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Abstract

The promiscuity of G-protein-coupled receptors (GPCRs) has broad implications in disease,

pharmacology and biosensing. Promiscuity is a particularly crucial consideration for protein

engineering, where the ability to modulate and model promiscuity is essential for developing

desirable proteins. Here, we present methodologies for (i) modifying GPCR promiscuity using

directed evolution and (ii) predicting receptor response and identifying important peptide features

using quantitative structure-activity relationship models and grouping-exhaustive feature selec-

tion. We apply these methodologies to the yeast pheromone receptor Ste2 and its native ligand

α-factor. Using directed evolution, we created Ste2 mutants with altered specificity toward a

library of α-factor variants. We then used the Vectors of Hydrophobic, Steric, and Electronic prop-

erties and partial least squares regression to characterize receptor-ligand interactions, identify

important ligand positions and properties, and predict receptor response to novel ligands.

Together, directed evolution and computational analysis enable the control and evaluation of

GPCR promiscuity. These approaches should be broadly useful for the study and engineering of

GPCRs and other protein-small molecule interactions.
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Introduction

G-protein-coupled receptors (GPCRs) are a ubiquitous class of
molecular sensors able to detect a broad range of ligands including
protons, small molecules, peptides, nucleotides, hormones and neu-
rotransmitters (Lagerström and Schiöth, 2008). In addition to the
diverse ligands detectable by the GPCR class, an individual GPCR
may also exhibit ligand promiscuity (Civelli, 2005; Li et al., 2012).
Specific residues in the GPCR alter ligand preference and modify
receptor promiscuity; for example, particular regions of transmem-
brane domains TM3, TM6 and TM7 have been identified to modu-
late specificity across the entire family of rhodopsin-like GPCRs
(Venkatakrishnan et al., 2013).

Mutations in GPCRs can have a wide spectrum of consequences.
On one hand, spurious mutations can result in altered receptor
properties that promote various cancers (Dorsam and Gutkind,
2007; O’Hayre et al., 2013) and autoimmune diseases (Schöneberg
et al., 2004; Vassart and Costagliola, 2011). Even ‘neutral’ muta-
tions can affect an individual’s tolerance for, or response to, certain
drugs (Zalewska et al., 2014). On the other hand, mutations altering
specificity are crucial for re-engineering receptors into biosensors to
recognize non-native ligands (Armbruster et al., 2007; Conklin
et al., 2008). The applications for such sensors range from diagnos-
tics to bioterrorism security to environmental monitoring (Adeniran
et al., 2015; Slomovic et al., 2015). The ability to predict and
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control the effects of mutations on specificity is therefore essential
for understanding disease, facilitating drug design and guiding bio-
sensor development.

Directed evolution is a powerful tool for introducing mutations
that alter protein function. The target protein sequence is subjected to
mutagenesis to produce a diverse library of variants. The library is
then screened for mutants that have acquired the desired trait and the
mutations can be subsequently identified by sequencing (Cobb et al.,
2013; Packer and Liu, 2015). In directed evolution, it has been
observed that promiscuity predisposes enzymes toward greater success
due to increased plasticity (Gould and Tawfik, 2005). In fact, a com-
mon approach for directed evolution is to improve upon the activity
of a promiscuous parent, rather than evolve for novel activity
(Aharoni et al., 2004; Khersonsky et al., 2006). Receptors successfully
evolved to respond to a target ligand are often too promiscuous for
applications such as biosensing and must be further evolved to
decrease promiscuity. Thus, specifically understanding the relationship
between receptor sequence and specificity would be broadly useful.

While directed evolution may alter receptor specificity, character-
izing the resulting mutant receptors for activity against every ligand
(e.g. peptide sequence) is infeasible. Computational tools, such as
quantitative structure-activity relationship (QSAR) modeling, can
identify physiochemical trends of ligands to reduce experimental
effort and offer insight into the system. QSAR aims to construct pre-
dictive models of activity as a function of structure and is tradition-
ally used for characterizing chemical compounds for drug discovery
(Winkler, 2002). More recently, QSAR has been applied to charac-
terize peptides (Cherkasov et al., 2014), such as dipeptide inhibitor
interactions with GPCRs (Mei et al., 2005) and nonamer peptide
binding to a Class I MHC (Pissurlenkar et al., 2007).

In this study, we demonstrate selection schemes using directed
evolution capable of producing receptors with higher or lower
promiscuity than the parent receptor. Using a QSAR-inspired
approach, we developed a computational pipeline to elucidate the
physiochemical properties and residue positions of a ligand most
predictive of response by the wild-type Ste2 and representative high-
and low-promiscuity receptors. We then utilized the top-performing
models to predict receptor response to novel peptides that vary from
the native ligand in both length and composition.

Materials and Methods

Yeast receptors and ligands

Yeast strains
Yeast strain MPY578t5 (Dong et al., 2010) was a gift from Brian
Roth. yJB013 [MATa, far1::LYS2 fus1::yeGFP sst2::PSST2-G418R
ste2::LEU2 fus2::PFUS2-CAN1 TRP1::mKate ura3 lys2 ade2 last
five amino acids of GPA1 (KIGII) replaced with the homologous
mammalian Gαi (DCGLF)] was created from MPY578t5 as previ-
ously described (manuscript in revision). In brief, fluorescent repor-
ters were integrated at the Trp1 locus (constitutive mKate) and the
Fus1 locus (yeGFP induced by the pheromone-sensitive Fus1 pro-
moter). Strain yBA006 was created from yJB013 by knocking out
the Bar1 protease with a HIS3 marker.

Receptors (DNA shuffling, epPCR)
To generate mutant receptors for directed evolution, diversity was
introduced into the sequence of STE2 through error-prone PCR
(epPCR) or DNA shuffling. For the low-promiscuity sort, Ste2 was
subjected to epPCR using the GeneMorphII random mutagenesis kit

(Agilent Technologies) according to the manufacturer’s instructions.
For the promiscuity sort, DNA shuffling was used to create all pos-
sible combinations of 10 mutations that we had previously discov-
ered as potentially influencing promiscuity: M54I, F55V, S145L,
S219P, A229V, L255S, S259T, S288P, K304X and A336V. Primers
containing these mutations were created and listed in Supplementary
data, Table S6. Wild-type Ste2 was digested as described (Stemmer,
1994) to produce ~50 bp fragments. Fragments were purified by
ethanol precipitation and mixed with 1 μM equimolar ratio of the
mutagenic primers in a PCR reaction with no external primers and
cycled under the following conditions: [95°C/3min, (95°C/30s,
53°C/30s, 72°C/90s) × 45, 72°C/10min, 12°C hold]. 1 μl of this
reaction was used as template using external primers to amplify
only full-length Ste2 variants. The Mut1 receptor was created using
megaprimer extension PCR with a primer containing the g126c
mutation (Tyagi et al., 2004).

Libraries and individual receptors were amplified with oligonu-
cleotides that provided 40 bp of homology on each side to the
single-copy centromeric plasmid p416 (Mumberg et al., 1995) and
transformed by electroporation (Benatuil et al., 2010) into yBA006
with linear p416, which was cut with XhoI and BamHI (New
England Biolabs). Ste2 assembled into the cut backbone such that
Ste2 was constitutively expressed from the GPD promoter. For
shuffled DNA, 10 colonies were sequenced and the distribution of
mutations confirms that the library is not statistically different from
a library containing all possible combinations of mutations (P =
0.999, Student’s t-test). For epPCR, 10 colonies were sequenced and
receptors were found to have an average of 6 mutations per recep-
tor, including silent mutations.

Ligand library
A custom peptide library of α-factor and 54 single residue variants
was designed to interrogate several physiochemical traits of each
amino acid by scanning the α-factor peptide with alanine (small and
hydrophobic), tyrosine (large, polar and aromatic), glutamate (large
and negatively charged), and lysine (large and positively charged).
For directed evolution experiments, we focused our efforts on resi-
dues 10–13 of the α-factor peptide, the domain responsible for bind-
ing to Ste2 (Abel et al., 1998). A complete list of all peptides and
sequences may be found in Supplementary data, Table S1. Peptides
43–88 and A–F were ordered from Abbiotec (San Diego, CA); pep-
tides 89–96 were ordered from GenScript (Piscataway, NJ). Peptides
were resuspended to 1mM in 50% V/V acetonitrile, as per the man-
ufacturer’s recommendation, sterile filtered, and stored at −20°C.
All subsequent dilutions of peptides were done in RNase-free water.

Directed evolution

Directed evolution selection schemes for modifying promiscuity
To generate a low-promiscuity receptor, the library was first selected
for receptors that responded at 200nM α-factor, near the wild-type
EC50 (Fig. 1A, Steps 2–3). Cells were then exposed to all peptide
variants that vary from α-factor in residues 10–13, each present at a
concentration that would produce a half-maximal response in the
Ste2 parent (EC50). Only receptors that did not respond to any pep-
tide were retained (Fig. 1A, Steps 4–5). Cells were next selected for a
response to 25 nM α-factor, followed by a countersort against the
EC80 of the C-terminal peptide variants (Fig. 1A, Step 6). A final
round of sorting was performed to retain only receptors responsive
to 10 nM α-factor to remove any constitutively inactive mutants
(Fig. 1A, Step 7).
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To generate a high promiscuity receptor, the library was exposed
to all peptide variants at position 13 at a concentration that pro-
duced a 10% maximal response (EC10) in the Ste2 parent (Fig. 1B,
Step 2). Only receptors that responded to at least one peptide were
retained by FACS (Fig. 1B, Step 3). Receptors were subsequently
subjected to sequential rounds of sorting with the EC10 concentra-
tion all variants at positions 12, 11 or 10 (Fig. 1B, Step 4). A final
round of sorting on unstimulated cells removed any constitutively
active receptors (Fig. 1B, Step 5).

For each round of cell sorting, cells were grown overnight in complete
synthetic medium lacking uracil (CSM-Ura) for plasmid maintenance and
then diluted to OD600 of 0.1 in CSM-Ura. The cells were stimulated as
described above. After a 2.5 h stimulation, cells were collected by centrifu-
gation at 3000 g for 3min and resuspended in sterile 1× PBS. Cells were
kept on ice until sorting. A total of 107 cells were sorted, with gates set
based on wild-type Ste2 stimulated with 1 μM α-factor (positive control)
or unstimulated (negative control). Cells were collected into SDCAA
medium (Chao et al., 2006) lacking uracil and grown for 48–72h. In
subsequent rounds of sorting, a number of cells equivalent to a 10× over-
sampling of the previously retained library size were sorted.

The final library from each sorting scheme was amplified by col-
ony PCR and retransformed into a fresh yBA006 strain with digested

p416 as described above to eliminate the effects of any background
mutations that may have accumulated in the genome or plasmid
backbone during extended passaging. After retransformation, recep-
tors HF10, from the low-promiscuity sort, and Prom3, Prom6 and
Prom7, from the high promiscuity sort, were chosen for further
characterization.

The receptors TBBI2, TBBI6 (identical to Prom6) and TBBI7
(identical to Prom3) were similarly isolated from the same shuffled
library through four rounds of FACS sorting with peptide B. Cells
were treated with 1 μM peptide for three rounds of sorting and with
500 nM peptide for the final round.

Dose response curves
Cells were grown and diluted as for cell sorting. 190 μl of cells were
added per well of a 96-well plate. 10 μl of peptide was then added
to each well to final concentrations of 50, 100, 500, 1, 5 and
10 μM. To the negative control wells, 10 μl of sterile water was
added. Plates were covered with SealMate breathable barrier and
incubated at 30°C with shaking for 2.5 h. Plates were spun for
5 min at 2000 g and 4°C. The culture medium was aspirated and
cells were resuspended in 100 μl of 1× PBS and maintained at 4°C

A

B

C

Fig. 1 Directed evolution schemes for modulating receptor promiscuity. (A) Process for evolving receptors with decreased promiscuity. (B) Process for evolving

receptors with increased promiscuity. (C) Heat maps demonstrating the decreased/increased promiscuity of HF10/PROM6, respectively, compared to the native

Ste2 receptor against a subset of the peptide library. Values given are the log fold change in EC50 for each receptor against a novel peptide (single residue chan-

ged from the wild-type to the scan residue at the given position) from the EC50 of the receptor against α-factor. Hatched square denote the variants resulting in

the wild-type α-factor sequence.
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until they were read using the high-throughput attachment of a BD
LSRII (BD Biosciences) analytic flow cytometer. mKate was excited
at 561 nm and read at 620 nm; yeGFP was excited at 488 nm and
read at 530 nm. For each sample, 10 000 events were collected.

The flow files (extension .fcs) were read using the
FlowCytometryTools Python package (available at doi: 10.5281/
zenodo.32991). For each sample, the normalized mean signal M
was calculated as:
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where N is the number of events where signals were not negative
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The curve_fit function from the Python package SciPy, which
uses non-linear least squares, was then used to fit the resulting aver-
age normalized mean signals to the dose response equation:
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where c is the EC50 and d is the hill coefficient.

Quantification of receptor promiscuity
The EC50 (concentration at which the half-maximal response is
achieved) was calculated for each receptor/peptide pair. The promis-
cuity of each receptor was calculated using an equation adapted
from (Nath and Atkins, 2008):
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where =ei 1/EC50 to the ith peptide in the test library. The Nath
and Atkins equation examines the catalytic efficiency of an enzyme
toward a library of substrates by comparing values of kcat and KM

between substrates. We replaced the e = kcat/KM term with e = 1/EC50,
a measurement more suited to characterizing receptor signaling. The
value calculated from this equation depends on the ligand library
against which the receptor is assayed; different libraries will produce
different values. Because all receptors were assayed against the same
peptide library, promiscuity values can be compared between recep-
tors. The value of P ranges from 0 for a perfectly faithful receptor
(does not respond to any non-native ligands) to 1 for a perfectly pro-
miscuous receptor (responding to all peptides in the library equally
well).

Grouping-exhaustive PLSR

Data pre-processing
For the response data, three values were extracted from the dose
response curves for each receptor/peptide combination: EC50, EC10

and response at 10 μΜ peptide concentration. For each of these
values, the natural logarithm and inverse were also calculated. For
the predictor data, the 13 amino acid sequence of each peptide was
converted to a 104-element vector using the eight-component VHSE

system (Mei et al., 2005) with each component normalized between
0 and 1.

Grouping schemes
Two grouping schemes were used to reduce the search space
required for an exhaustive search: By Position and By Property.
(Fig. 2B). For the By Position grouping scheme, the 104-element vec-
tor was broken down into 13 groups in which each group includes
the eight VHSE properties for that position. The exhaustive search
for By Residue contains − =2 1 819113 combinations where each
residue is or is not included and can be represented by a 13-element
binary vector. For example, the combination [1 1 0 0 0 0 0 0 0 0 0 0 1]
contains the eight VHSE properties for residues 1, 2 and 13 for a
total of 24 features. For simplicity, combinations are stored as the
corresponding decimal number; the previous example would be, for

A

B

Fig. 2 Computational pipeline for data collection and processing. (A) Seven

receptors (wild-type Ste2, lower promiscuity HF10, and higher promiscuity

Prom6, Prom7, Prom3, Mut1 and TBBI2) were selected. Each of the 55 pep-

tides was converted to vectors using the eight-property VHSE system for a

predictor (X) matrix of 104 features. Each receptor was characterized against

the peptide library to obtain a dose response curve. Three metrics (EC50,

EC10 and response at 10 μM peptide) were obtained from each curve, and fur-

ther expanded using inverse/logarithm manipulations to obtain the response

(Y) matrix. (B) Example grouping schemes for a representative system in

which peptides are four residues long and each peptide has three properties

(note that our system has 13-residue long peptides with eight properties).
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example, stored as 6145. Analogously, the By Property grouping
scheme, the 104-element vector was broken down into eight groups
in which each group includes the property value for all 13 positions.
The exhaustive search contains − =2 1 2558 combinations repre-
sented by an eight-element binary vector.

Partial least squares regression
For each receptor and each grouping of both grouping schemes,
PLSR was performed against each of the 9 response variables. Both
the Matlab plsregress function, which uses the SIMPLS algorithm to
perform the regression (de Jong, 1993) and an implementation of
the NIPALS algorithm (Wold et al., 2001) in Matlab plsnipals by
(Li et al., 2014) were used. The built-in plsregress was used to calcu-
late the regression coefficient and the mean-squared error MSE from
a leave-one-out cross-validation. The predictive squared correlation
coefficient Q2 (Consonni et al., 2010) can be calculated using:
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where n is the number of observations. The plsnipals script was
used to recover component weights in order to determine VIP score
(Wold, 1995). VIP scores for the i-th feature is calculated by:
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where n is the number of features, M is the number of components,
wim is the weight of the i-th feature in the m-th component andVm is
the percentage of variance in y explained by the m-th component.

Shuffled data analysis
The predictor data were randomly permuted column-wise to gener-
ate 50 different shuffled data sets. The grouping-exhaustive PLSR
described above was performed using each shuffled predictor data
against the EC50 response of Ste2. Resulting Q2 values for a given
grouping were averaged across the 50 different shuffled data sets.

Feature selection

The first step in selecting the top features was identifying which of
the response types (EC50, EC10, response at 10 μΜ, etc.) produced
the highest percentage of models with Q2 greater than 0.25 (see
Supplementary data, Fig. S5, Step 1). Using this top response type,
top-performing models were selected based on a Q Q/2

max
2 greater

than 0.75 where Qmax
2 is the highest Q2 obtained for that response

type (see Supplementary data, Fig. S5, Steps 2–3). For a receptor,
the weighted frequency f of the i-th residue or property was calcu-
lated using:
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where G is the grouping type (residue or property), NG is the num-
ber of top models for the grouping type (see Supplementary data,
Fig. S5, Step 4).

For a given receptor and grouping scheme, the weighted feature
frequencies for all 104 features were calculated. For each of the top
N models, the corresponding list of features was sorted according to
VIP score. The top features in this list were selected based on the
location of the elbow, determined objectively as the feature with the
first minimum distance d . For feature k in a list of n features sorted
by decreasing VIP:
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where VIP1 is the max VIP score, i.e. VIP score of the first element in
the list (see Supplementary data, Fig. S5, Steps 5–7). For a receptor,
the weighted feature frequency F for the i-th feature was calculated
using:
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where G is the grouping type (residue or property), NG is the num-
ber of top models for the grouping type (see Supplementary data,
Fig. S5, Step 8). Finally, features were selected based on average
weighted feature frequency (see Supplementary data, Fig. S5, Steps
9–11):
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Receptor response predictions

Dose response curves for peptides A–F against all seven receptors
were collected as described above. For each receptor, responses
(EC50, EC10 and response at 10 μM) were normalized against
response of the receptor to α-factor. For model predictions, the
amino acid sequences of peptides A–F were first vectorized as
described above. For peptides shorter than 13 residues, the
sequence was aligned at the C-terminal and the properties for the
missing N-terminal positions were all assigned zeros. For peptides
longer than 13 residues, the sequence was truncated at the N-
terminal to be 13 residues before vectorizing. Predictions were
obtained from models built using only the selected top features.
The top response type for each receptor was use: EC50 for Ste2,
response at 10 μM for HF10, EC10 for Prom6, EC50 for Prom7,
log(EC50) for Mut1, EC50 for Prom3 and log(EC50) for TBBI2. As
with the experimental data, predictions were then normalized to
the model prediction for α-factor. Both experimental and predicted
normalized responses were then binned into four groups: high sen-
sitivity (receptor is more sensitive to the peptide than to α-factor),
medium sensitivity (receptor is equally sensitive to the peptide as it
is to α-factor), low sensitivity (receptor is less sensitive to the pep-
tide than to α-factor) and no response (receptor does not respond
to the peptide). Supplementary data, Table S7 summarizes the bin-
ning thresholds.
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Results

Directed evolution modulates promiscuity of yeast

G-protein-coupled receptor Ste2

Our work focuses on using directed evolution to generate variants of
Ste2 responsive to peptide biomarkers for a variety of disease states.
Because α-factor, the native peptide ligand of Ste2, differed signifi-
cantly from these biomarkers, generating a responsive receptor vari-
ant from Ste2 in a single evolutionary step is infeasible. We therefore
use a stepwise approach in which we design a series of intermediate
‘chimera’ peptides with sequences progressively transitioning from
that of α-factor to that of the biomarker. Receptors evolved for each
of these peptides are treated as evolutionary intermediates and
undergo further rounds of directed evolution for the next peptide in
the series, until a final receptor is obtained. We found that the evolu-
tionary intermediate receptors that further evolved to successful recep-
tors tended to have increased promiscuity compared to that of the
wild-type parent, Ste2. To quantitatively compare ligand promiscuity,
we introduced a promiscuity index, P, by adapting an equation for
enzyme substrate promiscuity (Nath and Atkins, 2008),where P = 0
indicates no promiscuity (i.e. no response to non-native ligands) and
P = 1 indicates full promiscuity (i.e. equal response to all ligands in
the library). Using this metric, we quantified the response of evolu-
tionary intermediate receptors from our directed evolution pathway
against a library of peptides differing from the native α-factor ligand
at each single position. These intermediate receptors (TBBI2, TBBI6
and TBBI7) showed elevated promiscuity (P = 0.83 ± 0.06) com-
pared to that of wild-type Ste2 (P = 0.728). Based on this observa-
tion, we sought to determine whether promiscuity could be
controlled through selection.

To investigate if directed evolution could be used to produce
receptors of decreased promiscuity (higher fidelity), we employed
selection criteria to identify receptors that respond only to the target
ligand (α-factor) and not similar peptides. Mutant libraries of Ste2
were generated using error-prone PCR and subjected to sequential
rounds of fluorescence-activated cell sorting (FACS) in which recep-
tors that did not respond to single-amino-acid variants of α-factor
were retained (Fig. 1A). These selection conditions could allow the
retention of constitutively inactive mutants, so a final round of sort-
ing was used to ensure that retained receptors could be activated by
a moderate concentration of α-factor. An estimated three receptors
were retained from an initial library of 106 variants.

Similarly, we sought to determine if directed evolution could
produce receptors with increased promiscuity. Here, we employed
selection criteria to identify receptors that respond to many different
single-amino-acid variants of α-factor. Mutant libraries of Ste2 were
generated through DNA shuffling of selected mutations and iterative
rounds of FACS selection were used to isolate receptors that res-
ponded to stimulation by at least one of the four single-amino-acid
variants at each residue tested (Fig. 1B). The sorting conditions could
also allow for the retention of constitutively active mutants. Therefore,
a final round of sorting was used to discard receptors that were active
in the absence of any peptide. An estimated 55 receptors were retained
from an initial library of 106 variants. For more detailed information
on sorting conditions for both the decreased and increased promiscuity
cases, see Materials and Methods section.

After sorting, receptors from each experiment were isolated at
random for further study (HF10 from the low-promiscuity sort;
Prom3, Prom6 and Prom7 from the high promiscuity sort). High-
fidelity receptor HF10 was found to have a truncation at residue

310 (S310X) and promiscuous receptor Prom6 harbored mutations
M54I, S145L and a truncation at residue 304 (K304X), all of which
have been previously reported. Receptors Prom3 and Prom7 had
combinations of these mutations: M54I/K304X and M54I/S145L,
respectively. Truncations such as the S310X and K304X mutations
are known to increase sensitivity to α-factor (Reneke et al., 1988)
due to removal of regulatory domains required for pheromone
desensitization. We report here that the S310X mutation also
increases the discriminatory power of the receptor toward the first
four residues in α-factor. The M54I and S145L mutations found in
Prom6 have previously been reported to make the receptor sensitive
to the S. kluyveri α-factor (Marsh, 1992), so it is unsurprising that
we found that they increase promiscuity. M54 lies in a region of
TM1 previously known to directly interact with peptide residues
Q10–Y13 (Umanah et al., 2009; Mathew et al., 2011). The exact
mechanism by which S145L increases promiscuity remains unclear;
however, S145 is located near a region known to be involved in acti-
vating the conformational change of the receptor to bring it close to
residue Y266 (Sommers and Dumont, 1997). It is possible that the
S145L mutation predisposes the receptor toward activation even
when the peptide is not an exact match to α-factor.

Receptors Prom6 and Prom3 were identical to previously isolated
evolutionary intermediates TBBI6 and TBBI7, respectively, suggesting
that promiscuity is favored in evolutionary pathways even when not
under direct selective pressure. Because all of the characterized promis-
cuous receptors contained the M54I mutation, but the single mutant
had not been observed in our screen, we also created the M54I single
mutant receptor (Mut1) for further study. These promiscuous receptors
(Prom3, Prom6, Prom7, TBBI2 and Mut1) along with the high-fidelity
HF10 and wild-type Ste2 were characterized in technical triplicate
by a dose response curve assay against the entire single-amino-acid
variant peptide library (see Supplementary data, Figs. S1 and S2,
Supplementary data, Table S1) and the promiscuity index P was cal-
culated for each receptor (see Supplementary data, Table S2). The
values of P were as expected: the promiscuous receptors (P = 0.84 ±
0.05) higher than Ste2 (P = 0.728) and high-fidelity HF10 (P = 0.609)
lower than Ste2. HF10 shows increased EC50 (i.e. more difficult to
stimulate) in response to stimulation with peptide variants compared to
its response to α-factor, particularly in the first four residue positions
(Fig. 1C). Prom6, on the other hand, shows greatly reduced EC50 (i.e.
easier to stimulate) when stimulated with peptide variants compared to
its response to α-factor (Fig. 1C). Prom7, Prom3, Mut1 and TBBI2 all
show similarly reduced EC50 (see Supplementary data, Fig. S3).

PLSR identifies predictive groupings of residue

properties and positions

While a single value like P gives a sense of receptor promiscuity, it is
insufficient to predict a receptor’s response to a novel peptide. We
hypothesize that there exists (i) a quantitative relationship between
peptide structure (positions and physiochemical properties of the
residues) and activity (receptor response when stimulated by the
peptide) and (ii) a qualitative relationship between receptor promis-
cuity and predictive peptide features. We sought to capture the for-
mer using multi-dimensional QSAR models and the latter using a
novel feature selection approach.

Figure 2A briefly outlines the computational pipeline; Supplementary
data, Figs. S4 and S5 describe the pipeline in greater detail. The
13-residue long peptide ligands were quantified using the Vectors of
Hydrophobic, Steric, and Electronic properties (VHSE) system
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(Mei et al., 2005) in which each amino acid is assigned eight proper-
ties. These properties are orthogonal components derived by
Principal Component Analysis of 50 physiochemical properties.
VHSE components 1–2, 3–4 and 5–8 reflect hydrophobic, steric and
electronic characteristics of the each amino acid, respectively.
Representing each residue of our peptide using VHSE properties
forms a vector of (8 properties) (13 residues) = 104 features.
Because we did not know the nature of the relationship between
peptide sequence and receptor response, we considered nine possible
response variables: EC50 (concentration at 50% activation), EC10

(concentration at 10% activation), UM10 (fluorescence-average of
the population when exposed to 10 μM of a specific peptide), as well
as the natural logarithm and inverse values of each, in hopes of identi-
fying the most linear relationship. Together, this resulted in a pre-
dictor matrix (X) of 104 features for each of the 55 peptide variants
and a response matrix for each receptor (Yreceptor) of the nine response
variables for each of the 55 peptide variants.

We selected partial least squares regression (PLSR) to build pre-
dictive models for receptor response against a novel ligand and iden-
tify predictive features because it can account for noisy and
correlated data (Wold et al., 2001). The number of possible combi-
nations of features was large ( − )2 1104 so exhaustive feature selec-
tion was computationally infeasible. Instead, we used two
orthogonal grouping schemes (Fig. 2B): (i) By Position, where a
group consists of all of the VHSE properties corresponding to a
given position in the peptide, and (ii) By Property, where a group
consists of the values for a single VHSE property at every position.
This allowed us to perform a computationally tractable ‘grouping
exhaustive’ search in which each group of features is either fully
included or excluded from the predictor matrix.

The performance of the resulting models was quantified by the
predictive squared correlation coefficient Q2 (Consonni et al.,
2010). Q2 measures the predictive power of a model using leave-
one-out validation, in which the model attempts to predict the
response of a sample on which it was not trained. This is in contrast
to the coefficient of determination R2, which simply measures how
well the model fits the entire data set (i.e. no external validation). To
further validate our approach, we also considered 50 different

shuffled data sets of wild-type Ste2 with its EC50 response. The aver-
age Q2 for the shuffled data sets is narrowly distributed in the range of
[− − ]0.3, 0.5 while the distribution of Q2 for the true, unshuffled data
is broader and covers a range of [− ]0.3, 0.45 (see Supplementary data,
Fig. S6). Our vectorized peptides have significantly higher predictive
capability than a random data set of the same distribution.

Distributions of the resulting Q2 values for all possible groupings
( − =2 1 819113 using the By Position scheme, − =2 1 2558 using the
By Property scheme) against all nine response variables are given in
Supplementary data, Fig. S7. For a given receptor/grouping scheme
pair, the most predictive response type was selected based on the
fraction of models with a Q2 higher than 0.25. Each receptor was
best modeled by a different response type−EC50 for Ste2, EC10 for
Prom6, and response at 10 μM for HF10−and best response type
was consistent between schemes for a given receptor. Analysis of
additional promiscuous receptors Prom3, Prom7, Mut1 and TBBI2
show a preference for EC50-derived response types, with consistency
between schemes for all but TBBI2. We then analyzed each pair by
sorting the models for the best response type by Q2. From the sorted
models, the top performers were selected using a Q Q/2

max
2 threshold

of 0.75 (i.e. models with a Q2 no more than 25% lower than the best
Q2 for that pair). All but the two most promiscuous receptors (Prom3
and Prom7) showed similar trends (Fig. 3A, see Supplementary data,
Fig. S8A). For these receptors, we selected 2.7 ± 1.2% of 255 total
models using the By Property scheme and 4.3 ± 2.1% of 8191 total
models using the By Position scheme (see Supplementary data,
Table S3). In contrast, Prom3 and Prom7 showed a much steeper
drop in model performance. Using the same threshold for these two
receptors, we selected 23.2 ± 0.8% and 37.8 ± 17.2% of models
using the By Property and By Position schemes, respectively (see
Supplementary data, Table S3).

The feature groups (i.e. properties or positions) present in the
selected top-performing models demonstrate differences across the
seven receptors. The frequencies, weighted by Q Q/2

max
2 , of each

property in the By Property and for each position in the By Position
schemes in the top models are given in Fig. 3B and Supplementary
data, Fig. S8B. Properties 1 (related to hydrophobicity) and 6 (related
to electronic character) occur frequently in the top-performing

A B

Fig. 3 Characteristics of top-performing models. (A) Relative predictive power (sorted by Q2/Q2
max) for each receptor/scheme pair for the top-performing

response type. Dashed gray line indicates the selection threshold of Q2/Q2
max = 0.75. Plots in the bottom row expand the light gray area of the corresponding

top row, with dotted lines indicating the number of selected top models. (B) Weighted frequencies of each property (for the By Property grouping schemes) or

position (for the By Position grouping schemes) in the selected top models for each receptor.
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models for Ste2, HF10 and Prom6. Property 8 (electronic character)
is important for all receptors except Ste2, which suggests that recep-
tor sensitivity to some aspects of a peptide’s electronic character may
be affected by mutations from the wild-type. Property 7 (electronic
character) is important for Ste2, HF10 and TBBI2, but not Prom6,
Prom3, Prom7 or Mut1, suggesting that this aspect of a peptide’s
electronic character may be related to the absence of mutation M45I.
Properties 2, 3, 4 and 5 are consistently infrequent for all receptors and
are therefore weakly predictive of receptor response. Positions 1, 3 and
4 are important for Ste2 and HF10, while a dramatically different set
(2, 9, 11 and 13) is predictive for Prom6. The important positions for
receptors Mut1 (2, 4, 9, 11 and 13) and TBBI2 (1, 4, 9, 11 and 13) lie
between these two sets. Position 11 (electronic character) is highly
important for all of the higher promiscuity receptors (Prom6, Prom3,
Prom7, Mut1 and TBBI2).

Weighted VIP-based feature scores select top

predictive peptide features

Previously, we had only considered top groupings of physical prop-
erties (across the entire peptide) or a residue position (regardless of
physical property) for predicting peptide response (see Supplementary
data, Fig. S5, Steps 1–4). To identify the specific features (i.e. a particu-
lar physical property at a particular position) that are most predictive,
we employed the Variable Importance in Projection (VIP) score, which
quantifies the importance of a feature in terms of both weighting in the
regression and percentage of variance explained (Wold, 1995). For a

given top model, the VIP score was used to rank the importance of each
individual feature within the set of features for that model. From this
list, the top features were selected based on the ‘elbow’ of the ranking
versus VIP score curve, calculated as the feature with the first minimal
distance from the origin. This process was repeated for all the top mod-
els for each receptor/scheme pair and the frequency of each feature in
the resulting top feature lists was calculated (see Supplementary data,
Fig. S5). For a given receptor, features with an average frequency
between the By Property and By Position scheme greater than 0.5 were
selected (Fig. 4A, see Supplementary data, Fig. S9A). This threshold
captures the general trends of the feature characteristics and results in a
reasonable number of final features (see Supplementary data, Fig. S10).

Building a PLSR model using only these top features further
increased (Δ = ± =Q n0.08 0.02, 52 ) or only slightly decreased
(Δ = − ± =Q n0.04 0.03, 82 ) the Q2 from the highest Q2 obtained
using the By Position and By Property grouping schemes for the top
response type (see Supplementary data, Fig. S11) for all cases except
TBBI2 against the By Property scheme (Δ = −Q 0.362 ). This sug-
gests that the majority of the predictive power of the grouped mod-
els resulted from the inclusion of these top features. Given the
agreement on important features between the two grouping schemes
and the minimal impact on Q2 of the resulting models, we were con-
fident that our feature selection approach was able to identify a
highly predictive subset of residue properties and positions in a com-
putationally feasible manner (see Supplementary data, Table S4).

As expected based on our initial characterization (Fig. 1C, see
Supplementary data, Fig. S3), the distributions of the top features

A

B C

Fig. 4 Characteristics of top features selected using grouping schemes. (A) Scatter of weighted feature frequencies based on VIP score for the top-performing

models across both grouping schemes. Features (darker outline) with a weighted average frequency across both schemes greater than 0.5 (gray region) were

selected. (B) Frequency of properties or positions in the top features. (C) Grid of selected top features for each receptor. Diagonal grid cells indicate that the fea-

ture was present in the top feature list for multiple receptors.
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reflect some of the trends seen at the grouping level, such as the
importance of properties 6 and 8 (Fig. 4B, see Supplementary data,
Fig. S9B). All features for HF10 occur in the first four residues,
again emphasizing the importance of the N-terminus for determin-
ing specificity for that receptor (Fig. 4C). No predictive features
for any of the seven receptors occur in residues 6, 7 or 8 (see
Supplementary data, Fig. S12A), the ‘bend’ domain of the peptide
which is not thought to physically contact the receptor (Abel et al.,
1998). In addition, we anticipated that promiscuous receptors
would have fewer highly predictive features because of their reduced
ability to distinguish differences between α-factor and the variant
peptides. The promiscuous receptors indeed had only 4–7 predictive
features, compared to 14 and 12 for Ste2 and HF10, respectively
(Fig. 4A, see Supplementary data, Fig. S9A). Promiscuous receptors
also have few features in common with HF10 and Ste2, the two of
which have a majority of features in common with each other
(Fig. 4C, see Supplementary data, Fig. S9C). Interestingly, but
unsurprisingly, the M54I mutation was directly correlated with
identifying residue 11 as being highly predictive (see Supplementary
data, Fig. S12), since M54 is known to be positioned near peptide
residues Q10–Y13 (Umanah et al., 2009; Mathew et al., 2011). It
appears that much of the effect of the M54I mutation on promiscu-
ity is due to changing the specificity toward the binding domain of
the peptide. In contrast, there was no clear pattern of predictive fea-
tures correlated with the S145L and truncation mutations (see
Supplementary data, Fig. S12). These mutations are far from regions
of the receptor that contact the peptide and likely have more general
effects on receptor structure and energetics rather than direct effects
on any specific peptide residue.

PLSR model predicts qualitative behavior for peptide

ligands with multiple mutations and lengths

To explore the limits of our model’s predictive ability, we compared
the predicted and actual responses of each receptor to six novel

peptides containing more than one amino acid difference from α-factor
(Fig. 5). Peptides A–F vary in sequence from α-factor at 2–8 positions
(denoted Δ). Several of these peptides also differ in length from α-fac-
tor (denoted L). Peptides A–D and E–F are two series of evolutionary
intermediates that increasingly deviate in sequence from α-factor toward
two different peptide targets (see Supplementary data, Table S5). As our
model was trained using single-amino-acid variants of the same length,
interactions between residues in the peptide ligand would not necessarily
be captured. However, the models perform qualitatively well on novel
ligands with more than one change. Predictions and experimental data
were binned into four categories: high sensitivity, medium sensitivity,
low sensitivity and no response. Of 42 predictions on receptor response
to novel peptides, 15 predictions were exactly correct and only two
receptor/peptide pairs were predicted to have high sensitivity but
showed no response. Peptides C, D and F resulted in the highest number
of incorrect predictions. These peptides were also the most divergent in
sequence from alpha-factor, including several substitutions as well as
multiple additions or deletions. Because our model was not trained on a
data set that included insertions or deletions, it is not surprising that it
has relatively limited predictive power in these cases.

Peptide A is the most similar to α-factor, differing in only three
positions and matching in length. Surprisingly, our model predicted
that the wild-type receptor Ste2 would be more sensitive to Peptide
A than to α-factor, a prediction that we validated experimentally
(EC50 of 214 nM and 275 nM Peptide A and α-factor, respectively).
These results suggest that the Ste2/α-factor pair has not been fully
optimized by natural evolution for maximal sensitivity. Notably, we
find that receptors evolved for promiscuity using only our single-
amino-acid variant library (Prom3, Prom6 and Prom7) show a simi-
lar response profile to evolutionary intermediate peptides to those of
receptors evolved directly for response to those evolutionary inter-
mediates (TBBI2). This reinforces our previous observation that
promiscuity is favored in evolutionary pathways.

While predictions were not fully quantitative, the majority of
predictions produced actionable results. In our experience, peptides

Fig. 5 Predictions of receptor response to novel peptides. Diagram summarizing the qualitative predicted and experimental responses of all seven receptors

against six novel peptides. Variations in sequence and differences in length from α-factor are denoted Δ and L, respectively. Each circle indicates the experimen-

tal response (circle color) and the predicted response (circle border) binned into high sensitivity, medium sensitivity, low sensitivity and no response (n.r.). The

number of exact matches (E), almost matches (A) and mismatches (M) are given per receptor and per peptide. Almost matches are defined as ‘off by one’ bins,

i.e. high/medium, medium/low and low/n.r. combinations.
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for which receptors have low sensitivity function well as evolution-
ary intermediates. Our models can be used as a tool to design the
sequence of optimal evolutionary intermediate peptides. Given a
library of characterized receptors, the model may also assist in
selecting the best receptor to use as a starting point for directed evo-
lution. For example, based on the predictions, receptor Prom6
(which is predicted to respond to peptide E) would be a better start-
ing point for evolving for peptide F than Ste2 (which is not predicted
to respond to peptides E or F). Similarly, for receptor Prom6, pep-
tide C is a reasonable evolutionary step, while peptide D is unlikely
to succeed. This modeling approach allows for predictive design of
experiments that are more likely to succeed, shortening the design-
build-test cycle for receptor engineering.

Discussion

Receptor promiscuity is a critical consideration for disease treat-
ment, drug design and biosensor engineering. In context of directed
evolution, promiscuity is a hallmark of successful pathway inter-
mediates (Aharoni et al., 2004; Khersonsky et al., 2006). Our results
demonstrate that the promiscuity of a receptor can be directly modi-
fied under appropriate selective conditions and that there exist mul-
tiple genotypes capable of conferring increased promiscuity. A single
round of directed evolution comprising 1–3 non-synonymous muta-
tions in the receptor produced changes in receptor promiscuity of up
to 1.2 fold. We anticipate that additional rounds of mutagenesis or
more stringent selection criteria could produce more dramatic
changes. Our success in evolving both high- and low-promiscuity
variants of the wild-type Ste2 receptor suggests that this method
could be generally applicable for tuning the promiscuity of receptors
of many sequences and specificities.

Our intuition suggested that low-promiscuity receptors would
have more constraints on the physiochemical characteristics of the
C-terminal peptide residues, where the wild-type receptor has evolved
for high selectivity. We were surprised to find that the low-promiscuity
receptor HF10 had no highly predictive features in any of the four
C-terminal residues (R10–R13); instead, the primary determinant of
high-fidelity by HF10 seems to be in the four N-terminal residues
(R1–R4). This behavior is captured by single-amino-acid scans
along the length of the peptide, where HF10 displays clear selectiv-
ity in the first four residue positions (Fig. 1C).

After we demonstrated the ability to modulate promiscuity using
directed evolution, we sought to characterize the relationships
between (i) peptide structure and receptor response and (ii) import-
ant peptide features and receptor promiscuity. The former was
accomplished using a straightforward QSAR approach in which
peptides were quantified into feature vectors and regressed against
receptor response using PLSR. This approach, repeated for each
receptor, allowed us to examine the peptide versus receptor relation-
ship. The latter was accomplished using a unique grouping feature
selection approach. An exhaustive search of all features combina-
tions ( −2 1104 ) was computationally infeasible; therefore, we reduced
the search space by assigning features into two orthogonal grouping
schemes (By Position and By Property) from which top features
were selected based on importance in both schemes. Given our
unique data set, which quantifies the response of seven receptors dif-
fering in promiscuity against the same library of peptides, this
approach allowed us to examine receptor versus receptor relation-
ships. The final models were found to be generally predictive of
responses to the peptides assayed.

To further test our models, we compared the experimental and
predicted responses of receptors to peptides with multiple residue
changes and differing lengths. We were surprised to find that our
relatively simple model, trained on measurements from single-ami-
no-acid variants of the same length, retained qualitative predictive
power for ligands in which many physiochemical properties are var-
ied simultaneously. Although the sensitivity of the response pre-
dicted by our models sometimes differed from observed values, we
found only two cases in which a receptor was predicted to be highly
sensitive to a peptide that it experimentally did not respond to. The
analysis reveals that our model’s predictions are most reliable when
the peptide lacks C-terminal additions. This may indicate an import-
ant mechanistic change in the activity of peptides with additions to
the C-terminal-binding domain.

The models’ primary utility, therefore, lies in qualitative predic-
tions of response rather than exact magnitude. This approach could,
for example, be applied to (i) inform searches for native ligands to
orphan receptors, (ii) predict off-target drug interactions with
GPCRs and (iii) aid in receptor directed evolution. A peptide QSAR
model trained on orphan receptor response to a portfolio of com-
pounds can be used to scan all known biological compounds for
potential hits. The grouping-exhaustive feature selection approach
can identify important features to guide drug discovery. Finally, the
approach can streamline receptor directed evolution identifying triv-
ial and infeasible ligand steps to produce a more efficient directed
evolution pathway.

Conclusions

In summary, we report two advances that enable more sophisticated
understanding of peptide GPCR promiscuity. First, we demonstrate
a method for using selection criteria to increase or decrease the
promiscuity of a receptor. This advance allowed us to produce high-
er and lower promiscuity variants of Ste2. More promiscuous recep-
tors serve as better ‘parents’ for directed evolution, and, in the
context of biosensors, less promiscuous receptors improve the speci-
ficity of the sensor. Second, we establish a peptide QSAR model and
grouping-exhaustive feature selection pipeline to produce inform-
ative models of receptor response. This advance allowed us to quan-
tify the interactions between peptide features and receptor response
as well as qualitatively investigate the peptide features underlying
receptor promiscuity. The models have strong predictive power for
single residue variants of α-factor and provide informative predic-
tions for peptides that vary dramatically from α-factor in both
length and sequence. These advances enable refined control and
evaluation of receptor promiscuity.

Supplementary data

Supplementary data are available at Protein Engineering, Design and

Selection online.
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