Skip to main content
. 2018 Jan 19;46(7):e39. doi: 10.1093/nar/gky015

Table 3. Comparison of proposed RGBM and RGENIE techniques with ENNET, GENIE and ARACNE GRN inference methods w.r.t. evaluation metrics AUroc and AUpr for reverse-engineering GRNs from RNA-Seq counts where the underlying ground-truth network follows a BA preferential attachment model with exponent α. Here no additional information (ABN or knockout or knockdown) is available.

Methods RNA-Seq experiments
Exponent α = 1.75 Exponent α = 2 Exponent α = 2.25 Exponent 2.5 Exponent 2.75
AU pr AU roc AU pr AU roc AU pr AU roc AU pr AU roc AU pr AU roc
RGBM 0.575 0.808 0.470 0.789 0.498 0.700 0.500 0.695 0.506 0.709
ENNET 0.566 0.802 0.454 0.780 0.495 0.685 0.494 0.684 0.494 0.684
RGENIE 0.605 0.846 0.528 0.785 0.270 0.652 0.272 0.626 0.274 0.641
GENIE 0.622 0.822 0.507 0.777 0.235 0.607 0.245 0.610 0.241 0.601
ARACNE 0.065 0.575 0.053 0.556 0.056 0.600 0.055 0.600 0.055 0.600