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In Brief
Phenotypic drug screening iden-
tified the clinical PKC inhibitor
midostaurin to have potent activ-
ity in several lung cancer cells
independently of inhibiting PKC.
Network-based integration of
chemo- and phosphoproteomics
data highlighted multiple
midostaurin targets and signal-
ing pathways. Functional valida-
tion determined a complex
polypharmacology mechanism
involving the midostaurin targets
TBK1, PDPK1 and AURKA and
the downstream node PLK1.
Combination of midostaurin with
the potent PLK1 inhibitor BI2536
further enhanced the cells’ net-
work vulnerability and resulted in
strong synergy.
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• Design of synergistic drug combination with PLK1 inhibitor by pathway validation.
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Functional Proteomics and Deep Network
Interrogation Reveal a Complex Mechanism of
Action of Midostaurin in Lung Cancer Cells*□S

Claudia Ctortecka‡, Vinayak Palve‡, Brent M. Kuenzi‡§, Bin Fang¶, Natalia J. Sumi‡§,
Victoria Izumi¶, Silvia Novakova‡, Fumi Kinose�, Lily L. Remsing Rix‡, Eric B. Haura�,

John Matthew Koomen**, and Uwe Rix‡ ‡‡

Lung cancer is associated with high prevalence and mor-
tality, and despite significant successes with targeted
drugs in genomically defined subsets of lung cancer and
immunotherapy, the majority of patients currently does
not benefit from these therapies. Through a targeted drug
screen, we found the recently approved multi-kinase in-
hibitor midostaurin to have potent activity in several lung
cancer cells independent of its intended target, PKC, or a
specific genomic marker. To determine the underlying
mechanism of action we applied a layered functional pro-
teomics approach and a new data integration method.
Using chemical proteomics, we identified multiple mido-
staurin kinase targets in these cells. Network-based inte-
gration of these targets with quantitative tyrosine and
global phosphoproteomics data using protein-protein in-
teractions from the STRING database suggested multiple
targets are relevant for the mode of action of midostaurin.
Subsequent functional validation using RNA interference
and selective small molecule probes showed that simul-
taneous inhibition of TBK1, PDPK1 and AURKA was re-
quired to elicit midostaurin’s cellular effects. Immunoblot
analysis of downstream signaling nodes showed that
combined inhibition of these targets altered PI3K/AKT
and cell cycle signaling pathways that in part converged
on PLK1. Furthermore, rational combination of midostau-
rin with the potent PLK1 inhibitor BI2536 elicited strong
synergy. Our results demonstrate that combination of
complementary functional proteomics approaches and
subsequent network-based data integration can reveal
novel insight into the complex mode of action of multi-
kinase inhibitors, actionable targets for drug discovery
and cancer vulnerabilities. Finally, we illustrate how this
knowledge can be used for the rational design of syner-
gistic drug combinations with high potential for clinical
translation. Molecular & Cellular Proteomics 17: 2434–
2447, 2018. DOI: 10.1074/mcp.RA118.000713.

The landscape of cancer therapy has changed dramatically
over the last few years because of novel precision medicine
and immunotherapy approaches, which provide significant
benefit to many cancer patients (1, 2). Precision medicine has
been enabled by major advances in next-generation sequenc-
ing-based genomics technologies. These allow matching of
targeted therapies to mutated oncogene drivers, such as
BRAF and EGFR in melanoma and non-small cell lung cancer
(NSCLC),1 respectively. Although there is an entire array of
driver mutations and gene fusions in NSCLC (3), most of these
are rare events and the majority of lung cancers currently
does not show actionable mutations illustrating the urgent
need for new anticancer targets. However, some of these
needed targets may not be detectable using genomic meth-
ods as they promote oncogenicity without being genetically
altered (4, 5). It is becoming increasingly appreciated that
targeted drugs, particularly kinase inhibitors, which make up
most targeted therapeutics, can have broadly varying target
profiles (6). Thus, using multi-targeted compounds with un-
explained anticancer activity as research tools to identify pre-
viously unrecognized cancer vulnerabilities constitutes an in-
triguing novel modality for drug development. This strategy
can lead to new therapeutic approaches via drug repurposing,
if these compounds are already approved therapeutics, or to
new drug discovery efforts to develop inhibitors for the re-
sponsible targets. Particularly in the latter case, it is essential
to understand the underlying mechanism of action (MoA) and
identify the most relevant target(s). Although there are multiple
approaches with different strengths and weaknesses (7, 8),
the unbiased identification of targets and MoAs often is still a
major challenge, particularly if several targets are involved, a
phenomenon referred to as “polypharmacology” (9). A viable
approach to capture the correct cellular context and dynamic
crosstalk between targets and pathways is to interrogate the
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proteome, which represents the cell’s first responder to a
drug challenge. Specifically, the integration of phosphopro-
teomics, which can describe proteome-wide drug effects on
the oncogenic signaling network (10, 11), and chemical pro-
teomics, which can identify direct drug targets that serve as
entry points into this network (12–14), allows for deep network
mining and is a powerful method to dissect complex kinase
inhibitor MoAs (15, 16).

Midostaurin (PKC412), a structural derivative of the multi-
kinase inhibitor staurosporine, has been developed as an
inhibitor of protein kinase C (PKC) (17) and is of specific
interest because it has recently gained approval by the FDA
for the treatment of acute myeloid leukemia (AML) because of
its ability to potently inhibit FLT3 (18). Interestingly, in NSCLC
cells midostaurin has been found to have unexpected, but
beneficial off-target activity against the drug-resistant EGFR
gatekeeper mutant, but not wild-type EGFR (19, 20). We and
others furthermore observed that midostaurin displayed po-
tent antiproliferative activity in several other NSCLC cell lines
not driven by mutant EGFR or other shared genomic aberra-
tions (17), which could indicate new drug repurposing oppor-
tunities. As NSCLC cell lines generally do not express FLT3
and other potent PKC inhibitors were inactive in the same cell
lines, the underlying MoA of midostaurin in these cells was
unclear, but likely involves underappreciated off-targets that
could constitute novel actionable targets for lung cancer.
Applying a layered functional proteomics approach consisting
of chemical proteomics, tyrosine and global phosphopro-
teomics and subsequent data integration through compre-
hensive network analysis, we here describe the elucidation
of the complex polypharmacology MoA of midostaurin in
NSCLC cells, identify a new mix of actionable targets and
rationally design a synergistic drug combination.

EXPERIMENTAL PROCEDURES

Cell Culture and Reagents—A427, A549, H2170, HCC4006, and
PC9 cells were provided by the Moffitt Lung Cancer Center of Excel-
lence Cell Line Core. Cells were tested negative for mycoplasma and
were authenticated via short tandem repeat (STR) analysis. Cells were
cultivated in RPMI 1640 media with 10% FBS (RP10). All drug dilu-
tions were carried out in RP10. Midostaurin and staurosporine
(LCLabs, Woburn, MA), sotrastaurin, ruboxistaurin (Axon Medchem,
Reston, VA), BX795 (MedChem Express, Monmouth Junction, NJ),
alisertib and BI2536 (Selleckchem, Houston, TX), STO-609 (Cayman,
Ann Arbor, MI), GSK2334470 (Chemietek, Indianapolis, IN), and no-
codazole (Sigma, St. Louis, MO) were dissolved in DMSO (10 mM

stock) and diluted in RP10 for use.
Cell Viability Assays—Cells were plated at 1000 cells/well in black,

clear bottom 384 well microtiter plates and incubated at 37 °C with
5% CO2. After 24 h, cells were treated at indicated concentrations
and incubated for another 72 h before Celltiter-Glo reagent (Promega,
Madison, WI) was added according to the manufacturer’s instruc-
tions. Plates were read using an M5 Spectramax plate reader (Mo-
lecular Devices, San Jose, CA). Data were analyzed using GraphPad
Prism 7 and R.

Western Blotting—Cells were lysed using 0.2% NP-40, 50 mM Tris
pH 7.5, 5% glycerol, 1.5 mM MgCl2, 100 mM NaCl, 25 mM NaF, 1 mM

Na3VO4, 1 mM PMSF, 1 mM DTT, 30 �M TLCK, 30 �M Tosyl pheny-
lalanyl chloromethyl ketone (TPCK), 0.1 �g/ml leupeptin, 0.1 �g/ml
aprotinin, 10 �g/ml trypsin inhibitor lysis buffer containing phospha-
tase inhibitor mixture (Sigma P5726). Proteins were resolved on SDS-
PAGE gels, transferred to activated PVDF membranes using the
TransBlot Turbo system (BioRad, Hercules, CA) and incubated with
primary antibodies. Antibodies were obtained from Sigma: actin
(#A5441), CAMKK2 (#HPA017389), ERK1/2 (#M567) and Cell Signal-
ing (Danvers, MA): AKT (#9272), AMPKa1 (#2795), Aurora A (#3092),
cleaved Caspase 3 (#9661), Histone 3 (#3013), p44/42 MAPK ERK1/2
T202 Y204 (#9106), AKT S473 (#9271), AKT T308 (#D25E6), AMPKa1
T172 (#2535), PARP1 (#9542), PDPK1 (#3062), Histone 3 S10 (#9062),
PLK1 (#4513), PLK1 T210 (#9062), TBK1 (#3013). Secondary antibod-
ies were HRP-conjugated anti-rabbit (NA934, GE Healthcare, Chi-
cago, IL) or anti-mouse (NA931, GE Healthcare). Images were ob-
tained on an Odyssey Fc Imaging System (LI-COR, Lincoln, NE) and
analyzed using Image Studio Lite (LI-COR) software.

RNA Interference—The following siRNAs were obtained from Dhar-
macon as ON-TARGETplus SMARTpools: PDPK1 (L003017-00-
0005), TBK1 (L-003788-00-0005), CAMKK2 (L-004842-00-0005),
AURKA (L-003545-01-0005), non-targeting control (D-001810-
10�20). RNA was re-suspended in 1x siRNA buffer (diluted from
Thermo Scientific 5x siRNA Buffer (B-002000-UB-100)) with RNase-
free water (B-002000-WB-100) to a final concentration of 20 �M.
Stocks were diluted to a final concentration of 20 nM in OptiMEM
(31985062, Fisher Scientific, Hampton, NH) and mixed with lipo-
fectamine RNAiMax (Invitrogen, Carlsbad, CA). For double knock-
downs, siRNAs were combined to a final concentration of 20 nM, the
corresponding single knockdowns were combined with non-targeting
siRNA accordingly. Drug dilutions were added 24 h after transfection.
Knockdown efficiency was monitored using Western blotting. Cells
were counted in triplicates with trypan blue staining using a hemocy-
tometer. Data were analyzed using Microsoft Excel and R.

Fluorescence Microscopy Analysis of Caspase 3/7 Activity—Cells
were plated at 1000 cells/well in a 384-well plate. After 24 h, appro-
priate drug dilutions containing IncuCyte Caspase 3/7 reagent for
apoptosis (4440, Essen BioScience, Ann Arbor, MI) at a final 5 �M

dilution in RP10 was added to the cells. Experiments were conducted
in technical triplicates. Live-cell imaging in the IncuCyte was con-
ducted every 3 h for 72 h. Data was analyzed using the green object
count of every well and normalized using the phase object conflu-

1 The abbreviations used are: NSCLC, non-small cell lung cancer;
AKT, RAC-alpha serine/threonine-protein kinase; AMPK�1, 5�-AMP-
activated protein kinase catalytic subunit alpha-1, PRKAA1; AURKA,
Aurora kinase A; AURKAi, Aurora kinase A inhibitor; CAMKK2, calci-
um/calmodulin-dependent protein kinase kinase 2; DAPI, 4�, 6-di-
amidino-2-phenylindole; DMF, dimethylformamide; EC50, half maxi-
mal effective concentration; EGFR, epidermal growth factor receptor;
Emax, maximal effective concentration; ERK, mitogen-activated
protein kinase; FDR, false discovery rate; HATU, (1-[Bis(dimethyl-
amino)methylene]1H-1,2,3-triazolo[4,5-b]pyridinum 3-oxid hexafluoro-
phosphate; HRP, Horseradish peroxidase; HSP90, heat shock protein
90; IRON, iterative rank order normalization; KEGG, Kyoto encyclo-
pedia of genes and genomes; MoA, mechanism of action; NSAF,
normalized spectral abundance factor; PARP1, Poly [ADP-ribose]
polymerase 1; PDPK1, 3-phosphoinositide-dependent protein kinase
1; PDPK1i, 3-phosphoinositide-dependent protein kinase 1 inhibitor;
PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLK1,
Polo-like kinase 1; pSTY, global phosphoproteomics; PTM, post-
translational modifications; pY, phosphotyrosine; TBK1, TANK-bind-
ing kinase 1; TBK1i, TANK-binding kinase 1 inhibitor; TMT, Tandem
mass tag.
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ence. Normalized data were further analyzed using GraphPad Prism 7
and R.

Cell Cycle Analysis Via Flow Cytometry—Cells were treated for the
indicated times with the appropriate drug dilution, harvested and
fixed with ice-cold 70% ethanol until use. Cell stage was determined
using DAPI (4�, 6-diamidino-2-phenylindole, Sigma D9542)/0.1% Tri-
ton X-100/PBS solution at a final concentration of 1 �g/ml. Cells were
analyzed using a FACSCanto II benchtop analyzer (BD Biosciences,
Franklin Lakes, NJ) at 340 to 380 nm. Data were analyzed using
ModFitLT V3.2.1 and R.

Clonogenic Assays—Cells were plated in a 6-well plate at 4000 and
2500 cells/well for A427 and A549, respectively, and treated with the
appropriate drug dilutions for a total of 9 days. Cells were fixed with
methanol and stained with 0.1% crystal violet solution. Cells were
imaged using a tabletop scanner. Crystal violet was quantified using
methanol extraction and analyzed at 540 nm on an M5 Spectramax
plate reader (Molecular Devices). Data were analyzed using GraphPad
Prism 7 and R.

In Vitro Kinase Assay—In vitro kinase inhibition and IC50 determi-
nations were performed by Eurofins on the KinaseProfiler platform
using 10 �M ATP. Values were obtained from a nine dose, 3-fold
dilution series starting at 10 �M.

i-Midostaurin Synthesis—Immobilizable midostaurin (i-midostaurin)
was synthesized by amidification of staurosporine with N-Boc-
protected m-aminomethylbenzoic acid in presence of (1-[Bis
(dimethylamino)methylene]1H-1,2,3-triazolo[4,5-b]pyridinum 3-oxid hexa-
fluorophosphate) (HATU) and N, N-diisopropylethylamine (DIPEA)
and subsequent deprotection using trifluoroacetic acid according to
the method published previously (21). i-Midostaurin was dissolved in
DMSO for a 10 mM stock and stored at �20 °C until use.

Experimental Design and Statistical Rationale—Protein quantifica-
tion was performed using either chemical labeling (TMT 6-plex) or
label free mass spectrometry-based approaches. Drug affinity pull-
downs were performed as two technical replicates representing in-
dependent drug affinity purifications on separate days using different
lysate aliquots from a single cell pellet. Competition control was
performed by pre-incubating the lysate with varying concentrations of
“free” drug for 30 min (3-fold dilution series from 30 �M to 3 nM) to
determine specificity and relative binding affinity (22). Flow through of
the i-midostaurin pulldown was reapplied to new i-midostaurin affinity
resin for pull down of pull down (PDoPD) control samples. Drug
cross-competition was performed by 30 min pre-incubation with 20
�M sotrastaurin. Global and tyrosine phosphoproteomics experi-
ments were performed as three biological replicates. Midostaurin
treatment of 1 �M for 3 h was compared with vehicle control (DMSO).
Reproducibility of all proteomics datasets was evaluated through
correlation analysis using the PerformanceAnalytics and corrplot R
(3.3.0) environment. All Western blots were performed as three bio-
logical replicates and representative images are shown. siRNA medi-
ated knockdowns and cell viability assays were performed as three
biological replicates with three technical replicates for each biological
replicate.

Chemical Proteomics—Drug affinity pulldowns and proteomics
analysis were performed as described previously (23, 24). Briefly,
i-midostaurin was immobilized on NHS-activated Sepharose beads
for fast flow resin (GE Healthcare). Coupling of the drug to the bead
was monitored using LC-MS analysis (14 min 5–95% MeOH gradient).
Beads were blocked with ethanolamine overnight. An aliquot of pro-
tein (5 mg) from the total cell lysate was added to the beads. Exper-
iments were conducted as two technical replicates representing in-
dependent drug affinity purifications on separate days using different
lysate aliquots from a single large cell pellet. After in-gel tryptic
digestion, peptides were analyzed using a nanoflow ultra-high per-
formance liquid chromatograph (RSLC, Dionex, Sunnyvale, CA) cou-

pled to a nanoelectrospray source-equipped bench top hybrid or-
bitrap mass spectrometer (QExactive Plus, Thermo, San Jose, CA).
Samples were loaded on a pre-column (2 cm x 100 �m ID packed
with C18 reversed-phase resin, 5 �m particle size, 100 Å pore size)
and washed with 2% ACN/0.04% TFA for 8 min. Peptides were eluted
onto an analytical column (C18, 75 �m ID x 50 cm, 2 �m particle size,
100 Å pore size, Dionex) applying a 90 min gradient using LC-MS
solvent A (2% ACN, 0.1% FA) and LC-MS solvent B (90% ACN, 0.1%
FA). Solvent B was held at 5% for 8 min, increased from 5% to 38.5%
over 60 min and from 38.5% to 90% in 7 min where it was held for 5
min to wash the column. Solvent B was decreased from 90% to 5%
in 1 min and the column was re-equilibrated for 10 min. The flow rate
on the analytical column was set to 300 nL/minute. In each cycle, 16
MS/MS spectra were acquired in a data-dependent manner using a
60 s exclusion window. A lock mass correction was applied using a
background ion (m/z 445.12003). Data were searched with MaxQuant
against annotated protein sequences in the UniProt human database
(2018_05, 20350 entries) using the embedded search engine Androm-
eda (for search parameters see supplemental information) (25). Car-
bamidomethylation of cysteine and oxidation of methionine were
included as variable modifications. Trypsin/P was specified as the
proteolytic enzyme and maximum 2 missed cleavages were allowed.
Precursor and fragment ion tolerance was set to 20 ppm and 0.05 Da,
respectively. Label free quantification and data match between runs
was enabled within MaxQuant (26). MaxQuant output was filtered for
minimum peptide length of 7 amino acids, 1% protein and PSM FDR
using reverse sequences, which are then removed, plus common
contaminants.

Phosphoproteomics—Cells were lysed with urea lysis buffer (20
mM HEPES pH 8, 9 M urea, 1 mM sodium orthovanadate, 2.5 mM

sodium pyrophosphate, 1 mM �-glycerophosphate), sonicated at 15
W with 3 bursts of 15 s each using a microtip sonicator, digested and
extracted using the Cell Signaling Sep-Pak C18 peptide purification
protocol (Cell Signaling Technology). Phosphotyrosine peptides were
enriched using the PTMScan Phospho-Tyrosine Rabbit mAb (P-Tyr-
1000, Cell Signaling #8803) according to the manufacturer’s instruc-
tions. For global phosphoproteomics, samples were labeled using
TMT reagents (Thermo Fisher TMTsixplex™ Isobaric Mass Tagging
Kit, #90064). pSTY peptides were enriched using an IMAC kit (Sigma
I1408) adapted from the manufacturer’s instructions (Sigma-Aldrich).
After lyophilization, peptides were redissolved in 400 �l of 20 mM

ammonium formate (pH 10.0). The basic pH reversed phase liquid
chromatography separation (bRPLC) was performed on a XBridge
column (4.6 mm ID x 100 mm length) packed with BEH C18 resin (3.5
�m particle size, 130 Å pore size) (Waters, Milford, MA). The solvent
system used bRPLC A (aqueous 2% acetonitrile with 5 mM ammo-
nium formate, pH 10.0) and bRPLC B (aqueous 90% acetonitrile with
5 mM ammonium formate, pH 10.0). After loading at 1% B, the
peptides were eluted using 5% B for 10 min, 5–15% B in 5 min,
15–40% B in 47 min, 40–100% B in 5 min and 100% B held for 10
min, followed by re-equilibration at 1% B. The flow rate was 600
�l/minute collecting 12 concatenated fractions (27). Peptide fractions
were dried by vacuum. Samples were re-suspended in appropriate
volumes of LC-MS Solvent A (described above). Samples were
spiked with Thermo Scientific Pierce Retention Time Calibration Mix-
ture (PRTC) to confirm consistent performance of the LC-MS analy-
ses. Data acquisition parameters for LC-MS/MS were as described
above. LC-MS/MS data were searched with MaxQuant 1.2.2.5 (pY)
against all protein sequences annotated in the human UniProt data-
base (downloaded 12/2015, 20198 entries) and MaxQuant 1.5.2.8
(pSTY) with the human UniProt database (downloaded 2018_5, 20350
entries)(28) using the embedded search engine Andromeda (for
search parameters see supplemental information) (25). Carbamidom-
ethylated cysteines was set as fixed modification and oxidation of
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methionine, N-terminal protein acetylation and phosphorylation of
serine, threonine, and tyrosine as variable modifications. Precursor
and fragment ion tolerance was set to 20 ppm and 0.05 Da, respec-
tively, and for label free quantification match between consecutive
runs was enabled within MaxQuant (26). Data were filtered for 2%
protein FDR and 5% peptide and site FDR, plus common contami-
nants. For quantification of the label free pY data set, peak apexes
from extracted ion chromatograms were used; for the TMT 6-plex
global pSTY data, the reporter ion intensity was used for relative
quantification of each peptide.

Data Processing and Proteomics Analysis—All data sets were nor-
malized using iterative rank order normalization (IRON) (29), then
further filtered for a PEP score � 0.1 and mass error � 10 ppm.
Competition in the i-midostaurin pulldowns with either “free”
midostaurin or sotrastaurin was calculated. IC50 values were calcu-
lated using GraphPad Prism 7. The depletion factor (r) was calculated
for every relevant kinase (at least 8 unique peptides across all pull-
downs and 2 unique peptides in uncompeted pulldown) as described
by Medard et al. and the Cheng-Prusoff equation was used to calcu-
late the Ki indicating the inhibition constant for binding of the inhibitor
to the kinase (22). Phosphorylation site quantification was set to the
least modified peptide. Identification and quantification of phospho-
peptides directly connected to the most relevant kinases determined
in Fig. 4C and displayed in Fig. 4D were manually confirmed using
extracted ion chromatograms via Scaffold 4.8.7 and Skyline daily
4.1.0.18169 (30). Log2 fold change and Student’s t test values were
calculated for both phosphoproteomics datasets. Cut-offs of p
value � 0.05 for both datasets, a log2 fold change of 1.5 (representing
an actual 2.82-fold change) for the phosphotyrosine and a log2 fold
change of at least 2 times the standard deviation for the global
phosphoproteomics datasets were applied. Subsequently, the drug
affinity dataset was filtered for kinases and combined with all signif-
icantly modulated proteins from the phosphoproteomics data in a
STRING (version 10.5) (31) network analysis, as described previously
(32). The minimum required interaction score was set to a medium
confidence of 0.4 (scale: 0–1), which is calculated for each protein-
protein association by STRING and indicates the probability that the
given interaction is biologically meaningful, specific and reproducible
(33). Interactions were imported into GEPHI for visualization and
non-randomized agglomerative clustering-based community detec-
tion (modularity) with a resolution of 1 was used to determine smaller
subcommunities within the network (34). All ten communities were
included in a pathway analysis of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) using DAVID (35). To prioritize kinase targets
for further analysis the betweenness centrality was calculated for the
network. Betweenness centrality ranks nodes according to their po-
sition in the network indicating how often a node appears on the
shortest path between nodes in the network (36). Data were displayed
using R. To prepare MaxQuant files for upload to PRIDE, the database
search results were imported into Scaffold to export mzIdentML files
by choosing PRIDE/Scaffold re-analysis option.

RESULTS

Midostaurin Shows Beneficial Off-target Activity In NSCLC
Cells—We have previously reported on the development of a
customized in-house library of 180 targeted compounds,
which are mostly represented in either clinical trials or FDA-
approved and include several drug classes such as kinase,
PARP and HSP90 inhibitors, and its screening against 24
non-small cell lung cancer (NSCLC) cell lines for antiprolifera-
tive effects (37). Following up on this dataset, we now ex-
panded this analysis to 240 targeted compounds and 33 lung

cancer cell lines. The screen revealed potent activity of the
protein kinase C (PKC) inhibitor midostaurin compared with
other PKC inhibitors, such as sotrastaurin and ruboxistaurin,
in several NSCLC cell lines (Fig. 1A). This outcome suggested
a PKC-independent MoA and the presence of other, poten-
tially novel and actionable targets in NSCLC. In addition,
comparing sensitive and insensitive cell lines, no clear asso-
ciation with known oncogenic driver mutations was observed
(e.g. A427 and A549 KRAS mutant, HCC4006 EGFR mutant,
and H2170 KRAS/EGFR wild-type were all sensitive). Specific
clustering of selected compound classes included in the
screen was investigated by performing a principal component
analysis of the reduction of viability at 2.5 �M by each com-
pound across all screened cell lines, incorporating several
compounds per target class in the analysis. HSP90, Aurora
kinase (AURK) and the majority of PI3K inhibitors all grouped
with their target classes (Fig. 1B). However, the PKC and FLT3
inhibitor midostaurin did not group with other PKC or FLT3
inhibitors implying distinct cellular efficacy and target profiles.
As midostaurin has been recently approved by the FDA for
treatment of AML with FLT3 mutations (18), this observation
might indicate an interesting drug repurposing opportunity.
Consistently, tissue-specific sensitivity analysis of previously
reported cellular midostaurin activity suggested efficacy not
only in hematopoietic cell lines, but also across several lung
cancer cell lines (supplemental Fig. S1A) (38).

PKC-independent Cellular Effects of Midostaurin—The
most sensitive cell lines to midostaurin in our screen were
selected for in-depth analysis. KRAS-mutant A427 and A549,
KRAS-wild type H2170 as well as EGFR-mutant HCC4006
and PC9 were investigated using 10-point dose-response
curves (Fig. 2A). Consistent with the screening results and
in contrast to sotrastaurin and ruboxistaurin, midostaurin
showed potent activity in all five NSCLC cell lines with similar
maximal cellular efficacy (Emax) and submicromolar half-max-
imal effective concentration (EC50) values, which were within
clinically achievable plasma concentration ranges. Further-
more, midostaurin, but not sotrastaurin or ruboxistaurin,
caused potent and rapid induction of apoptosis in A427 cells
as apparent by immunoblot analysis of PARP1 and Caspase
3 cleavage (Fig. 2B), as well as live cell imaging for Caspase
3/7 cleavage (Fig. 2C, supplemental Fig. S1B). Similarly,
midostaurin potently inhibited colony formation of A427 cells
(Emax � 0% at 500 nM) whereas ruboxistaurin and sotrastaurin
had no effect (Fig. 2D). Finally, midostaurin elicited a signifi-
cant, dose-dependent accumulation of A427 cells in G2
phase (Fig. 2E, supplemental Fig. S1C). In summary, these
results suggest high potency of midostaurin in NSCLC cells
as well as a distinct MoA from ruboxistaurin and sotrastaurin,
which is independent of PKC inhibition and elucidation of
which may reveal new actionable targets for NSCLC.

Chemical and Phosphoproteomics Analysis—In order to
elucidate the MoA of midostaurin in these NSCLC cells, we
applied an unbiased multi-pronged proteomics approach
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consisting of chemical proteomics, as well as tyrosine and
global phosphoproteomics (Fig. 3A). To understand the net-
work-wide signaling effects of midostaurin in these cells,
we performed quantitative phosphotyrosine (pY) and global
phosphoserine/threonine/tyrosine (pSTY) phosphoproteom-
ics analysis of A427 cells comparing midostaurin versus ve-
hicle control (DMSO). Global enrichment of phosphopeptides
was done by immobilized metal ion affinity chromatography
(IMAC). Quantification of pSTY peptides was achieved by
introduction of chemical labels using a tandem mass tag
(TMT) 6-plex approach, bRPLC off-line fractionation and sub-
sequent LC-MS/MS analysis, which after strict filtering de-
tailed in Experimental procedures yielded a total of 12,861
unique pSTY phosphopeptides (supplemental Table S1). In
parallel, antibody-based immunoprecipitation of pY peptides
and label-free LC-MS/MS analysis resulted in the identifica-
tion of 307 unique pY phosphopeptides (supplemental Table
S2). Both phosphoproteomics data sets showed good corre-
lation between biological replicates and similar intensity dis-

tributions (supplemental Fig. S2). All pY phosphopeptides
with a log2 fold change � 1.5 (i.e. an actual fold change of
2.82) or a p value of � 0.05 (Fig. 3B) and all pSTY phospho-
peptides with a fold change � 2 times the standard deviation
greater or lower than the average value for the whole dataset
and a p value of � 0.05 (Fig. 3C) were selected for subsequent
analysis, constituting two sets of 82 (pY) and 180 (pSTY)
peptides, respectively.

To determine direct binding partners of midostaurin and
define its target profile in A427 cells, a drug affinity-based
chemical proteomics approach was used (14). For that pur-
pose, we prepared an immobilizable derivative of midostaurin
(i-midostaurin, Fig. 3D), which has been previously validated
and employed successfully (21). i-Midostaurin was tethered to
NHS-activated Sepharose beads and pulldown experiments
were performed from A427 total cell lysates with dose-de-
pendent midostaurin competition (nine doses in 3-fold dilu-
tions from 30 �M to 3 nM) and a sotrastaurin cross-competi-
tion (20 �M) control. Furthermore, pulldowns from pulldown

FIG. 1. Viability screen reveals differential activity profiles of PKC inhibitors in NSCLC cell lines. A, Viability of 33 NSCLC cell lines upon
72 h of 2.5 �M midostaurin, sotrastaurin and ruboxistaurin treatment was evaluated using CellTiterGlo. Relevant genetic alterations are
displayed for respective cell lines. NA: Not acquired. B, Principal component analysis for the phenotypic drug screen including all 33 NSCLC
cell lines based on reduction of cell viability at 2.5 �M. PC1 and PC2 with an explained variance of 29 and 20%, respectively are displayed.
Multiple compounds per target class were included in the analysis.
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flow through were performed. Subsequent LC-MS/MS anal-
ysis of these samples revealed a set of 1883 proteins (com-
plete dataset can be found in supplemental Table S3), in-
cluding multiple protein kinases binding to i-midostaurin
beads. Data showed high reproducibility across replicates
(supplemental Fig. S3). Filtering for competing proteins and
calculating the Ki for inhibition of kinase binding (for details
see Data processing and proteomics analysis) led to identifi-
cation of 35 high confidence protein kinase targets of
midostaurin in A427 cells. The majority of these kinases has

been validated as midostaurin targets in previous studies,
which employed in vitro binding assays or chemical proteom-
ics with different cell types (21, 39, 40), and our findings here
generally agree well with these reports. Mapping the identi-
fied kinase targets of midostaurin on the phylogenetic ki-
nome tree illustrated that midostaurin predominantly inter-
acted with serine/threonine kinases in these cells (Fig. 3E).
Importantly, whereas several well-known midostaurin targets
were either weakly (e.g. CAMK2B/D/G, GAK) or strongly (e.g.
PRKCD/G [PKC�/�], GSK3A/B) competed by sotrastaurin,

FIG. 2. Differential anticancer effects of PKC inhibitors in midostaurin-sensitive NSCLC cell lines. A, Dose-response curves for
inhibition of cell viability by midostaurin, sotrastaurin and ruboxistaurin of A427, A549, H2170, HCC4006 and PC9 cells upon 72 h of treatment
evaluated using CellTiterGlo. Data represents biological triplicates, each performed in technical triplicate. Concentrations and EC50 values are
given in �M. The gray bar indicates clinically observed midostaurin plasma concentration range. B, Western blotting of Caspase 3 and PARP1
cleavage upon 24 h of midostaurin, sotrastaurin or ruboxistaurin treatment in A427 cells. Staurosporine was used as a positive control. Image
is representative of three biological replicates. Concentrations are given in �M. C, Induction of apoptosis determined by Caspase 3/7 cleavage
in A427 cells upon 1 �M of midostaurin, sotrastaurin or ruboxistaurin treatment over a period of 72 h using IncuCyte live cell analysis. Data was
acquired every 3 h. Data points represent biological triplicates each performed in technical triplicate (mean). D, Colony formation assay of A427 cells
upon 9 days of midostaurin, sotrastaurin and ruboxistaurin treatment at indicated concentrations (�M). Image is representative of three biological
replicates. E, Cell cycle analysis of A427 cells after midostaurin treatment for 6 h at indicated concentrations (�M). Data represents three biological
replicates (mean � S.D.). Mido: midostaurin; sotra: sotrastaurin; ruboxi: ruboxistaurin; stauro: staurosporine; DMSO: vehicle control.
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this analysis also highlighted many midostaurin targets not
bound by sotrastaurin (e.g. TBK1, CAMKK2). In summary,
functional proteomics successfully identified multiple mido-
staurin kinase targets and midostaurin-modulated signals in
sensitive NSCLC cells.

Proteomics Data Integration—To identify the signaling
pathways that were most prominently affected by midostaurin
and their associated kinase targets, we next integrated the
chemical and phosphoproteomics data using a network-
based approach. Direct kinase targets identified in the chem-

FIG. 3. Layered functional proteomics strategy to elucidate midostaurin’s MoA in A427 NSCLC cells. A, Mass spectrometry-
enabled combination of direct target identification via affinity-based chemical proteomics (label-free) and midostaurin-induced signaling
changes via global (TMT 6-plex) and tyrosine (label-free) phosphoproteomics. B, Volcano plot of all identified phosphopeptides of the pY
dataset, displaying log2 fold change and p value. Peptides selected for network analysis are marked in blue. C, Volcano plot of all identified
phosphopeptides in the global phosphoproteomics dataset, displaying log2 fold change and p value. Peptides selected for network
analysis are marked in coral/red. D, Chemical structures of midostaurin and its immobilizable analogue i-midostaurin. E, Kinome tree of
midostaurin’s direct kinase targets. Color intensity indicates specific targets of midostaurin (dark blue) and targets shared between
midostaurin and sotrastaurin (partial overlap: light blue; strong overlap: white). Kinome phylogenetic tree adapted courtesy of Cell
Signaling Technology, Inc. (www.cellsignal.com).
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ical proteomics data set were connected with proteins of the
selected phosphopeptides using STRING-based network
analysis (confidence � 0.4), which queries both physical and
functional protein-protein interactions (detailed in Data Proc-
essing and Proteomics Analysis) (31). To further enhance con-
fidence and use of the network, textmining was disabled and
disconnected nodes were excluded from the analysis, which
resulted in a total of 151 nodes (proteins) and 399 edges

(interactions). This network was analyzed for sub-communi-
ties using agglomerative clustering-based community detec-
tion (modularity � 0.616) (34), generating ten distinct modules
(Fig. 4A). Based on the local hypothesis of biological net-
works, these topological modules correspond to particular
biological functions (functional modules) (41). To identify the
underlying biological processes, we performed a pathway
analysis for each distinct module using the Kyoto Encyclope-

FIG. 4. Network-based integration of chemical and phosphoproteomics datasets. A, STRING network of midostaurin’s kinase targets
and significantly modulated phosphosignals. Only kinases observed by chemical proteomics are labeled. Node size correlates with between-
ness centrality and sub-networks are colored according to communities determined via modularity. B, KEGG pathway analysis of STRING
sub-networks. Nodes are colored according to modules in A and labeled based on the pathway with the most significant p value. Node size
correlates with the number of proteins present in each module. C, Kinase target prioritization using the -log10 Ki derived from the chemical
proteomics dataset and log2 betweenness centrality values from the network. Node colors reflects binding selectivity for midostaurin over
sotrastaurin (see Fig. 3E). D, Phosphorylation changes and phosphosites of proteins directly connected to selected kinases in the network
displayed in A including both potential kinase substrates as well as functionally associated phosphoproteins. Node size correlates with log2

fold change and color indicates up (red)- or down-regulation (blue). All phosphosites shown were manually validated.
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dia of Genes and Genome (KEGG) database (Fig. 4B, supple-
mental Table S4). Modules 1, 2, and 6 were most strongly
associated with cancer-related pathways. Module 2, which
included the known midostaurin targets TBK1, AAK1, BMP2K,
FER, GSK3A/B, and IKBKE, is enriched for infection-associ-
ated pathways (Chemokine signaling) and cancer-related
pathways (Proteoglycans in cancer; Focal adhesion; Ras sig-
naling pathway). MAPK and mTOR signaling pathways are
highly enriched in module 6 comprising PDPK1, PKN1 and
RPS6KA6. Conversely, module 1 encompassing the known
midostaurin targets PRKAA1 (AMPK�1), CAMKK2, MAP3K11
and MARK2/3 is enriched for the tumor suppressive AMPK
signaling pathway. To prioritize the kinases within the network
that are most relevant for midostaurin’s activity, we next cal-
culated the betweenness centrality, which is based on the
shortest paths between nodes and thus is a metric for the
relative importance of a node within the network, for each
kinase (42). Because STRING incorporates both physical and
functional interactions, better characterized kinases are prone
to appear more important than others that have not been
studied extensively. In order to balance this bias, we per-
formed target prioritization considering also the apparent in-
teraction strength between midostaurin and its kinase targets
as represented by the Ki values derived from the chemical
proteomics data set (Fig. 4C). This analysis indicated that
TBK1 interacted most potently with midostaurin while display-
ing strong betweenness centrality. In contrast, within the
group of the most potent midostaurin-specific binders (i.e. not
competed by sotrastaurin) AURKA exhibited the strongest
betweenness centrality whereas PDPK1 ranked second in
both categories. Corroborating the relative contributions for
the midostaurin effector network, analysis of the immediate
neighboring nodes in the network, which include direct sub-
strates as well as functionally associated phosphoproteins
and kinases, furthermore revealed markedly more phospho-
sites associated with AURKA and PDPK1 than with TBK1 or
AMPK�1 (Fig. 4D). Taken together, integrated network-based
analysis of kinases and phosphorylation sites engaged by
midostaurin suggested TBK1, PDPK1 and AURKA as targets
with potential relevance for midostaurin’s MoA in NSCLC
cells.

Cellular Target Validation and Mechanism of Action—To
interrogate the functional relevance of TBK1, PDPK1, and
AURKA in NSCLC cells we used the chemical probes BX795
(TBK1 IC50 � 2.3 nM) (43), GSK2334470 (PDPK1 IC50 � 10 nM)
(44), and alisertib (AURKA IC50 � 1 nM) (45). As TBK1 and
particularly PDPK1 are important upstream signaling mole-
cules of AKT and mTOR and this pathway is furthermore
affected by the midostaurin targets CAMKK2 and AMPK�1,
we also interrogated these kinases using the dual inhibitor
STO-609 (CAMKK2 IC50 � 10 nM, AMPK IC50 � 160 nM) (43).
Unexpectedly, single pharmacological inhibition of TBK1,
PDPK1 or AURKA resulted only in a partial decrease of A427
and A549 cell viability whereas inhibition of CAMKK2 or

AMPK showed no effect even at relatively high STO-609
concentrations of 4 �M (Fig. 5A, 5B, supplemental Fig. S4A).
However, combined inhibition of TBK1, PDPK1 and AURKA
elicited potent antiproliferative effects (Fig. 5A, 5B). In con-
trast, probe combinations with STO-609 were essentially lim-
ited to the effects caused by the respective partner com-
pounds themselves (supplemental Fig. S4A). This suggested
that neither CAMKK2 nor AMPK�1 meaningfully contribute to
midostaurin’s MoA in these cells even though AMPK�1/�2
phosphorylation at T172/T183, known CAMKK2 target sites,
was inhibited by midostaurin (supplemental Fig. S4B). This
result was consistent with observations from parallel gene
silencing in combination with alisertib, where siRNA-mediated
knockdown of CAMKK2 only marginally enhanced the effects
from combined targeting of AURKA together with knockdown
of either TBK1 or PDPK1 (supplemental Fig. S4C). However,
triple targeting of AURKA, PDPK1, and TBK1 with siRNA and
probe compounds led to potent decreases in cell viability of
A427 and A549 cells (Fig. 5C, 5D). Finally, in vitro kinase
activity assays confirmed potent functional inhibition of
AURKA (IC50 � 4 nM), TBK1 (IC50 � 9 nM) and PDPK1 (IC50 �

72 nM) by midostaurin in addition to physical binding (supple-
mental Fig. S4D). In contrast and consistent with the chemical
proteomics data, sotrastaurin did not meaningfully inhibit
AURKA (IC50 � 10,000 nM), TBK1 (IC50 � 10,000 nM) or PDPK1
(IC50 � 9,530 nM). In summary, these results suggested a
complex polypharmacology mechanism of midostaurin in
NSCLC cells that involves concurrent targeting of AURKA,
TBK1, and PDPK1.

Synergistic Drug Combination—We aimed to identify po-
tential intervention points for designing more effective drug
combinations by investigating signaling events downstream
of the functionally validated midostaurin targets. Therefore,
we generated a condensed signaling network that included
relevant direct kinase targets of midostaurin and significantly
modulated phosphorylation sites identified by phosphopro-
teomics and Western blotting (Fig. 6A). Querying this mido-
staurin effector network, we found two signaling nodes, AKT
and PLK1, which seemed to be major points of convergence
for several modulated pathway arms. Immunoblot analysis
confirmed that midostaurin inhibits phosphorylation of PLK1
at T210 and AKT at T308, but not S473 (Fig. 6B), which was
consistent with our previous observations (supplemental Fig.
S4B). Notably, both GSK2334470 (PDPK1i) and to somewhat
lesser extent BX795 (TBK1i) reduced phosphorylation of both
AKT sites. Conversely, only BX795, but not GSK2334470,
slightly decreased PLK1 phosphorylation in these cells. Inhi-
bition of AURKA by alisertib decreased phosphorylation of
PLK1 at T210 more prominently and potently inhibited histone
H3 phosphorylation at S10, a canonical AURKA downstream
signal, as expected. Consistently, histone H3 S10 phosphor-
ylation was also strongly inhibited by midostaurin treatment.
We hypothesized that enhanced inhibition of PLK1 may in-
crease midostaurin-induced anticancer effects considering
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that midostaurin alone did not completely inhibit PLK1 T210
phosphorylation. PLK1 is an essential mitotic regulator as well
as a validated cancer target and phosphorylation on T210 is
associated with kinase activity. Indeed, combination of
midostaurin with the potent PLK1 inhibitor BI2536 (IC50 �

0.83 nM), which is a close analogue of the drug candidate
volasertib that has been under evaluation in several clinical
trials for various cancers itself (46, 47), showed strong synergy
with regard to inhibition of A427 and A549 cell viability as
determined by the established combination index (CI) model
(Fig. 6C, 6E). Importantly, this effect was apparent even at
midostaurin concentrations �10 times lower than reported
plasma levels. Likewise, using clinically relevant drug concen-
trations, we observed pronounced combination effects in
clonogenic assays with A427 and A549 cells (Fig. 6D, 6F).
Taken together, the observed alterations in the downstream

signaling pathways confirmed cellular inhibition of the
midostaurin targets AURKA, PDPK1, and TBK1 and sug-
gested complex functional interplay between these targets in
NSCLC cells. This result led to identification of the strongly
synergistic drug combination of midostaurin with the potent
PLK1 inhibitor BI2536.

DISCUSSION

Despite tremendous advances in genomics and the asso-
ciated success of precision medicine, the majority of cancers,
including many NSCLC tumors, currently does not display
actionable mutations thus illustrating the urgent need for new
anticancer targets (3). Guided by the unexplained cellular
activity of the FDA-approved multikinase inhibitor midostaurin
in NSCLC cells, we applied an integrated functional proteom-
ics approach, comprised of chemical proteomics as well as

FIG. 5. Cellular validation of midostaurin targets using RNAi and small molecule probes. A, Viability of A427 cells upon 72 h treatment
with increasing concentrations of GSK2334470 (PDPK1i), 0.5 �M BX795 (TBK1i) and/or 0.5 �M alisertib (AURKAi) determined by CellTiterGlo.
Data depicts three biological replicates each performed in technical triplicate (mean � S.D.). Colors represent specific drug combinations as
indicated. B, Viability of A549 cells upon 72 h treatment with increasing concentrations of GSK2334470 (PDPK1i), 0.75 �M BX795 (TBK1i)
and/or 0.5 �M alisertib (AURKAi) determined by CellTiterGlo. Data depicts three biological replicates each performed in technical triplicate
(mean � S.D.). Colors represent specific drug combinations as indicated. C, Relative A427 cell counts upon 96 h siRNA-mediated knockdown
of PDPK1 and/or AURKA and/or 72 h treatment with 250 nM BX795. Data depicts three biological replicates each performed in technical
triplicate (mean � S.D.). Knockdown efficiency was determined using immunoblotting. Color is according to target inhibition displayed in A and
B. D, Relative A549 cell counts upon 96 h siRNA-mediated knockdown of TBK1 and/or PDPK1 and/or 72 h treatment with 50 nM alisertib. Data
depicts three biological replicates each performed in technical triplicate (mean � S.D.). Knockdown efficiency was determined using
immunoblotting. Color is according to target inhibition displayed in A and B. NT, non-targeting siRNA; DMSO: vehicle control.
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global and tyrosine phosphoproteomics. This strategy led to
the identification of new actionable targets for lung cancer
through elucidation of midostaurin’s network-wide signaling
effects and complex MoA. Importantly, by comparison with

other potent and selective inhibitors, midostaurin’s activity in
these cells was independent of its canonical targets PKC and
FLT3. Moreover, we found that midostaurin’s MoA depends
on the concurrent inhibition of at least three different non-

FIG. 6. Rational design and validation of synergistic midostaurin drug combination. A, Condensed schematic of midostaurin’s effector
signaling network. Direct midostaurin targets are depicted in blue, MS-detected phosphosites in purple. Gray nodes complement the signaling
network and were not detected via MS, dark gray phosphosites were validated by immunoblotting. B, Western blot analysis of downstream
signaling nodes of critical midostaurin targets. A427 cells were treated for 3 h with 0.5 and 1 �M of alisertib (AURKAi), BX795 (TBK1i),
GSK2334470 (PDPK1i) or midostaurin. Representative images of three biological replicates are shown. C/E, Viability of A427 (C) and A549 (E)
cells upon midostaurin and the PLK1i BI2536 (C: 15 nM; E: 20 nM) treatment determined by CellTiterGlo. Data is representative of three
biological replicates (mean � S.D.). CI values were calculated using CompuSyn. D/F, Colony formation assay of A427 (D) and A549 (F) cells
after 9 days of treatment with midostaurin and BI2536 at indicated concentrations. Data is representative of three biological replicates. Mido,
midostaurin; BI, BI2536; DMSO: vehicle control.
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canonical targets. This observation not only constitutes a rare
and intriguing case of polypharmacology (9), but also power-
fully demonstrates the need for applying an unbiased, multi-
layered proteomics approach and network-based analysis
to capture the complexity of the underlying mechanisms.
This strategy was particularly important as the relevant
midostaurin targets in these cells were not mutated and
therefore “hidden” from most genomics approaches, and as
their contribution was rather based on their widespread
impact in the signaling network (4). Our findings furthermore
illustrate the power of combining these orthogonal proteom-
ics technologies as neither chemical proteomics nor phos-
phoproteomics analysis in isolation would have easily nom-
inated this broad spectrum of functionally relevant targets
and pathways.

Integrating the chemical and phosphoproteomics datasets,
in-depth mining of the resulting midostaurin effector network
and subsequent functional validation highlighted three ki-
nases as relevant midostaurin targets in these NSCLC cells,
namely AURKA, PDPK1, and TBK1. TBK1, a close homolog of
I	B kinase 
 (IKK
) that was originally identified to act in the
innate immune response (48), was of particular interest in this
context as it has recently been described to be synthetically
lethal with mutant KRAS in several NSCLC cell lines (49).
Notably, although this finding has been independently vali-
dated for several cell lines, later studies with broader NSCLC
cell line panels reported a spectrum of sensitivity of KRAS-
mutant NSCLC cell lines toward TBK1 silencing/inhibition
(50–52). This is consistent with our observations that TBK1
inhibition causes only partial reduction of viability in these
specific NSCLC cell lines. Midostaurin also showed activity in
several KRAS-wt cells and conversely did not affect many
other KRAS-mutant NSCLC cells, including some that are
sensitive to TBK1 loss, such as H23 cells (49, 51). This further
illustrates the importance of the multitargeted mechanism,
because midostaurin’s cellular activity in NSCLC cells was not
simply reducible to TBK1 inhibition alone in KRAS-mutant
cells. TBK1 has been shown to phosphorylate AKT at T308
and S473 (52), which is in agreement with our observations in
A427 cells although TBK1 inhibition by BX795 had less prom-
inent effects on T308. However, inhibition of PDPK1, another
important midostaurin target, markedly reduced AKT phos-
phorylation also at T308, and further downstream at S473, as
expected for this canonical activator of the PI3K-AKT signal-
ing cascade. Consistently, midostaurin treatment elicited sim-
ilar inhibition of T308 phosphorylation. However, midostaurin
did not reduce S473 phosphorylation indicating either mTOR
feedback signaling (53, 54) and/or inhibition of yet another
target that rescues the effects at this stage. Also, we observed
pronounced inhibition of CAMKK2-mediated phosphorylation
of AMPK, a known tumor suppressor and negative regulator
of mTOR signaling. Although AMPK regulates mTOR as
part of the mTOR complex 1 (mTORC1) and AKT S473 is an
mTORC2 target site, it has been recently shown that AMPK

activation can also reduce mTORC2 activity and AKT S473
phosphorylation in NSCLC cells (55). Interestingly, recent
studies found that inhibition of AURKA can overcome mTOR
inhibitor resistance in gastrointestinal cancer cells and that
AURKA can repress STK11(LKB1)/AMPK signaling in NSCLC
cells (56, 57). These data agree with our findings that AURKA
inhibition is a major component of midostaurin’s MoA, maybe
even more so in STK11-wild-type cells. In addition, we ob-
served pronounced effects on other important AURKA down-
stream signals, namely phosphorylation of histone H3 S10
and PLK1 T210. Consistent with previous reports on PLK1
(51), these signals were furthermore reduced by TBK1 inhibi-
tion, albeit less strongly. Although PLK1 T210 has also been
proposed to be a substrate of PDPK1 (58), we found no
evidence for this in A427 cells suggesting that PDPK1 inhibi-
tion by midostaurin likely contributes to the overall MoA in
these cells through other downstream targets. As reviewed in
detail elsewhere, PLK1 and AURKA are well established to
engage in multiple functional interactions during mitosis and cell
division (59, 60). Furthermore, they play critical roles in control-
ling the G2/M cell cycle checkpoint and mitotic entry (61), which
aligns well with the strong accumulation of cells in G2 upon
midostaurin treatment. Interestingly, it has been recently re-
ported that also TBK1 affects mitosis (62).

PLK1 as well as AURKA have been proposed as new mark-
ers for prognosis and cancer aggressiveness in addition to
being functional targets for therapeutic intervention in several
cancer types (59, 63). PLK1 is deregulated in many types of
cancer and has been associated with oncogenesis. NSCLC
patients with moderate PLK1 expression show 51.8% of
5-year survival rate in contrast to 24.2% for patients with
elevated levels of PLK1 expression (63). Based on the known
cancer relevance of PLK1 signaling and the only partial
inhibition of PLK1 T210 phosphorylation by midostaurin, we
evaluated the combination of midostaurin with the potent
PLK1 inhibitor BI2536 and observed strong in vitro synergy at
clinically relevant drug concentrations. Because midostaurin
was recently FDA approved for AML and BI2536 is currently in
phase I and II clinical trials, this combination might entail an
attractive drug repurposing opportunity for midostaurin.

In summary, by using a combination of unbiased, layered
functional proteomics and network-based data integration we
were able to elucidate the mechanism of action of the multi-
kinase inhibitor midostaurin in lung cancer cells, which was
independent of its cognate target, but rather involved several
noncanonical midostaurin targets. Analysis of the down-
stream signaling effects identified convergence on specific
oncogenic pathways, which led to the rational design of a
novel synergistic drug combination. The successful applica-
tion of this integrated proteomics approach illustrates its po-
tential to answer complex biological questions and reveal
novel actionable cancer vulnerabilities that may not be appar-
ent by genomics approaches.
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