Table 1. Comparison of RGBM and RGENIE with a other of inference methods on DREAM3 and DREAM4 networks of size 100.
Methods | Data used | DREAM3 experiments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Network 1 | Network 2 | Network 3 | Network 4 | Network 5 | |||||||
AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | ||
RGBM (LS-Boost) | KO,KD,WT | 0.699 | 0.903 | 0.888 | 0.965 | 0.597 | 0.900 | 0.571 | 0.861 | 0.460 | 0.787 |
RGBM (LAD-Boost) | KO,KD,WT | 0.683 | 0.903 | 0.870* | 0.963* | 0.562* | 0.900 | 0.535* | 0.853* | 0.400 | 0.770 |
ENNET | KO,KD,WT,MTS | 0.627 | 0.901 | 0.865+ | 0.963+ | 0.552+ | 0.892 | 0.522+ | 0.842 | 0.384 | 0.765 |
RGENIE | KO,KD,WT | 0.521 | 0.870 | 0.821− | 0.899 | 0.456 | 0.812 | 0.478− | 0.778 | 0.356 | 0.718 |
GENIE | KO,KD,WT | 0.430 | 0.850 | 0.782 | 0.883 | 0.372 | 0.729 | 0.423 | 0.724 | 0.314 | 0.656 |
iRafNet | KO,KD,WT | 0.528 | 0.878 | 0.812 | 0.901 | 0.484 | 0.864 | 0.482 | 0.772 | 0.364 | 0.736 |
ARACNE | KO,KD,WT | 0.348 | 0.781 | 0.656 | 0.813 | 0.285 | 0.669 | 0.396 | 0.662 | 0.274 | 0.583 |
Winner (72) | KO, WT | 0.694 | 0.948 | 0.806 | 0.960 | 0.493 | 0.915 | 0.469 | 0.853 | 0.433 | 0.783 |
Methods | Data Used | DREAM4 Experiments | |||||||||
Network 1 | Network 2 | Network 3 | Network 4 | Network 5 | |||||||
AUpr | AUroc | AUpr | AUroc | AUpr | AUroc | AUpr | AUroc | AUpr | AUroc | ||
RGBM (LS-Boost) | KO,KD,WT,MTS | 0.709 | 0.936 | 0.561 | 0.878* | 0.525 | 0.911 | 0.616 | 0.903 | 0.450 | 0.893 |
RGBM (LAD-Boost) | KO,KD,WT,MTS | 0.682* | 0.924* | 0.525* | 0.895 | 0.490* | 0.907* | 0.566* | 0.903 | 0.413* | 0.885* |
ENNET | KO,KD,WT | 0.604+ | 0.893 | 0.456+ | 0.856+ | 0.421+ | 0.865+ | 0.506+ | 0.878+ | 0.264+ | 0.828+ |
RGENIE | KO,WT | 0.448 | 0.902 | 0.330 | 0.792 | 0.374 | 0.834− | 0.362− | 0.840 | 0.218− | 0.773− |
GENIE | KO,WT | 0.338 | 0.864 | 0.309 | 0.748 | 0.277 | 0.782 | 0.267 | 0.808 | 0.114 | 0.720 |
iRafNet | KO,TS | 0.552 | 0.901 | 0.337 | 0.799 | 0.414 | 0.835 | 0.421 | 0.847 | 0.298 | 0.792 |
ARACNE | KO,KD,WT | 0.279 | 0.781 | 0.256 | 0.691 | 0.205 | 0.669 | 0.196 | 0.699 | 0.074 | 0.583 |
Winner (73) | KO | 0.536 | 0.914 | 0.377 | 0.801 | 0.390 | 0.833 | 0.349 | 0.842 | 0.213 | 0.759 |
Here, we provide the mean AUpr and AUroc values for 10 random runs of different inference methods. Here, KO, knockout; KD, knockdown; WT, wildtype; MTS, modified smoothed version of the time-series data. The best results are highlighted in bold. *, +, − represent the quality metric values where RGBM (LAD-Boost), ENNET and RGENIE techniques, respectively outperform the winner of DREAM3 and DREAM4 challenges.