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Abstract

Continuous manufacturing, a gaining interest paradigm in the pharmaceutical industry, requires in-

process monitoring of critical process parameters to ensure product consistency. This study 

demonstrated the application of Fourier transform near-infrared (FT-NIR) spectroscopy in 

conjunction with chemometrics modeling for in-line hot melt extrusion process monitoring. The 

obtained results suggested that inline FT-NIR analysis, along with a tailored NIR reflector, is a 

viable process analytical tool to monitor active pharmaceutical ingredient concentration as well as 

processing parameters.
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INTRODUCTION

Continuous manufacturing, such as hot melt extrusion (HME), is gaining increasing interest 

in the pharmaceutical industry due to its high manufacturing efficiency and economic 

benefits. Hot melt extrusion (HME) has been utilized to develop versatile dosage forms 

especially for poorly soluble active pharmaceutical ingredients (API) (1,2). HME process 

operation parameters including screw design and rotational speed, zone temperature, and 

residence time must be controlled precisely to ensure the consistency and the product 

quality. In the new era of pharmaceutical process development, quality by design (QbD), one 

of the key initiatives from the FDA (3,4), requires a thorough understanding of all critical 
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process parameters so that an effective process control strategy can be implemented for more 

uniform product quality and more efficient production operations.

As an invaluable in-process analytical tool, Fourier transform near-infrared (FT-NIR) 

spectroscopy in conjunction with multivariate analysis (MVA) techniques, most commonly 

principal component analysis (PCA) and partial least squares (PLS), has been used to 

provide near real-time chemical information. FT-NIR spectroscopy has been widely used as 

a process analytical technology (PAT) and QbD tool for process development and 

manufacturing in pharmaceutical industry to monitor and/or control such processes as 

drying, blending, and extrusion (5–7). It is a simple, fast, and nondestructive technique that 

provides multi-constituent analysis of virtually any matrix without the need for sample 

preparation and manipulation. More importantly, NIR provides molecular level chemical 

information through a direct measurement of the material being processed. It is sensitive to 

the API concentration in a blend, and the interactions between the API and its binding 

polymers.

In this technical note, we demonstrate the use of FT-NIR for in-line API concentration 

monitoring during an HME process. The considerations in deriving an appropriate PLS 

model are discussed. In addition, the feasibility of employing NIR spectral responses as an 

indicator for HME process stability is also explored.

MATERIALS AND METHODS

Materials

Ketoprofen was purchased from Sciencelab.com Inc. (Huston, Texas USA). Eudragit L100–

55 (Eud) was generously gifted from Evonik (Essen, Germany). Stearic acid (SA) analytical 

grade was bought from VWR (Radnor, Pennsylvania, USA).

Extrusion

In this study, ketoprofen, SA, and Eud were used as a model drug, processing aid and matrix 

forming polymer, respectively. The extrusion process was aimed to manufacture ketoprofen 

delayed release pellets. The formulation was optimized by series of preliminary study and 

design of experiment (DOE) to minimize drug release in the gastric environment and 

maximize dissolution in simulated intestinal medium that fulfill USP requirements for 

delayed release dosage forms (<711> DISSOLUTION, USP 40 NF 35). The drug load was 

varied from 40 to 60% while the SA content was kept constant at 6.0% throughout the 

experiments.

The physical mixtures were prepared using mortar and pestle. The extrusion was performed 

on a co-rotating twin-screw extruder (Process 11™, Thermo Fisher Scientific, Karlsruhe, 

Germany) equipped with a 1.5-mm circular die attachment. A ventilation port was 

assembled at zone 7 on the barrel. The feed rate, screw speed, and temperature were set at 

100 g/h, 100 rpm, and 120°C, respectively. The lowest allowable processing temperature of 

120°C according to the material processing guideline was chosen to minimize thermal 

degradation. The feed rate and screw speed were experimentally determined to ensure 
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adequate mixing between drug compounds and excipients while maintaining a steady-state 

extrusion.

NIR Spectra Collection

An Antaris II MDS FT-NIR spectrometer (Thermo Fisher Scientific, Wisconsin USA) 

equipped with a diffuse reflectance probe was used for spectral acquisition. The probe and a 

metal reflector were screwed opposite into sensor ports of the die with a gap of 2 mm. NIR 

spectra were collected in every 20 s with the spectral range of 4000–10,000 cm−1, 8 cm−1 

spectral resolution, and 16 scans co-added (8 s scan time). A background reference spectrum 

was acquired using the transmission sampling module at the beginning of each experiment 

set.

Building a PLS Model to Monitor API Concentration

To build a calibration model to predict the API concentration during HME, the pre-blend 

API/polymer ratio was varied from 40 to 60%, bracketing the target API concentration of 

50% (w/w). The normal process temperature was set at 120°C, but ± 10°C disturbances were 

introduced to simulate possible temperature variation in manufacturing process. The feed 

rate of 100 g/h remained constant throughout the experiment. After each API concentration 

change was introduced, adequate time was allowed to ensure a steady state was reached 

before spectral acquisition. The spectral data collected during steady states, including those 

at different temperatures, were used as calibration samples. The calibration sample set has a 

total of 85 spectra at seven concentration levels: 40, 45, 47.5, 50, 52.5, 55, and 60%. The 

spectra were divided into two groups: calibration (73 spectra) and validation (12 spectra). 

The Norris second derivative (8) was first applied to the raw spectra to remove the baseline 

drift, followed by a standard normal variant (SNV) to minimize the spectral path length 

variation. A PLS model (9) to estimate the ketoprofen concentration was then derived using 

the TQ Analyst™ software. All spectral data were mean-centered in the PLS regression, and 

the spectral range of 5500 to 6650 cm−1 was used for the correlation. PLS finds its 

significant model factors from the leave-one-out cross validation.

Building a PCA Model to Monitor Process Stability

To simulate potential process fluctuations during a manufacturing process, two process 

variables, feed rate and temperature, were introduced as process disturbances. The raw 

spectral data was processed with the second derivative and SNV to remove spectral baseline 

drift and variations in spectral path length, then analyzed using PCA (10). The spectral 

wavelength region used for the PCA calculation was from 9150 to 4710 cm−1.

RESULTS AND DISCUSSION

Building a PLS Model toMonitor API Concentration forHME

The overlaid NIR spectra of ketoprofen, Eud, and a 50% drug load extrudate were shown in 

the Fig. 1a. Both ketoprofen and Eud absorption spectra were measured at room temperature 

using an integration sphere module of the Antaris II spectrometer. The spectrum of the 

extrudate was acquired with an NIR probe during the extrusion process. All spectra had 

strong features in the first overtone C-H stretching region (~ 6000 cm−1). In addition, both 
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Eud and the extrudate had noticeable peak features in the first overtone O-H stretching 

region (~ 6900 cm−1) (11).

The overlaid NIR spectra of the calibration samples were presented in the Fig. 1b. There was 

a noticeable baseline up-drift in all spectra that might come from the scattering of the micro-

size air bubbles formed during the HME process and the variation in effective path length. In 

the developed PLS model, five PLS model factors were used. The number of significant PLS 

factors represents the number of independent variables that affect sample spectral responses, 

such as concentration, impurities, density, opaqueness, or sample color. For example, both 

sample color and density could affect penetration distance or path length in reflectance and 

transflectance measurements, resulting in baseline drift and peak height variation, 

respectively. The developed PLS model (Fig. 2) has a correlation coefficient of 0.998 and a 

root mean squared error of calibration (RMSEC) of 0.43%. The root mean squared error of 

prediction (RMSEP) from the validation sample group was 0.62%.

The calibration model was then applied to the spectra collected during the HME process and 

the results are shown in Fig. 3. As can be seen, the predicted API% tracks the preblend API 

profile. With a feed rate of 100 g/h, the process has a residence time of ~ 10 min, but it takes 

2–3 multiples of the residence time (approximately 20–30 min) to establish a new steady 

state after the pre-blend ratio is introduced.

Extracting the relevant portion of the multivariate NIR spectral data is critical for a 

successful chemometrics model. For example, process temperature has a profound impact on 

measured NIR spectra because temperature can affect samples both physically (e.g., sample 

density) and chemically (e.g., the degree of hydrogen bonding). Figure 4a shows the second 

derivative NIR spectra collected at three process temperatures. There were prominent 

spectral changes around 6900 cm−1, likely due to the increased H-O bonding at elevated 

temperatures. However, this spectral region was purposely excluded from the current PLS 

model to ensure it keenly reflects the API concentration change without the interference 

from temperature induced spectral variation. The spectral range of 5500 to 6650 cm−1 was 

used instead for the correlation. Figure 4b shows the temperature ramping from 110 to 

130°C, while maintaining a pre-blend API ratio of 50% (w/w) and feed rate of 100 g/h, 

simulating potential temperature variations in a real HME process. The predicted API% 

hovers around 49–51% throughout the experiment. The results suggest that the developed 

PLS model for API% prediction is robust with a ± 10°C temperature variation.

Process Stability Monitoring with PCA

Continuous manufacturing requires the production process to be controlled in its steady state 

to ensure smooth production and stable product quality. In an HME process, the controllable 

process variables include the speed of material flow, extrusion temperature distribution 

profile, and screw speed. Traditionally, an HME process is considered at its steady state 

when operational parameters such as torque, material temperature, and pressure reach their 

equilibria. NIR, on the other hand, not only provides chemical information of the samples, 

including blending ratio and interactions between the API and the binding material, but also 

is sensitive to many physical properties of the sample, such as color, temperature, and 

density.
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PCA defines its principal component (PC) domain space through an iteration of information 

extraction from a calibration sample set, and converts each sample spectrum consisting of 

thousands of data points into a reduced, e.g., two- to three-dimensional, data point in a PC 

domain. The number of dimensions of a PC domain represents the number of independent 

process variables that affected sample spectra, such as concentration, degree of cross-link, 

sample color, and density. Generally, the first several principal components cover the 

majority of the spectral information. Scores, or coefficients, of principal components are 

projections of a measured sample spectrum in a PC domain. By converting a sample 

spectrum into a PC point, sample spectral responses during an HME process can be visually 

displayed in a two- or three-dimensional trend plot. Because NIR spectra are a direct 

measurement of the extrudate product, the trajectory of their PC coordinates movement in a 

PC domain should be a better representation of a HME process state. The trajectory of the 

PC points from one cluster to another offers an insight into the process dynamics so that a 

more comprehensive control strategy can be developed to make the HME process more 

stable.

Figure 5a is a PC score plot of the temperature experiment. The feed rate was maintained at 

100 g/h. The process temperature started at 120°C. The sample spectra form a tight cluster 

of PC points (middle) in the PC domain. Once the process was stabilized, a 10°C 

temperature decrease was introduced in the temperature controller. The spectral response 

from the hot melts changed accordingly. As a result, the resulting PC data point moves away 

from the previous cluster. It took about six sampling times, or about 2 min, for the PC points 

to form a new cluster (right). The distance between the two clusters represents some 

property shift in the hot melt. Similar PC point movement was observed for the temperature 

change from 110 to 130°C (left cluster).

Figure 5b is a PC score plot of the feed rate response experiment. The temperature was 

maintained at 120°C. The process started with a 100 g/h material feed rate. Once it was 

stabilized, the feed rate was increased to 120 g/h. Similar to the temperature experiment, it 

takes about 2 min for the PC data points to shift to a new location in response to the feed rate 

change.

CONCLUSIONS

Continuous manufacturing requires in-process monitoring of critical process parameters to 

ensure product consistency. In this technical note, FT-NIR in conjunction with chemometrics 

modeling for in-line HME process monitoring is demonstrated. In the first case, a PLS 

model was successfully developed for API concentration prediction by carefully selecting 

the relevant NIR spectral region. The developed model is also proven robust with a ± 10°C 

temperature fluctuation. The second case is concerned with the use of a PCA based model to 

monitor the process state shift in response to disturbances such as temperature and material 

feed rate. Because the NIR spectrum is a direct measurement of the extrudate product, the 

trajectory of the PC movement offers better insight to the process dynamics. Moreover, since 

the PCA method relies solely on an accumulation ofmultiple batches of good process 

spectral data to define the steady state, it does not require a calibration model. It is 

independent of the product formulation and is easy to implement. Finally, because NIR is 
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nondestructive and fast, an NIR-based quality monitoring methodology can be easily 

transferred from process development to manufacturing.
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Fig. 1. 
a NIR spectra of ketoprofen, Eud, and 50% drug load extrudate. b NIR spectra acquired 

during the extrusion processes
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Fig. 2. 
Calibration result of drug load measurement
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Fig. 3. 
Overlay of the theoretical profile (red) and predicted drug load (blue) calculated from more 

than 1000 sample spectra using the PLS model
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Fig. 4. 
Process temperature robustness study. a Temperature impact on NIR spectra. b Predication 

of API% with a ± 10°C temperature variation
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Fig. 5. 
PC point plot of a temperature response and b feed rate response
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