud off as a form of mitochondrion-derived vesicles 

that subsequently transit to lysosomes147. Although the onset of this non-canonical 

mitophagy does not require mitochondrial depolarization, a subset of mitochondrion-derived 

vesicles needs parkin and PINK1 for their form ation148. Membrane potential-independent 

PINK1-parkin-mediated piecemeal mitophagy has also been demonstrated in cell lines 

expressing a mitochondrial matrix-localized misfolded protein130,149. Loss of mitochondrial 

fission in Dnm1l−/− cells results in the loss of the specificity of mitophagy130 and enhanced 

mitophagic flux in cell lines and Dnm1l−/− mouse hearts128,131.

Autophagy is a central cellular process involved in ageing and lifespan in many organisms 

and progressively declines in the heart during ageing, leading to increased susceptibility to 

stress149. Mechanisms underlying this age-mediated decrease in autophagy include 

downregulation of important autophagy-related proteins and autophagy regulators, as well as 

modification of autophagy-related proteins and altered autophagy signalling. Aged mice 

have a substantial loss of beclin 1 and microtubule-associated proteins 1A/1B light chain 3A 

and 3B as compared with younger littermates, suggesting impaired formation of 

autophagosomes with advancing age150,151. In addition, important regulators of autophagy 

such as forkhead box protein O1 (FOXO1), transcription factor EB, PI3K-III, and glycogen 

synthase kinase 3α are reduced in the aged heart151,152. In further support of an integral role 

of autophagy in cardiac ageing, heart-specific overexpression of foxo improves cardiac 

function in aged Drosophila153.

Post-translational modifications markedly influence the stability and activity of proteins. 

NAD-dependent protein deacetylase sirtuin 1 (SIRT1), located in both the nucleus and the 

cytosol, regulates autophagy, mitochondrial biogenesis, and antioxidant defence154. Many 

non-histone targets are deacetylated by SIRT1, including PGC1α, CREB-regulated 
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transcription co-activator 2, FOXO1 and FOXO3, fibroblast growth factor 21, microtubule-

associated proteins 1A/1B light chain 3A, autophagy protein 5, autophagy-related protein 7, 

and signal transducer and activator of transcription 3, which are all closely linked to energy 

homeostasis and autophagy154,155. In a rodent model, ageing substantially reduced SIRT1 

activity in the heart, accompanied by increased cardiac oxidative injury156,157. 

Cytoprotective effects of SIRT1 are further substantiated by a study showing that cardiac-

specific deletion of Sirt1 markedly impairs myocardium contractility together with increased 

ER stress and apoptosis158. Therefore, reduced expression or activity of SIRT1 with 

advancing age might alter the status of acetylation or deacetylation of target substrates, 

ultimately resulting in autophagy defects in aged hearts.

Hoshino and colleagues reported that p53, a transcription factor known to promote DNA 

repair and apoptosis, prevents the onset of mitophagy by binding to the RING0 domain of 

parkin and consequently inhibiting parkin translocation to mitochondria159. Importantly, the 

age-dependent decline in mitochondrial bioenergetics was substantially alleviated by Tp53 
knockdown. Furthermore, cardiac function was well maintained in old Tp53 heterozygous 

mice, suggesting that p53 and parkin have a pivotal role in cardiac ageing through their 

regulation of mitophagy. Indeed, gene-expression profiling studies of mouse muscles 

revealed a substantial increase in Tp53 mRNA levels in the old mice160.

In the context of cardiac ageing, energy stress modulation of autophagy involves AMPK and 

insulin signalling pathways (FIG. 3). Although not fully elucidated, this regulation seems to 

be mediated by the nutrient-sensing mechanistic target of rapamycin complex 1 (mTORC1) 

that integrates the metabolic signals from both AMPK and insulin to induce autophagy161. 

Indeed, the activation of mTORC1 inhibits both serine/threonine-protein kinase ULK1 (a 

key instigator of autophagosome formation)162 and transcription factor EB (a lysosomal 

biogenesis modulator)163. In particular, changes in amino acid availability influence 

mTORC1 and regulate macrophagic protein breakdown161.

Beclin 1 is another relevant regulator of autophagy in the heart164. In particular, beclin 2 and 

BCL-2-like protein 1 are negative regulators of autophagy through binding to beclin 1. The 

modulation of this binding occurs via phosphorylation and can inhibit or activate 

cardiomyocyte autophagy depending on the amino acid residues being 

phosphorylated165–167.

Although induction of autophagy is essential to ensure heart function during fasting168, 

fasted mice that are deficient in IGF1 show cardiac atrophy following overactivation of 

autophagy169. The insulin signalling pathway operates through activation of PI3K, RACα 
serine/threonine-protein kinase (AKT1), GTP-binding protein RHEB, and mechanistic target 

of rapamycin (mTOR), and results in inhibition of autophagic activity (FIG. 3). Emerging 

evidence suggests that activation of autophagy elicits a prosurvival response in 

cardiomyocytes, but has also been linked to cardiomyocyte death when overactivated. 

Indeed, glucose deprivation in cardiomyocytes overexpressing Rheb induces activation of 

autophagy via downregulation of the RHEB-mTOR signalling pathway and is essential for 

cardiomyocyte survival. Similarly, in response to cardiac ischaemia in vivo, Rheb 
overexpression prevents ischaemia-induced autophagy and increases infarct size170.
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Taken together, these results highlight the debate on whether upregulation of autophagy is 

cardioprotective or harmful. Extrapolation of findings in other tissues might be helpful given 

that large knowledge gaps exist in the field of cardiac autophagy. The vital roles of general 

and selective autophagy in the setting of cardiac ageing and cardiovascular disease make this 

cellular process highly attractive for developing targeted therapeutic approaches (BOX 2).

Conclusions

Although we are still far from fully understanding the events that trigger cardiomyocyte 

senescence and underpin cardiac ageing, wide consensus exists on the central role of 

mitochondrial dysfunction. MQC mechanisms operate through an integrated hierarchical 

network of pathways, and derangements at any level of the MQC machinery can affect the 

whole system. During ageing and in the setting of cardiovascular disease, failing MQC 

might allow primary mitochondrial defects to expand until a critical threshold is breached 

and mitochondrial dysfunction becomes phenotypically evident.

The recently identified SASP has been recognized to establish direct or indirect contacts 

between cellular components (including ER, peroxisomes, lysosomes, and vacuoles) and the 

extracellular environment through m itochondrion-derived vesicle release. However, the 

functional consequences of these interactions in the context of cardiac ageing are not fully 

understood, and several research questions remain unanswered (BOX 3). Dissecting the 

interaction between MQC pathways and the pattern of circulating mediators associated with 

cardiac senescence might be exploited to unveil new pathways for the prevention and 

treatment of age-related heart dysfunction.
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Key points

• Older adults are especially vulnerable to developing cardiovascular disease 

owing to long-term exposure to risk factors and intrinsic cardiovascular 

alterations occurring during ageing.

• Mitochondrial quality control (MQC) operates through the coordination of 

various processes (proteostasis, biogenesis, dynamics, and mitophagy) to 

ensure cell homeostasis.

• Mitochondrial dysfunction, amplified by failing quality control processes, is 

believed to be a major mechanism underlying cardiac ageing and 

cardiovascular disease.

• Preclinical evidence suggests that modulation of MQC can be harnessed for 

therapeutic benefit against cardiac ageing and cardiovascular disease.

• Current unknowns include the optimal window of MQC functioning to 

achieve cardioprotection, the timing and intensity of interventions, and 

noninvasively accessible biomarkers of MQC in the heart.
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Box 1 |

Hallmarks of senescence in cardiac ageing

Primary hallmarks of ageing (the cause of molecular damage):

• Genome instability

• Telomere shortening

Secondary hallmarks of ageing (which arise as a response to damage to mitigate the 

insult, but their persistence has detrimental effects):

• Mitochondrial dysfunction

• Oxidative stress

• Systemic inflammation

Picca et al. Page 24

Nat Rev Cardiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2 |

Calorie restriction, autophagy, and cardiac ageing

Exploiting the capacity of cells to clear irreversibly damaged molecules and organelles is 

an appealing approach to delay cardiac ageing and to prevent or treat cardiovascular 

disease. Particularly intriguing is the prospect of preserving cardiac health through fine-

tuning cardiomyocyte autophagy. Calorie restriction (CR), defined as a reduction in food 

intake without malnutrition, is among the most powerful inducers of autophagy171. 

Indeed, the modulation of autophagy is a primary mechanism underlying the lifespan-

extending and health-promoting properties of CR172. Studies in old rodents have shown 

that CR delays cardiac ageing, possibly via improved mitochondrial quality control 

processes, including autophagy. For instance, lifelong 40% CR increased the protein 

expression of autophagy-related protein 7, autophagy-related protein 9, and lipidated 

microtubule-associated proteins 1A/1B light chain 3B in the hearts of old rats, which was 

associated with a higher occurrence of autophagic vacuoles173. A similar degree of CR 

increased the autophagic flux in the heart of old rats via suppression of mechanistic target 

of rapamycin signalling174. This suppression was accompanied by reduced myocardial 

lipofuscin accumulation, decreased cardiomyocyte apoptosis, and preservation of left 

ventricular diastolic function. Induction of cardiac autophagy and amelioration of 

cardiomyocyte contractile performance were also observed in old mice with lifelong 40% 

CR175. Challenges and concerns associated with long-term CR implementation in 

humans have instigated a great deal of research aimed at identifying compounds to 

recapitulate the autophagy-inducing properties of CR7. Several agents, such as 2-deoxy-

d-glucose, metformin, rapamycin, resveratrol, salicylates, spermidine, TEMPOL, and 

verapamil, have shown promising results in experimental animal models, but whether 

these agents can exert cardioprotection in humans through modulation of autophagy 

remains to be established176.
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Box 3 |

Unanswered research questions

• How much of cardiomyocyte age-related dysfunction is attributable to failing 

mitochondrial quality control?

• In the context of mitochondrial quality control, are there pathways that are 

primarily involved in heart senescence and that might be better targets to 

achieve cardioprotection?

• What is the optimal window of mitochondrial quality control functioning to 

achieve cardioprotection without disrupting cardiomyocyte homeostasis?

• To what extent can data obtained from pharmacological or behavioural 

modulation of mitochondrial quality control in model organisms be translated 

to humans?

• When should an intervention that modulates cardiac mitochondrial quality 

control be started and for how long should it be administered?

• How can mitochondrial quality control adaptations elicited by experimental 

drugs be monitored noninvasively in humans?
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Fig. 1 |. Mitochondrial quality control pathways
Mitochondrial homeostasis is ensured through the coordination of mitochondrial biogenesis, 

dynamics, and autophagy. After appropriate stimuli (such as exercise stimulus), the 

upregulation of proliferator-activated receptor- γ co-activator 1α (PGC1α) and other 

transcription factors (TFs) activates the transcription of nuclear genes encoding 

mitochondrial proteins such as mitochondrial transcription factor A (TFAM). TFAM is then 

imported into mitochondria by the protein import machinery and reaches its final destination 

on mitochondrial DNA (mtDNA). Here, TFAM upregulates the expression of genes 

encoding electron transport chain subunits, resulting in increased oxygen consumption, ATP 

synthesis, and mitochondrial content. Changes in mitochondrial morphology are under the 

control of fusion (mitofusin 1 (MFN1), MFN2, and mitochondrial dynamin-like 120 kDa 

protein (OPA1)) and fission (dynamin 1-like protein (DNM1L) and mitochondrial fission 1 

protein (FIS1)) proteins. These factors regulate mitochondrial turnover by facilitating the 

dilution and clearance of damaged organelles. Mitochondrial components are eventually 

recycled through a specialized autophagic pathway, known as mitophagy. LC3,microtubule-

associated proteins 1A/1B light chain 3; NRF1, nuclear respiratory factor 1; NRF2, nuclear 

factor erythroid 2-related factor 2; p62, sequestosome 1; parkin, E3 ubiquitin-protein ligase 

parkin; PINK1, serine/threonine-protein kinase PINK1; ROS, reactive oxygen species.

Picca et al. Page 27

Nat Rev Cardiol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Nucleus–mitochondrion crosstalk during cardiac ageing
The age-related surge in generation of reactive oxygen species (ROS) arising primarily from 

the accumulation of dysfunctional mitochondria causes nuclear DNA damage and activates 

5′-AMP-activated protein kinase (AMPK) signalling. The latter, in turn, inhibits NAD-

dependent protein deacetylase sirtuin 1 (SIRT1) activity. The decrease in NAD+ levels in the 

setting of oxidative stress further affects SIRT1, resulting in decreased levels of proliferator-

activated receptor- γ co-activator 1α (PGC1α), leading to a decline in mitochondrial 

biogenesis; upregulation of nuclear factor- κB (NF- κB), leading to inflammation; and 

decreased expression and phosphorylation of forkhead box protein O1 (FOXO1) and 

FOXO3, transcription factors (TFs) that participate in cytoprotection. This multi-pathway 

derangement leads to cellular stress, induction of the senescence-associated secretory 

pathway (SASP), and senescence. CGAS, cGMP-AMP synthase; DAMP, damage-associated 

molecular pattern; DNM1L, dynamin 1-like protein; FIS1, mitochondrial fission 1 protein; 

MFN, mitofusin; mtDNA, mitochondrial DNA; NRF1, nuclear respiratory factor 1; NRF2, 

nuclear factor erythroid 2-related factor 2; OPA1, mitochondrial dynamin-like 120 kDa 

protein; p62, sequestosome 1; PARP, poly[ADP-ribose] polymerase; parkin, E3 ubiquitin-

protein ligase parkin; PINK1, serine/threonine-protein kinase PINK1; STING, stimulator of 

interferon genes protein; TBK1, serine/threonine-protein kinase TBK1; TFAM, 

mitochondrial transcription factor A; TLR9, Toll-like receptor 9.
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Fig. 3 |. regulation of cardiac autophagy
Cardiomyocyte energy status regulates autophagy via metabolic signalling. Under substrate 

deficit conditions or oxidative stress, decreased ATP levels stimulate 5′-AMP-activated 

protein kinase (AMPK) activity and, therefore, autophagy via activation of serine/threonine-

protein kinase ULK1 and downstream apoptosis regulator BCL-2 and beclin 1 through 

inhibition of autophagy suppressors (such as mechanistic target of rapamycin complex 1 

(mTORC1)). At the same time, growth or cell survival stimuli activate insulin or insulin-like 

growth factor I (IGF1) signalling in cardiomyocytes, leading to the induction of the insulin–

RACα serine/threonine-protein kinase (AKT1) pathway. Activation of GTP-binding protein 

RHEB results in inhibition of autophagy by autophagy suppressors (primarily mTORC1) 

and transcription factors related to lysosomal biogenesis (such as transcription factor EB 

(TFEB)). ROS, reactive oxygen species.
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