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Abstract

Essential metabolic reactions are shaping constituents of metabolic networks, enabling via-

ble and distinct phenotypes across diverse life forms. Here we analyse and compare model-

ling predictions of essential metabolic functions with experimental data and thereby identify

core metabolic pathways in prokaryotes. Simulations of 15 manually curated genome-scale

metabolic models were integrated with 36 large-scale gene essentiality datasets encom-

passing a wide variety of species of bacteria and archaea. Conservation of metabolic genes

was estimated by analysing 79 representative genomes from all the branches of the pro-

karyotic tree of life. We find that essentiality patterns reflect phylogenetic relations both for

modelling and experimental data, which correlate highly at the pathway level. Genes that

are essential for several species tend to be highly conserved as opposed to non-essential

genes which may be conserved or not. The tRNA-charging module is highlighted as ances-

tral and with high centrality in the networks, followed closely by cofactor metabolism, point-

ing to an early information processing system supplied by organic cofactors. The results,

which point to model improvements and also indicate faults in the experimental data, should

be relevant to the study of centrality in metabolic networks and ancient metabolism but also

to metabolic engineering with prokaryotes.

Author summary

If we tried to list every known chemical reaction within an organism–human, plant or

even bacteria–we would get quite a long and confusing read. But when this information is

represented in so-called genome-scale metabolic networks, we have the means to access

computationally each of those reactions and their interconnections. Some parts of the net-

work have alternatives, while others are unique and therefore can be essential for growth.

Here, we simulate growth and compare essential reactions and genes for the simplest type

of unicellular species–prokaryotes–to understand which parts of their metabolism are uni-

versally essential and potentially ancestral. We show that similar patterns of essential
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reactions echo phylogenetic relationships (this makes sense, as the genome provides the

building plan for the enzymes that perform those reactions). Our computational predic-

tions correlate strongly with experimental essentiality data. Finally, we show that a crucial

step of protein synthesis (tRNA charging) and the synthesis and transformation of small

molecules that enzymes require (cofactors) are the most essential and conserved parts of

metabolism in prokaryotes. Our results are a step further in understanding the biology

and evolution of prokaryotes but can also be relevant in applied studies including meta-

bolic engineering and antibiotic design.

Introduction

Prokaryotes are the simplest contemporary life forms known, and nevertheless are character-

ized by an immense complexity. The debate on the features of such complexity and its breadth

in the primordial life forms has been around for years [1–3], and was furthermore expanded

and detailed since the advent of systems biology [4–6]. The study of essential genes has been a

crucial contribution for detangling this complexity, relating some proteins with cell viability in

specific conditions [7] and others with cell viability in apparently all conditions [8,9].

Genome-wide essentiality studies based on collections of targeted mutants or generated by

random mutagenesis have been conducted for a number of species, aiming mainly at antibiotic

design or identifying industrially relevant targets [10–15]. These data have been made available

in databases such as the Online Gene Essentiality Database (OGEE) [16] and the database of

essential genes (DEG) [17] but their comparative and integrative analysis, although having

already provided relevant insights, is still emerging. Early work comparing genome-scale

essentiality data of Mycoplasma genitalium, Haemophilus influenza, Bacillus subtilis and

Escherichia coli found that it is essentiality, not expressiveness, that drives gene strand bias

[18]. Later, a critical review of genome-scale essentiality datasets conducted a preliminary anal-

ysis integrating six assays corresponding to four different species [19]. Functional differences

were highlighted, as the smaller number of essential genes in flavin synthesis in B. subtilis, a

species known to have an active riboflavin salvage capability. The authors of the DEG database

have also conducted a pair of integrative analyses on large-scale essentiality data. The first con-

cluded that there are less essential genes inside than outside genomic islands, and some of

those are related with virulence [20]. The second study [21] added to a previous finding based

only on E. coli essentiality data where it was proposed that essential genes are more evolution-

arily conserved than non-essential genes [22]. Luo and others used the same type of analysis,

based on synonymous and non-synonymous substitution rates for 23 bacterial species, to cor-

roborate this finding [21]. The study indicates that the most evolutionarily conserved COG

categories of essential genes are carbohydrate transport and metabolism; coenzyme transport

and metabolism; transcription; translation, ribosomal structure and biogenesis; lipid transport

and metabolism, and replication, recombination and repair.

Genome-scale metabolic models (GSMs) are large curated repositories of metabolic data

for individual species that expand possibilities of analysis of cellular physiology [23]. Apart

from improving or suggesting new functional annotations by reconstructing whole pathways

[24], GSMs can be used for calculating metabolic fluxes that permit the prediction of, among

others, lethal phenotypes [25]. Multi-species analysis of this type of phenotype predictions

with different manually curated models has been scarce [26], in part impaired by the poor

knowledge basis for other species than the usual model organisms, but also by the deficient use

of standards in building such models [27].
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Comparative genomics is commonly used to find core essential genes for several species,

and being based on the key evolutionary notion of orthology, to infer genes present in com-

mon ancestors [28]. Evolutionary parsimony indicates that genes present in a set of species

have been vertically inherited from a common ancestor. Horizontal Gene Transfer (HGT)

might have played a role even before the divergence of the three main domains [29], but when

a gene is present in all or most species of a phylogenetic branch, the most parsimonious sce-

nario is vertical inheritance.

In parallel with genetic comparisons, genome-scale metabolic models allow for functional

comparisons at the level of metabolic capacities (reactions). Building up on this methodological

advantage, in this study, 36 experimental genome-scale essentiality assays were integrated with

simulation results from 15 genome-scale metabolic models to reveal common patterns of essenti-

ality. To this analysis the screening of full genome sequences of 79 prokaryotic species was added

in order to find core conserved functions in prokaryotic biology. It is expected that this knowledge

on the minimal metabolic functions of prokaryotic cells can not only help untangling the funda-

mental complexity of cellular systems but also, by building up on the concept of orthogonalization

of metabolic modules [30], here analysed in the form of metabolic subsystems (pathways),

improve future engineering approaches that use this type of organisms.

Methods

Genome-scale metabolic models used in essentiality predictions

For all essentiality predictions performed in this study, 15 genome-scale metabolic models

were chosen based on curation, validation, and comparability of the nomenclature of metabo-

lites and reactions. These comprise 7 prokaryotic phyla, including one archaea. Ten of these

models include more than 20% of the total of ORFs of the corresponding species. Table 1 sum-

marizes the details on the models used, including species name, model ID, content and

references.

Environmental conditions for simulations

All GSMs were collected in SBML format and then parsed to model an environmental condi-

tion corresponding to rich media: all original exchange reactions in the model were set to a

maximum uptake limit of -20 mmol gDW-1 h-1 to allow for the import of all transported

metabolites (including oxygen, whenever possible).

In silico, single deletion of metabolic reactions

Flux Balance Analysis (FBA) [46,47] was used to predict the essentiality of each metabolic reac-

tion in all models. A threshold of 10% of the flux through the biomass reaction compared to

the wild type was set as the limit to define an essential metabolic reaction. All modelling proce-

dures were implemented in C++ and solved using IBM ILOG CPLEX solver. The Optflux plat-

form [48] was used occasionally to benchmark results.

Standardizing the nomenclature of essential metabolic reactions

For comparison of the essential reactions calculated for the 15 GSMs, some nomenclature

inconsistencies were resolved: standardization of suffixes used in reaction IDs, removal of

unnecessary or redundant indications of reversibility and species names allocated to reactions

and other redundant tags. Irrelevant and irregular characters such as dashes were filtered out

of the nomenclature (the final list of standardized reaction ids for reactions essential at least

once is provided in the S1 File).
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Experimental data and subsystem mapping

Large-scale experimental data on gene essentiality were collected from two databases, OGEE

[16] and DEG [17]. The content of the databases was compared and DEG was chosen for it

was considerably larger, including wider and clearer annotation metadata for 36 prokaryotic

datasets (Table 2). Genes were mapped to the subsystems present in the latest Escherichia coli
genome-scale metabolic model [49] using the DEG integrated nomenclature system of gene

identifiers. All essential reactions obtained after GSMs analysis were also mapped according to

this updated list of subsystems, using their standardized nomenclature (see above; S2 File).

Analysis of genetic conservation

To analyse the conservation and infer ancestry of all the genes annotated in metabolic subsystems

of GSMs, a local protein blast was performed against representative genomes of all the 35 prokary-

otic phyla with at least one fully sequenced quality genome in the NCBI genome database (version

June 2015). For this task, translated genomes were selected and downloaded for 53 unique species

of prokaryotes for which an available GSM could be found; to these, 26 representative genomes

for phyla not modelled with GSMs were added. This totalled in 79 translated genomes represent-

ing the 35 fully sequenced phyla in the current tree of life of prokaryotes (see S2 Fig, built with

iTOL v. 4.2.1 [78] which can be reproduced in iTOL with the corresponding NCBI taxonomy).

All of the protein-encoding genes of E. coli K12 (RefSeq genome NC_000913.3) were used as que-

ries and annotated to the subsystems of the latest E. coli model [49]. The threshold e-value consid-

ered was 1e-10. All the procedures were implemented using the Biopython package [79].

Numerical and statistical analysis of essentiality and conservation

For assessing the conservation of essential reactions and essential genes in each metabolic sub-

system, the weighted sum of essentiality (W) was calculated for each subsystem m, as:

Wm ¼
Pt

i¼1
ni � i ð1Þ

Table 1. Details on models and corresponding species used in in silico essentiality simulations.

Phylum Species Model ID #

Reactions

#

Metabolites

% ORFs Reference

Firmicutes Bacillus subtilis iYO844 1020 988 21% [31]

Clostridium beijerinckii NCIMB 8052 iCB925 938 881 18% [32]

Staphylococcus aureus N315 iSB619 641 571 24% [33]

Proteobacteria Escherichia coli K12 iAF1260 2077 1039 29% [34]

Escherichia coli W (ATCC9637) iCA1273 2477 1111 27% [35]

Helicobacter pylori 16695 iIT341 476 485 21% [36]

Klebsiella pneumoniae MGH 78578 iYL1228 1970 1658 24% [37]

Pseudomonas putida KT2440 iJN746 950 911 14% [38]

Salmonella typhimurium LT2 STM_v1.0 2201 1119 28% [39]

Shewanella oneidensis MR-1 iSO783 774 634 15% [40]

Actinobacteria Mycobacterium tuberculosis H37Rv iNJ661 939 828 15% [41]

Chloroflexi Dehalococcoides ethenogenes iAI549 518 549 27% [42]

Cyanobacteria Synechocystis sp. PCC6803 iJN678 863 795 21% [43]

Thermotogales Thermotoga maritima MSB8 (None) 562 503 25% [44]

Euryarchaeota Methanosarcina barkeri str. Fusaro iAF692 476 485 14% [45]

https://doi.org/10.1371/journal.pcbi.1006556.t001
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ni being the number of reactions or genes of that subsystem essential in i models or datasets,

where t is the total of models or datasets, 15 and 36 respectively.

The score sum of experimental essentiality for each individual gene Sg was calculated as the

number of times a gene was found essential (E) minus the number of times it was found not

essential (N) in all experimental assays datasets:

Sg ¼ E � N ð2Þ

Table 2. Large-scale essentiality assays used in this study, number of essential genes in each and respective origi-

nal reference of publication.

Species name Number of essential genes Reference a

Acinetobacter baylyi ADP1 499 [12]

Bacillus subtilis 168 271 [50]

Bacteroides fragilis 638R 547 [51]

Bacteroides thetaiotaomicron VPI-5482 325 [52]

Burkholderia pseudomallei K96243 505 [53]

Burkholderia thailandensis E264 406 [54]

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 228 [55]

Caulobacter crescentus 480 [56]

Escherichia coli MG1655 I 609 [10]

Escherichia coli MG1655 II 296 [57]

Francisella novicida U112 392 [11]

Haemophilus influenzae Rd KW20 642 [58]

Helicobacter pylori 26695 323 [59]

Methanococcus maripaludis S2 519 [60]

Mycobacterium tuberculosis H37Rv 614 [61]

Mycobacterium tuberculosis H37Rv II 771 [62]

Mycobacterium tuberculosis H37Rv III 687 [63]

Mycoplasma genitalium G37 381 [64]

Mycoplasma pulmonis UAB CTIP 310 [65]

Porphyromonas gingivalis ATCC 33277 463 [66]

Pseudomonas aeruginosa PAO1 117 [67]

Pseudomonas aeruginosa UCBPP-PA14 335 [68]

Salmonella enterica serovar Typhi 353 [14]

Salmonella enterica serovar Typhi Ty2 358 [69]

Salmonella enterica serovar Typhimurium SL1344 353 [69]

Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 105 [70]

Salmonella typhimurium LT2 230 [71]

Shewanella oneidensis MR-1 403 [72]

Sphingomonas wittichii RW1 535 [73]

Staphylococcus aureus N315 302 [74]

Staphylococcus aureus NCTC 8325 351 [15]

Streptococcus pneumoniae 244 [75]

Streptococcus pyogenes MGAS5448 227 [76]

Streptococcus pyogenes NZ131 241 [76]

Streptococcus sanguinis 218 [77]

Vibrio cholerae N16961 779 [13]

a The corresponding annotated data was obtained from the DEG database [17].

https://doi.org/10.1371/journal.pcbi.1006556.t002
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All statistical analyses were performed using R (statistical software, version 3.1). Hierarchi-

cal clustering was performed using the ‘pvclust’ R package [80] with binary distance as the dis-

similarity metric and Ward 1 method as the linkage criterion. Pvclust was also used for

assessing uncertainty by calculating approximately unbiased p-values via multiscale bootstrap

resampling. Both the Fisher and Kolmogorov Smirnov tests were performed in R as well with

the corresponding default parameters.

Results

Single-reaction and single-gene essentiality data reflect phylogenetic patterns

To analyse the validity of the essentiality results on a large scale, the different models were clus-

tered based on single-reaction essentiality predictions and the different datasets available on

DEG [17] were clustered based on the content of essential genes (Fig 1).

In the case of the simulated essentiality (Fig 1A), strongly supported clusters (more than 80%

of 1000 bootstrap replicas) are phylogenetically consistent at the level of the phylum–they cluster

in a statistically significant manner with at least one sister species–with the exception of the mod-

els of C. beijerinckii and P. putida. H. pylori and S. oneidensis show up in the same cluster, but not

together with the rest of the Proteobacteria, but the two high-level clusters (that exclude M. tuber-
culosis with a p-value of 98%) are not statistically supported (p-values of 58 and 62% for the left

and right cluster respectively). The lower number of available exchange reactions in the models of

H. pylori, S. oneidensis and P. putida (74, 95 and 89 respectively) compared with the models for

other Proteobacteria (K. pneumoniae, E. coli K12, S. typhimurium and E. coli W with 289, 299, 305

and 310 respectively) points to a justification for these results, as less exchanges cause more reac-

tions in the network to be essential. C. beijerinckii’s model is also very restricted with regards to

exchange reactions, with only 19 metabolic drains available.

Regarding the experimental data (Fig 1B), there is also a pattern of clustering taxonomically

related species. One well-supported phylogenetic cluster is that of several gamma and beta-

proteobacteria, including Acinetobacter baylyi, dataset II of E. coli K12, three Salmonellas, one

Shewanella and one Francisella. Others are the cluster of Bacteroidetes, the cluster with all

three datasets of M. tuberculosis and the cluster of the alpha-proteobacteria, Sphingomonas and

Caulobacter. The datasets of Pseudomonas aeruginosa PAO1 and Salmonella enterica subsp.

Enterica serovar Typhimurium str. 14028S cluster together likely due to not being saturated

genome-wide gene-essentiality screens (these datasets are considerably smaller, with 117 and

105 genes respectively–see Table 2 for context). Surprisingly, Firmicutes are spread all across

the tree. Also, both E. coli sets are very distant from each other. Although they were performed

under rich media conditions, one yielded 609 essential genes and the other only 296 (Table 2).

This difference is likely due to the use of different technologies to perform the large-scale

assays, the first being random mutagenesis and the screening of mixed populations, and the

second the screening of libraries of targeted mutants, as reviewed in [19].

Cofactor metabolism is the most essential subsystem both in simulated and

experimental data

Next, all the essential reactions calculated for the 15 GSMs were mapped to the corresponding

metabolic subsystem (see Methods; S1 and S2 Files). Different models show different propor-

tions of essential reactions for each subsystem (Fig 2).

For the majority of the models, the most essential subsystem is that of cofactor and pros-

thetic group biosynthesis. Nearly 48% of the essential reactions in the simulations with the

GSM of E. coli K12–54 reactions–were related with this subsystem (Fig 2). Several of the
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predicted essential reactions were confirmed to be essential steps in the biosynthesis of the

active forms of cofactors that cannot be directly uptaken, e.g. dihydrofolate synthase and dihy-

drofolate reductase for the biosynthesis of tetrahydrofolate and derivatives [81], NAD kinase

for obtaining NADP [82] and riboflavin synthase in some species [83]. For M. tuberculosis, D.

Fig 1. Clustering of (A) simulated and (B) experimental genome-scale essentialities of prokaryotes. Clusters show approximately unbiased p-values

greater than 80% calculated by multiscale bootstrap re-sampling with 1000 replicas (see Methods for details). Phyla are coloured according to the

taxonomical representation of the prokaryotic tree of life built with iTOL [78] (tree in S2 Fig).

https://doi.org/10.1371/journal.pcbi.1006556.g001
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ethenogenes, S. typhimurium and K. pneumoniae the most represented subsystems were glycer-

ophospholipid or membrane lipids metabolism (30.5, 25.1, 21.8 and 29.2% of all essential reac-

tions, respectively). Discrepancies regarding results for each individual model are not only

related with differences in the metabolic network but are also dependent on the formulations

of the biomass equation (e.g. the biomass equation in Klebsiella pneumoniae’s model lacks

cofactors) [84].

To validate the predictions of essentiality of metabolic subsystems obtained with GSMs,

each experimentally essential gene in DEG was annotated according to its function, using the

same system used in GSM’s. This system (see Methods) covered more annotations when com-

pared with COG annotations (1363 essential metabolic genes annotated in total, when com-

pared with a total of 906 unique metabolic COGs–S1 Fig). Moreover, this curated dataset

could be directly compared to the modelling results and included some genes annotated in the

“General function prediction only” COG category. After annotation, all unique essential genes

were identified and the same was done for essential reactions in the models. Both the total

number of unique essential reactions (modelling) or genes (experimental) varies significantly

between subsystems (Fig 3). The total of reactions and genes in each subsystem (for both

modelling and experimental data, respectively) also varies significantly. To test for indepen-

dence of the totals of essentials from the sizes of the subsystems, we performed a Fisher’s exact

test, and for the majority of subsystems the null hypothesis of dependence was rejected (p-

value less than 0.05).

In Fig 3 the subsystem of Cofactor and Prosthetic Groups biosynthesis appears isolated

with the maximum number of unique essential enzymes both in experimental and modelling

data. Three subsystems show a striking difference in the ranking between experimental and

modelling data, being more represented in the latter, all related with membrane and cell wall

metabolism. Several justifications can be raised for this difference. First and foremost, often in

those subsystems the number of different reactions that can be encoded by the same gene is

high [85], (thus there will be several essential reactions for each essential gene). For instance,

in the model of Synechocystis there are twelve essential reactions related with fatty acid biosyn-

thesis all encoded by the same gene, fabZ (sll1605 in the model), a gene that is essential in rich

medium experimentally, but in that case, counted only once. Similarly, all of the twenty essen-

tial fatty acid synthase reactions in the model of M. tuberculosis are encoded by only 3 different

genes: Rv1663 and Rv1662 or Rv2940c. There might also be some lack of integration in

nomenclature of the reactions in these subsystems in the different GSMs that should not con-

tribute significantly as all models follow the same nomenclature scheme, which was still manu-

ally curated for the essential reactions.

Conservation of essentiality validates predictions by GSMs with

experimental data and pinpoints specific model gaps

To further explore essentiality at the level of genes and reactions, the conservation of essential-

ity across models and experimental datasets was analysed for each reaction and gene in each

metabolic subsystem. Strikingly, no reaction was essential in all the models analysed. Three

reactions annotated within aromatic amino acids metabolism (shikimate kinase, 3-phos-

phoshikimate 1-carboxyvinyltransferase and chorismate synthase) were essential in all models

except for K. pneumoniae. Although there are differences in the models regarding the capacity

to uptake aromatic amino acids, this does not justify the observed differences in terms of

essentiality. The notable difference between the model of K. pneumoniae and the others is that

it lacks cofactors and prosthetic groups in its biomass equation. Those three reactions corre-

spond to the three last steps in the synthesis of chorismate, which is part of the shikimate
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pathway, which connects central metabolism with aromatic amino acids metabolism. How-

ever, this pathway is also the route taken to synthesize several other compounds in the cell,

including quinones and folates [86], which are not present in the biomass equation of Klebsi-
ella, which is likely the cause for the difference in the results as discussed in [84] and above.

Reactions essential in several models annotated within the cofactor and prosthetic group

biosynthesis subsystem are dihydrofolate synthase, essential in 13 out of the 15 models, and

Fig 2. Essentiality for biomass production of each metabolic subsystem in 15 genome-scale manually curated metabolic

models. The colour bar represents the ratio of essential reactions (in that subsystem) to the total of essential reactions in each

model (0%—blue; 5%—white; 50%—red). In parenthesis next to the subsystem name is the total of reactions in that subsystem

(for all models).

https://doi.org/10.1371/journal.pcbi.1006556.g002

Essential and Conserved Metabolism in Prokaryotes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006556 November 16, 2018 9 / 23

https://doi.org/10.1371/journal.pcbi.1006556.g002
https://doi.org/10.1371/journal.pcbi.1006556


Fig 3. Number of essential reactions predicted by genome-scale metabolic models and essential genes in genome-scale experimental assays for different metabolic

subsystems. Each reaction and gene were counted only once, even if present (or present and essential) in more than one model or experimental dataset. Single, double and

triple asterisks indicate p-values less than 0.05, 0.01 and 0.0001, respectively, after a Fisher’s exact test for count data testing independence of the number of essential vs the

number of non-essential mapped genes and reactions.

https://doi.org/10.1371/journal.pcbi.1006556.g003
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dihydrofolate reductase and NAD kinase, both essential in 12 models. These are related with

the biosynthesis of folates and the phosphorylation of NAD to produce NADP. Two reactions

involved in the salvage pathways of nucleotides–the biosynthesis of GDP and dTTP—were

also essential for 14 models. Three reactions related with the biosynthesis of cell wall compo-

nents are essential in all models except for B. subtilis and D. ethenogenes—glucosamine-

1-phosphate N-acetyltransferase, phosphoglucosamine mutase and UDP-N-acetylglucosamine

1-carboxyvinyltransferase. Acetyl-CoA carboxylase, related with membrane lipid metabolism,

is essential in 12 of the 15 models. One reaction not assigned to any subsystem, the HCO3
-

equilibration reaction, was essential in 11 of all 15 models.

To overview the relationship between modelling and experimental results, the conservation

of essentiality for each set of results was compared. The inset plot in Fig 4 shows the high cor-

relation obtained between the weighted essentiality for each subsystem between simulated and

experimental data. However, there are some differences to be noted. Firstly, regarding the

tRNA charging subsystem, it is modelled in only one GSM (S. oneidensis, Fig 2). This causes

this category to appear much more evidently as the second most conserved essential subsystem

in experimental data, in contrast with the low result in the simulations of GSMs. It is expected

that future GSMs will include this subsystem, but for the sake of comparison of these results, it

was excluded from the correlation.

Interestingly, regarding the three highly essential reactions in modelling results related with

chorismate biosynthesis, these were not found as significantly essential in experimental data. It

is known that in minimal media the knock-out of chorismate synthase (aroC) in E. coli impairs

growth [87]. The non-essentiality of this enzyme in the rich media analysed here indicates that

there must be a compound in the media compensating for its absence. It has been shown that,

when provided with p-aminobenzoic acid (PABA), para-hydroxybenzoic acid (PHBA) or a

combination of a precursor from PABA with a non-biological catalyst, the growth of E. coli
aroC mutant in M9 minimal medium can be rescued [88]. PABA and its derivatives cannot be

uptaken in the genome-scale model of Escherichia coli or any other of the working set. Trans-

porters for these compounds or others that might compensate in rich media for lethal pheno-

types in minimal media remain to be integrated in the genome-scale metabolic models and

further explored.

Again, the subsystem of cofactor and prosthetic groups metabolism has the highest num-

ber of reactions appearing as essential in more datasets in experimental data, in accordance

with modelling data. Dihydrofolate synthase and reductase (highest ranking in modelling)

are essential in 11 and 25 experimental datasets, respectively, indicating that either several

organisms can overcome the lack of both enzymes by intermediate pathways not yet mod-

elled, or that the experimental assays have produced false negatives (see the differences

between the sizes of the two experimental assays for E. coli in Table 2 discussed above; a spe-

cial case, dihydrofolate synthase, is further explored in the Discussion). NAD kinase appears

as highly essential, also in accordance with simulations, in 24 datasets. Several other genes

encoding for enzymes essential for the biosynthesis of cofactors are highly essential for cell

viability experimentally, even in rich media (eg. nadE for NAD; coaD and coaE for coen-

zyme A; hemC for tetrapyrroles; dxr for isoprenoids). Cell envelope biosynthesis genes fol-

low as the third most conserved essential functional module, in accordance with the

modelling results as well.

Core conserved metabolic subsystems

Based on the premises of evolutionary parsimony and orthology [28], we proceeded to the

analysis at a large scale of the conservation of metabolic genes in the prokaryotic tree of life to
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infer potential ancestral metabolic functions. Seventy-nine genomes were assayed, represent-

ing all the known prokaryotic phyla with a fully sequenced genome (see Methods for details).

A phylogenetic tree with these 79 species is available in S2 Fig. All annotated metabolic genes

of E. coli K12 were used as queries to search the set of genomes for conserved metabolic genes

and respective functions. The results on conservation of metabolic genes are summarized in

Fig 5.

The metabolic subsystem with more prevalent genes is Transport, followed by the tRNA

charging subsystem with 18 nearly universal aminoacyl-tRNA synthetases. It should be noted

though that nearly all of the 41 transport genes conserved in all 79 genomes correspond to

ABC transporters (S1 Table) with a ubiquitous ATP-binding domain. Two genes involved in

oxidative phosphorylation were also conserved in all genomes analysed: atpA and atpD (ATP

synthase subunits alpha and beta, respectively). In the subsystem of cofactors and prosthetic

group biosynthesis, glutX and sufC were also conserved in all genomes analysed. It should be

noted that glutX corresponds to a tRNA charging protein, a glutamyl-tRNA synthetase in-

volved in the biosynthesis of heme, that should have a double annotation; sufC is an atypical

cytoplasmic ABC/ATPase, required for the assembly of iron-sulphur clusters [89]. Although

the vast majority of genes found conserved in all the genomes analysed correspond to ABC

Fig 4. Conservation of essentiality of metabolic subsystems in 36 large-scale gene essentiality datasets and correlation with modelling predictions (inset). Red

indicates highest conservation (genes essential in more than 31 datasets) and grey the least (essential in less than 4 datasets); black bar: weighted sum of essential genes

given the number of datasets in which they are essential (see Methods). Inset plot: Correlation between modelling and experimental genome-scale essentiality data at

subsystem level (adjusted R2 of 0.821, Pearson correlation coefficient of 0.909 with p-value 9.65e-14); axes are represented in log scale for visualization purposes only.

https://doi.org/10.1371/journal.pcbi.1006556.g004
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ubiquitous domains, the high conservation (between 70 and 79 genomes) of 214 other genes is

still prominent. Twenty-eight of those are classified in the subsystem of cofactor and prosthetic

group biosynthesis genes (Fig 5, S2 Table).

Common essential genes are rarer and prone to be highly conserved,

contrarily to common non-essential genes

On a first look, there is no correlation between essentiality (Fig 4) and conservation (Fig

5) at the individual gene level. The same is even more evident in the case of the highly

conserved ABC domains in transporters (S1 Table), with the majority (20/33) not being

essential in any dataset in DEG. This substantiates the fact that highly conserved genes

are not necessarily highly essential, likely due to genetic redundancy (see Discussion).

The only subsystem for which the correlation is positive and significant (Pearson coeffi-

cient 0.95, p-value 1.07e-06) is Membrane Lipid Metabolism. To assess the unbiased rela-

tionship between essentiality and conservation at the individual gene level, we compared

data on conservation with the experimental data on essentiality. For this purpose, we cal-

culated a sum score for each gene’s experimental essentiality and compared it with its

Fig 5. Conservation of metabolic subsystems in genomes of all prokaryotic phyla with at least one fully sequenced genome. Dark red indicates the highest

conservation (genes that are present in all 79 genomes accessed) and dark blue the least (present in less than 10 genomes).

https://doi.org/10.1371/journal.pcbi.1006556.g005
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conservation (Methods, Fig 6). This allows for measuring the level of evidence of essenti-

ality for each gene individually with precision.

In the bottom panel of Fig 6, the vast majority of genes lie on the bottom area of the plot

(sum of essentiality below zero), meaning that they show up in more datasets as non-essential

than as essential. However, on the top side of the same plot, where the genes with a positive

sum of essentiality lie, the clear majority are shifted to the right–meaning that they are highly

conserved. There are some interesting outliers, such as glyS–glycine-tRNA ligase–highlighted

in Fig 6. This corresponds to one instance in which the monophyly rule is violated: E. coli’s
type is common for most bacteria, but another type is common to some other bacteria, archaea

and eukarya [90,91]. Another interesting case is holA, also highlighted, a DNA polymerase

delta subunit that is also divergent in its evolutionary history [50,92] but which has been

poorly studied. Upon splitting the genes into two sets–those with a positive sum of essentiality

and those with a null or negative sum, two very different distributions are obtained, shown in

the top panel of Fig 6. A Kolmogorov-Smirnov test states on the independence of both distri-

butions–essential genes are much more likely to be conserved, whereas non-essential genes

can or not be highly conserved. The full data on conservation and essentiality sums can be

found in S3 File.

Discussion

The integration done here was, to our knowledge, the first of the kind for a wide variety of

phyla of the bacteria and archaea domains, encompassing experimental phenotypic data,

results of large-scale computational simulations and sequence data. The experimental

genome-scale essentiality data reveal that approximately 25% of prokaryotic essential genes

encode for unknown or general functions (categories S and R in S1 Fig), which is a strong

warning on the need for experimental studies on the phenotype of these essential proteins for

prokaryotic physiology. Moreover, the organisms for which genome-wide essentiality data are

available are relatively scarce. While more experimental data are not available, computational

models can be valuable tools aiding in the task of decoding prokaryotic metabolism. It is well

known that GSMs are limited by the quality of the genome annotations, the formulation of the

biomass equation and the pre-defined environmental conditions and other modelling artefacts

[27,84], of which the impact in our results we expand below. Here we tried to reduce the

impact of these limitations by basing the choice of the models on a large survey of high-quality

manually curated models [84] from which 15 balanced, validated, comparable models were

chosen, that at the same time represented a wide phylogenetic diversity (Table 1). The analysis

of common patterns of essentiality filtered out the unique essential reactions that might repre-

sent specific errors related with individual models. In this manner, we can find core and com-

mon features in the overlap of all models. Using GSMs is particularly interesting in this sense,

as they allow us to step one level above that of genomes and all their redundancy in the form of

isozymes, duplications and confusing phylogenetic events as lateral gene transfers and gene

losses. Manually curated GSMs are not mere reflections of genomes–they include thorough

revisions of the network and addition of necessary reactions that are encoded by unknown

genes or spontaneous chemical transformations. These are also assigned subsystems and

counted in our results. Last, as recognized by other authors, the predictive power of compara-

tive analysis can be significantly enhanced by using it within the functional context of path-

ways and subsystems [19].

The GSMs prediction of which metabolic subsystem has more genes that are commonly

essential in multiple species–Cofactor and Prosthetic Group Biosynthesis–was accurate (Fig

4). The exception of the experimentally highly essential tRNA-charging functionality that was
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Fig 6. Conservation and essentiality of protein-encoding genes. Conservation is calculated as the number of genomes where a gene

is present and essentiality as the number of datasets where a gene is essential minus the datasets where it is non-essential. The full list

of genes is given in S3 File. In the bottom panel, all data is plotted, with conservation on the x axis and essentiality on the y axis. The

top panel depicts the density distribution of the conservation of genes (on the shared x axis) with a sum of essentiality larger than 0 –
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not reflected in the simulations is due to the hindrance of just one model including this subsys-

tem [40] but it should be fixed if all the models represent appropriately this subsystem in the

future. However, the analysis done here, by integrating experimental data with several different

models still allowed us to identify this subsystem as highly essential and conserved (Fig 4 and

Fig 5). The problem of the unstandardized biomass composition, evidenced by the GSM of K.

pneumoniae not predicting any essential reaction involved in cofactor and prosthetic group

biosynthesis due to the fact that none of those compounds is present in the biomass equation

(Fig 2) is relevant to the results, a subject that we have already addressed in a recent publication

[84]. Due to the incompleteness of the networks, it was not possible to complete the biomass

equations with the missing cofactors without an impractical manual editing and curation of

most models. However, considering the results obtained here, this incompleteness could read-

ily be identified (Fig 2) and did not impair the prediction of an overwhelming majority of

essential reactions related with the subsystem of cofactor and prosthetic group biosynthesis

(Fig 4)–the overlap of all other models and the experimental data reveals the conserved essenti-

ality of this subsystem.

The comparison of the modelling and experimental results can help raise specific hypothe-

ses and directions for more detailed investigation, as discussed above for the essentiality of

chorismate synthase in GSMs. In the analysed experimental datasets obtained in rich media,

chorismate synthase is not essential, but is has been shown that in minimal media in E. coli the

knock-out of its gene impairs growth [87] that can be restored with p-aminobenzoic acid

(PABA) or derivatives [88]. The transporters for these compounds should be added to the

models, and we expect that a curated analysis of experimental studies of auxotrophies in the lit-

erature can point several more additions to GSMs that will improve predictions at the gene-

level. Moreover, these results point also to the necessity of performing more often essentiality

experiments in defined media. On the other direction, genome-scale models can also indicate

improvements for experimental assays. At the moment of writing of this manuscript, a new

genome-wide screen for Bacillus subtilis was published [93], where folC (dihydrofolate

synthase) was found to be essential, confirming our modelling results and contradicting the

previous experimental results for B. subtilis that were used here [50].

The analysis of conservation of metabolic genes here was the first performed using a manu-

ally curated annotation system for metabolic pathways and subsystems, with the most com-

plete genome-scale metabolic model of a prokaryote to date [49]. Regarding inferences on

ancestry, there are some limitations to our approach. We chose to use a single e-value thresh-

old in a local BLAST–this might be a lax threshold, but at the same time it allows us to recover

potential very ancient homologs, tracing back all the way to the Last Universal Common

Ancestor (LUCA), and not to incur in debates about in and out-paralogs. Moreover, we used

only a sample of prokaryotic genomes– 79 –although we made sure to include representatives

of all sequenced phyla to date (S2 Fig), and we took a stringent threshold to indicate and not

affirm ancestry (at least 70 out of 79 genomes). Looking at the conservation of subsystems (Fig

5) also allows us to overcome the phylogenetic distribution bias. On another note, looking

only for universal genes as markers of ancestry can be a limited approach, due to the phenom-

ena of gene loss and lateral gene transfer–ideally, phylogenetic trees should be built for all

genes. A recent study used an innovative and large-scale approach to infer on the genome of

LUCA, building all trees for protein families based on 1981 prokaryotic genomes [94]. Inter-

estingly, although using a completely alternative approach, the study also concluded on tRNA

blue–and that of the genes with a sum of essentiality equal or smaller than 0 –orange. The results of a Kolmogorov–Smirnov test for

the independence of both distributions are shown, D for the value of the test statistic and the p-value of the test.

https://doi.org/10.1371/journal.pcbi.1006556.g006
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charging and cofactor metabolism as being ancient subsystems. These findings corroborate

that the genes identified here as present in all genomes of all representative phyla are most

likely genes present in the last common ancestor [28]. Overall, our results of high conservation

of the tRNA charging system, Transport and Oxidative Phosphorylation point to a last com-

mon ancestor metabolic network of prokaryotes where most of the nutrients were uptaked

with nonspecific transporters at the expense of ATP and in which tRNA charging was already

present. The results also suggest that the catalytic role of cofactors and prosthetic groups was a

coin highly sought for in early prebiotic systems still maintained today, as this is the most con-

served metabolic subsystem after transport and tRNA charging. It is highly likely that genes

encoding for enzymes aiding in cofactor biosynthesis were selected for early in primordial evo-

lution, as was suggested elsewhere for the origin of anabolic pathways in prebiotic systems

[95].

This work expanded considerably on previous related studies regarding the relationship

between gene conservation and essentiality in width and depth. The demonstration that essen-

tial genes are more evolutionary conserved that non-essential [22], corroborated later with

more datasets [21], used the ratio of non-synonymous substitutions to synonymous substitu-

tions in the genomes to estimate conservation (Ka/Ks). Here, 36 experimentally essential data-

sets were used, that included one Archaea (Table 2). The conservation was analysed by looking

at the presence of each gene in 79 genomes that were manually selected to represent all the

phyla with one fully-sequenced genome in the prokaryotic tree of life. Because each gene

might be essential in some datasets in DEG, non-essential in others and not assayed in yet oth-

ers, instead of analysing essential genes separately from non-essential as in the two aforemen-

tioned studies, we used a measure of essentiality for each gene (sum of essentiality) that takes

into account the datasets where it shows up as essential and those where it is non-essential (Fig

6). The results show that genes with a positive sum of essentiality (more datasets showing

essential than non-essential) are much scarcer than those with a negative sum; however, it is

much more likely that they are highly conserved. For genes with a negative sum of essentiality,

there is no tendency for high or low conservation, with a uniform distribution of these genes

for all the values of conservation (corroborating results by Fang et al. [92]). We also expanded

on previous studies [21,22] by integrating in silico simulations and functional assessment of

the data, with the conclusion that with the exception of the tRNA charging subsystem, the

majority of highly conserved genes related with transport and cofactor biosynthesis are not

highly essential (Fig 6, S1 and S2 Tables). These two subsystems show low single-gene essenti-

ality most likely due to metabolic redundancy caused by known alternative metabolic routes

(for which multiple knock-outs ought to be performed to test for subsystem-level essentiality)

complemented with enzymatic activities not yet known (supported by the percentage of genes

with general function prediction only S1 Fig) that might also include promiscuous enzymes

[96]. The remarkable redundancy of metabolic networks is reflected in the resilience and

robustness of prokaryotic life for the billions of years that it has inhabited Earth.

Supporting information

S1 Fig. COG functional categories for prokaryotic essential genes in DEG. COG metabolic

functional categories are less detailed than those used in the annotation of metabolic models:

both the “Energy production and Conversion” and “Amino acid transport and metabolism”

functional categories encompass several of those that are detailed within GSMs, except for the

“Transport” category lumped in GSMs, and distributed for each of the major biomolecules in

the COG system. Misleading COG annotations included thiO, an essential gene for the biosyn-

thesis of thiamine diphosphate annotated in category E (Amino acid transport and
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metabolism) and csd, a cysteine desulfurase, essential in 7 datasets and involved in the forma-

tion of Fe-S clusters, also annotated in category E.

(PDF)

S2 Fig. Phylogenetic reference tree for species used in the analysis of conservation of essen-

tial genes (based on NCBI taxonomy).

(PDF)

S1 Table. Ubiquitous transporter genes. The list includes genes conserved in all 79 prokary-

otic genomes analysed. Essentiality is given as the number of datasets in DEG (out of 36) in

which each gene is essential. The description is that of the corresponding annotated ORF in

the genome of E. coli K12.

(PDF)

S2 Table. Highly conserved cofactor biosynthesis genes in prokaryotic genomes. Essential-

ity is given as the number of datasets in DEG (out of 36) in which each gene is essential. Con-

servation is given as the percentage of the 79 genomes where a significant homolog for this

gene was found. The description is that of the corresponding annotated ORF in the genome of

E. coli K12. Biosynthesized cofactors were manually retrieved from the detailed information

available in the Metacyc database.

(PDF)

S1 File. Essential reactions in metabolic models. Presence-absence matrix of essential reac-

tions in the 15 GSMs used.

(XLSX)

S2 File. Translation of metabolic subsystems of GSMs to a standardized nomenclature.

Lists of original subsystem classifications and corresponding translation for all models and all

reactions.

(XLSX)

S3 File. Essentiality and conservation scores. List of genes with corresponding scores of

essentiality and conservation.

(XLSX)
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