Skip to main content
. 2018 Jan 19;46(7):e39. doi: 10.1093/nar/gky015

Table 2. Comparison of RGBM and RGENIE with inference methods on DREAM5 networks of varying sizes.

Methods Data used DREAM5 experiments
Network 1 Network 3 Network 4
AU pr AU roc AU pr AU roc AU pr AU roc
RGBM (LS-Boost) KO,Exp 0.537 0.846* 0.086 0.633* 0.048 0.546
RGBM (LAD-Boost) KO,Exp 0.513* 0.842* 0.084 0.628* 0.047* 0.544*
ENNET KO,Exp 0.432+ 0.857 0.069 0.632+ 0.021 0.532+
iRafNet KO,MTS,Exp 0.364 0.813 0.112 0.641 0.021 0.523
RGENIE Exp 0.343 0.821 0.104 0.623 0.022 0.524
GENIE (Winner) Exp 0.291 0.814 0.094 0.619 0.021 0.517
TIGRESS (15) KO,Exp 0.301 0.782 0.069 0.595 0.020 0.517
CLR (18) Exp 0.217 0.666 0.050 0.538 0.018 0.505
ARACNE Exp 0.099 0.545 0.029 0.512 0.017 0.500

Here, we provide the mean AUpr and AUroc values for 10 random runs of different inference methods. Here, KO, knockout; KD, knockdown; WT, wildtype; MTS, modified smoothed version of the time-series data; Exp, steady-state gene expression. The best results are highlighted in bold. *, + and − represent the quality metric values where RGBM, ENNET and RGENIE techniques respectively defeat the winner of DREAM5 challenge, i.e. GENIE.