Table 3. Comparison of proposed RGBM and RGENIE techniques with ENNET, GENIE and ARACNE GRN inference methods w.r.t. evaluation metrics AUroc and AUpr for reverse-engineering GRNs from RNA-Seq counts where the underlying ground-truth network follows a BA preferential attachment model with exponent α. Here no additional information (ABN or knockout or knockdown) is available.
Methods | RNA-Seq experiments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exponent α = 1.75 | Exponent α = 2 | Exponent α = 2.25 | Exponent 2.5 | Exponent 2.75 | ||||||
AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | AU pr | AU roc | |
RGBM | 0.575 | 0.808 | 0.470 | 0.789 | 0.498 | 0.700 | 0.500 | 0.695 | 0.506 | 0.709 |
ENNET | 0.566 | 0.802 | 0.454 | 0.780 | 0.495 | 0.685 | 0.494 | 0.684 | 0.494 | 0.684 |
RGENIE | 0.605 | 0.846 | 0.528 | 0.785 | 0.270 | 0.652 | 0.272 | 0.626 | 0.274 | 0.641 |
GENIE | 0.622 | 0.822 | 0.507 | 0.777 | 0.235 | 0.607 | 0.245 | 0.610 | 0.241 | 0.601 |
ARACNE | 0.065 | 0.575 | 0.053 | 0.556 | 0.056 | 0.600 | 0.055 | 0.600 | 0.055 | 0.600 |