Skip to main content
. 2018 Jan 19;46(7):e39. doi: 10.1093/nar/gky015

Table 1. Comparison of RGBM and RGENIE with a other of inference methods on DREAM3 and DREAM4 networks of size 100.

Methods Data used DREAM3 experiments
Network 1 Network 2 Network 3 Network 4 Network 5
AU pr AU roc AU pr AU roc AU pr AU roc AU pr AU roc AU pr AU roc
RGBM (LS-Boost) KO,KD,WT 0.699 0.903 0.888 0.965 0.597 0.900 0.571 0.861 0.460 0.787
RGBM (LAD-Boost) KO,KD,WT 0.683 0.903 0.870* 0.963* 0.562* 0.900 0.535* 0.853* 0.400 0.770
ENNET KO,KD,WT,MTS 0.627 0.901 0.865+ 0.963+ 0.552+ 0.892 0.522+ 0.842 0.384 0.765
RGENIE KO,KD,WT 0.521 0.870 0.821 0.899 0.456 0.812 0.478 0.778 0.356 0.718
GENIE KO,KD,WT 0.430 0.850 0.782 0.883 0.372 0.729 0.423 0.724 0.314 0.656
iRafNet KO,KD,WT 0.528 0.878 0.812 0.901 0.484 0.864 0.482 0.772 0.364 0.736
ARACNE KO,KD,WT 0.348 0.781 0.656 0.813 0.285 0.669 0.396 0.662 0.274 0.583
Winner (72) KO, WT 0.694 0.948 0.806 0.960 0.493 0.915 0.469 0.853 0.433 0.783
Methods Data Used DREAM4 Experiments
Network 1 Network 2 Network 3 Network 4 Network 5
AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc
RGBM (LS-Boost) KO,KD,WT,MTS 0.709 0.936 0.561 0.878* 0.525 0.911 0.616 0.903 0.450 0.893
RGBM (LAD-Boost) KO,KD,WT,MTS 0.682* 0.924* 0.525* 0.895 0.490* 0.907* 0.566* 0.903 0.413* 0.885*
ENNET KO,KD,WT 0.604+ 0.893 0.456+ 0.856+ 0.421+ 0.865+ 0.506+ 0.878+ 0.264+ 0.828+
RGENIE KO,WT 0.448 0.902 0.330 0.792 0.374 0.834 0.362 0.840 0.218 0.773
GENIE KO,WT 0.338 0.864 0.309 0.748 0.277 0.782 0.267 0.808 0.114 0.720
iRafNet KO,TS 0.552 0.901 0.337 0.799 0.414 0.835 0.421 0.847 0.298 0.792
ARACNE KO,KD,WT 0.279 0.781 0.256 0.691 0.205 0.669 0.196 0.699 0.074 0.583
Winner (73) KO 0.536 0.914 0.377 0.801 0.390 0.833 0.349 0.842 0.213 0.759

Here, we provide the mean AUpr and AUroc values for 10 random runs of different inference methods. Here, KO, knockout; KD, knockdown; WT, wildtype; MTS, modified smoothed version of the time-series data. The best results are highlighted in bold. *, +, − represent the quality metric values where RGBM (LAD-Boost), ENNET and RGENIE techniques, respectively outperform the winner of DREAM3 and DREAM4 challenges.