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Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the 
lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported 
based on artificial intelligence for computer-aided diagnosis. Recently, deep learning–based approaches have been applied to many 
possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent 
deep learning–based approaches for clinical applications, we present the current status and future direction of artificial intelligence for 
capsule endoscopy. Clin Endosc  2018;51:547-551
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Introduction

Capsule endoscopy (CE) has been developed to obtain 
endoscopic imaging of the entire small bowel.1 Since its intro-
duction, clinical practice guidelines have been established for 
several conditions, including unexplained obscure gastrointes-
tinal (GI) bleeding, small bowel Crohn’s disease, small bowel 
tumors, and other miscellaneous abnormalities.2,3 Because en-
doscopy images are acquired by imaging sensors, most com-
puter vision technologies4 can be applied directly. Most of all, 
in the field of CE, various approaches based on artificial intel-
ligence for computer-aided diagnosis have been undertaken 

to reduce the long review time. Here, we summarize deep 
learning–based works for CE and present possible direction of 
artificial intelligence for CE.

Advent of deep learning–based 
computer aided diagnosis 

Since the early 2000s, the computer-aided decision support 
system (CADSS) has been researched extensively; as such, 
endoscopes can now take digital pictures.5 CADSS has been 
designed to improve diagnostic accuracy by classifying abnor-
malities. In addition, a supportive system instead of direct de-
cision-making support has emerged, including image quality 
enhancement, depth information extraction, and endoscopy 
localization. The ratio of the number of publications between 
conventional flexible endoscopy and CE regarding CADSS 
has been similar since 2007.5 

Based on artificial intelligence, specifically computer vision 
and machine learning methodologies, various computational 
methods including algorithms for detecting hemorrhage and 
lesions, reducing review time, localizing capsules or lesions, 
and enhancing video quality have been proposed to improve 
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efficiency and diagnostic accuracy.6 For detecting hemor-
rhages and lesions, color and texture information is usually 
used as a distinctive feature.7-10 Image features extracted from 
endoscopic images can be classified into target class using ma-
chine learning algorithms such as a support vector machine 
(SVM),7-9 neural network,10 or binary classifier.11 Although 
previous methods based on machine learning classifiers with 
invariant features showed concordant results for detecting 
various lesions, they have limitations related to insufficient 
training and testing databases and problems with specific fea-
ture design. 

In early computer vision, image features such as corner12 
and edge13 corresponding to scene structures were used to 
infer the class or 3D geometry of the target object. However, 
these primitive features are not invariant to various imaging 
condition changes (camera rotation and translation, illumi-
nation changes, occlusion, background clutter, and so on). To 
handle various changes, invariant features have been proposed 
that are robust to scale,14,15 affine,16 and local shape changes.17 
These handcrafted features have shown good performance for 
image-based recognition.18,19 However, their results for very 
large-scale datasets are insufficient for practical application.20 
Since deep learning–based methods have shown much im-
proved recognition performance,21-24 most computer vision 
and machine learning problems have been approached using 
deep learning.

Lesion detection and 
classification for CE

Deep learning–based lesion detection and classification 
methods for flexible endoscopy have recently been present-
ed.25 The ability of computer-assisted image analysis with a 
deep learning–based method, more specifically convolutional 
neural networks (CNN), has been tested to detect polyps, a 
surrogate for adenoma detection rate. With 8,641 labeling 
datasets from the colonoscopies of over 2,000 patients, the 
method showed an accuracy of 96.4%. For polyp detection, 
the binary classification task (whether an input image contains 
at least one polyp) has been performed using CNN architec-
tures such as VGG (Visual Geometry Group from Oxford)22 
and ResNet.24 For polyp localization, a task involving localiz-
ing the polyps in the image, a variation of Darknet has been 
used.26

Several methods based on deep learning have been pro-
posed for CE in Table 1.27-34 Zou et al. proposed a CNN-based 
method to solve the classification problem of digestive organs 
in CE.27 The problem has three possible classes: stomach, 
small intestine, and colon. Compared to conventional scale 
invariant feature transform (SIFT)–14 and SVM-based ap-
proaches (90.31%), the proposed method showed an accuracy 
of 95.52% for 15K images from 25 patients. Similarly, Seguí et 
al. proposed a classification method of motility events such as 
turbid, bubbles, clear blob, wrinkle, and wall.28 They obtained 
an accuracy of 96.01% for 100K and 20K training and testing 

Table 1. State-of-the-Art Deep Learning Based Methods for Capsule Endoscopy

Study Class No. of
training/testing images

No. of
patients or videos Features Accuracy Sensitivity/

Specificity

Zou et al. (2015)27 Localizationa) 60K/15K 25 patients Alexnet 95.5% No info.

Seguí et al. (2016)28 Scene classificationb) 100K/20K 50 videos CNN 96.0% No info.

Jia et al. (2016)29 Bleeding 8.2K/1.8K No info. Alexnet 99.9% 99.2%/No info.

Li et al. (2017)30 Haemorrhage 9,672/2,418 No info. LeNet
AlexNet

GoogLeNet
VGG-Net

100% 98.7%/No info.

Yuan et al. (2017)32 Polyp 4,000 (No info.) 35 patients SSAE 98.0% No info.

Iakovidis et al. (2018)34 Various lesionsc) 465/233 1,063 volunteers CNN 96.3% 90.7%/88.2%

852/344 No info. 77.5% 36.2%/91.3%

He et al. (2018)33 Hookworm 400K/40K 11 patients CNN 88.5% 84.6%/88.6%

Leenhardt et al. (2018)31 Angiectasia 600/600 200 videos CNN No info. 100%/96%

CNN, convolutional neural networks; SSAE, stacked sparse autoencoder.
a)Localization, Localization of stomach, small intestine, colon. 
b)Scene classification, Scene classification of Bubble, wrinkle, turbid, wall, clear. 
c)Various lesions, Gastritis, Cancer, bleeding, ulcer.
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dataset images, respectively. The previous approach of com-
bining handcraft features such as gist,35 SIFT,14 and color only 
achieved 82.8% accuracy. 

For detecting bleeding or hemorrhaging, deep learning–
based approaches have demonstrated 99.9% accuracy for 
2,850 positive images29 and 100% accuracy for 390 positive 
images.30 The sensitivity is over 99%. Because the color cue 
of hemorrhages is obvious, the accuracy and sensitivity are 
much higher than those for classifying problems of digestive 
organs27 or motility events.28 Among various deep learning 
networks, there is a non-negligible discrepancy between the 
highest performance network (GoogLeNet, 100%) and the 
lowest performance network (LeNet, 97.44%).30 To detect GI 
angiectasia, a CNN-based sematic segmentation algorithm 
was proposed.31 From 200 capsule endoscopies, 20,000 normal 
frames and 2,946 frames with vascular lesions were extracted. 
To avoid overfitting, they used 600 images for training and 
another 600 images for testing by excluding successive frames 
of the same lesions. This work obtained a sensitivity of 100% 
and a specificity of 96%. 

For detecting polyps, Yuan and Meng proposed a stacked 
sparse autoencoder–based approach.32 Compared to other 
machine learning–based previous works, they achieved an ac-
curacy of 98% for 4,000 images from 35 patients. Their meth-
od also classified normal images into turbid, bubble, and clear 
types. For detecting hookworms, He et al. proposed a novel 
edge extraction network to capture their characteristics.33 
From 440K images of 11 patients, the accuracy and sensitivity 
of the proposed network were 88.5% and 84.6%, respectively. 
When previous networks such as Alexnet21 and GoogLeNet23 
were applied, the accuracy was higher (96.0% and 93.7%, re-
spectively); however, the sensitivity was much lower (48.1% 
and 77.1%, respectively). Therefore, a novel network design 
for the specific problem is very important to obtain relevant 
results.

Iakovidis et al. presented a three-phase approach: a weakly 
supervised CNN for abnormality classification, deep saliency 
detection to detect salient points, and iterative cluster unifi-
cation to localize GI anomalies.34 They tested their proposed 
method for two datasets: a larger dataset (D1) with 10K imag-
es from more than 1,000 volunteers and a smaller dataset (D2) 
with 2,352 images. Similar to Leenhardt et al.,31 they used 465 
and 233 images for D1 training and testing, respectively, and 
852 and 344 images for D2 training and testing, respectively. 
Compared with other deep learning– and machine learning–
based previous works, their method showed improved results 
for D1 because they designed a complex multi-stage archi-
tecture for CE. However, their results for D2 were compara-
bly worse than other methods, especially the low sensitivity 
(36.2%). We believe that the D2 is too small for the proposed 

deep learning network to be learned effectively.
Although recent works based on deep learning have shown 

better performance than previous works based on handcrafted 
features,27,28,33,34 there are contrary cases in which the method 
on handcrafted features was better for other problems.36 For 
medical modality classification, Harris corner12 with SIFT14 
and local binary pattern37 descriptors showed better classifica-
tion results than the CNN-based method because the number 
of images in the dataset for various modalities is insufficient 
to train a deep architecture.36 The need for a sufficiently large 
database is one of the limitations of deep learning–based 
approaches. Overfitting is another crucial issue for deep 
learning–based approaches. This issue becomes more severe 
in cases of small databases. Although there are several ap-
proaches to mitigate overfitting in deep learning,38,39 it remains 
an important problem for practical use. Overfitting should 
be considered for medical applications, which can be reduced 
by cost function regularity, data augmentation, relevant data 
selection, and other factors. 

Conclusions

Here we reviewed recent deep learning–based approaches 
for CE that have been applied to various problems such as 
scene classification and the detection of bleeding/hemorrhage/
angiectasia, polyp/ulcer/cancer, and hookworms. Using large 
datasets from dozens of patients, they achieved much higher 
accuracy and sensitivity rates, sometimes close to 100%, com-
pared to precious machine learning–based methods. 

Because collecting databases for CE is difficult, more effec-
tive and generalized methods with the cooperation of many 
physicians and artificial intelligence engineers are required. 
Similar to other areas such as computer vision and robotics, 
the deep learning–based methodology will become more con-
vincing and widely used. For medical applications, however, 
there are other bottlenecks such as dataset gathering, determi-
nation in terms of clinical aspects, and practical usage of com-
puter-aided methods. Several research topics for CE remain, 
such as capsule localization, image enhancement, and reduc-
ing review time. One of the main drawbacks for CE is the 
lack of prospective trials to verify the accuracy of the comput-
er-aided diagnosis. Since retrospective studies have reported 
more meaningful outcomes such as real-time image-based 
analysis during colonoscopy,40,41 prospective research using CE 
is also very important for clinical applications.

Conflicts of Interest
The authors have no financial conflicts of interest.



550   

Acknowledgements
This work was supported by The Cross-Ministry Giga KOREA Project 

funded by the Korean government (no. GK18P0200: Development of 4D 
reconstruction and dynamic deformable action model–based hyper-realistic 
service technology).

References

  1.	 Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. 
Nature 2000;405:417.

  2.	 Fisher LR, Hasler WL. New vision in video capsule endoscopy: current 
status and future directions. Nat Rev Gastroenterol Hepatol 2012;9:392-
405.

  3.	 Kwack WG, Lim YJ. Current status and research into overcoming lim-
itations of capsule endoscopy. Clin Endosc 2016;49:8-15.

  4.	 Szeliski R. Computer vision: algorithms and applications. London: 
Springer-Verlag; 2011.

  5.	 Liedlgruber M, Uhl A. Computer-aided decision support systems for 
endoscopy in the gastrointestinal tract: a review. IEEE Rev Biomed Eng 
2011;4:73-88.

  6.	 Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule 
endoscopy: challenges for essential progress. Nat Rev Gastroenterol 
Hepatol 2015;12:172-186.

  7.	 Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule 
endoscopy based on color saliency: closer to an essential adjunct for 
reviewing software. Gastrointest Endosc 2014;80:877-883.

  8.	 Lv G, Yan G, Wang Z. Bleeding detection in wireless capsule endoscopy 
images based on color invariants and spatial pyramids using support 
vector machines. Conf Proc IEEE Eng Med Biol Soc 2011;2011:6643-
6646.

  9.	 Karargyris A, Bourbakis N. Detection of small bowel polyps and ul-
cers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng 
2011;58:2777-2786.

10.	 Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule en-
doscopy based on probabilistic neural network. J Med Syst 2011;35:1477-
1484.

11.	 Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YH. Automated 
polyp detection in colon capsule endoscopy. IEEE Trans Med Imaging 
2014;33:1488-1502.

12.	 Harris C, Stephens M. A combined corner and edge detector. In: Pro-
ceedings of the Alvey Vision Conference 1988; 1988 Aug 31-Sep 2; 
Romsey, UK. Romsey: Roke Manor Research; 1988. p. 147-151.

13.	 Canny J. A computational approach to edge detection. IEEE Trans Pat-
tern Anal Mach Intell 1986;8:679-698.

14.	 Lowe DG. Object recognition from local scale-invariant features. In: 
Proceedings of the Seventh IEEE International Conference on Comput-
er Vision; 1999 Sep 20-27; Kerkyra, Greece. Piscataway (NJ): IEEE; 1999. 
p. 1150-1157.

15.	 Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features 
(SURF). Comput Vis Image Underst 2008;110:346-359.

16.	 Mikolajczyk K, Schmid C. Scale & affine invariant interest point detec-
tors. Int J Comput Vis 2004;60:63-86.

17.	 Belongie S, Malik J, Puzicha J. Shape matching and object recognition 
using shape contexts. IEEE Trans Pattern Anal Mach Intell 2002;24:509-
522.

18.	 Dalal N, Triggs B. Histograms of oriented gradients for human detec-
tion. In: 2005 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition (CVPR’05); 2005 Jun 20-25; San Diego (CA), 
USA. Piscataway (NJ): IEEE; 2005. p. 886-893.

19.	 Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object de-
tection with discriminatively trained part-based models. IEEE Trans 
Pattern Anal Mach Intell 2010;32:1627-1645.

20.	 Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recogni-
tion challenge. Int J Comput Vis 2015;115:211-252.

21.	 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with 
deep convolutional neural networks. In: NIPS’12 Proceedings of the 
25th International Conference on Neural Information Processing Sys-
tems; 2012 Dec 3-6; Lake Tahoe (NV), USA. Red Hook (NY): Curran 
Associates, Inc.; 2012. p. 1097-1105.

22.	 Simonyan K, Zisserman A. Very deep convolutional networks for large-
scale image recognition. ArXiv e-prints 2014. https://ui.adsabs.harvard.
edu/#abs/2014arXiv1409.1556S.

23.	 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: 2015 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 
2015 Jun 7-12; Boston (MA), USA. Piscataway (NJ): IEEE; 2015. p. 1-9.

24.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recogni-
tion. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NJ): 
IEEE; 2016. p. 770-778.

25.	 Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and iden-
tifies polyps in real time with 96% accuracy in screening colonoscopy. 
Gastroenterology 2018;155:1069-1078.e8.

26.	 Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: uni-
fied, real-time object detection. In: 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas 
(NV), USA. Piscataway (NJ): IEEE; 2016. p. 779-788. 

27.	 Zou Y, Li L, Wang Y, Yu J, Li Y, Deng WL. Classifying digestive organs 
in wireless capsule endoscopy images based on deep convolutional neu-
ral network. In: 2015 IEEE International Conference on Digital Signal 
Processing (DSP); 2015 Jul 21-24; Singapore. Piscataway (NJ): IEEE; 
2015. p. 1274-1278.

28.	 Seguí S, Drozdzal M, Pascual G, et al. Generic feature learning for wire-
less capsule endoscopy analysis. Comput Biol Med 2016;79:163-172.

29.	 Jia X, Meng MQH. A deep convolutional neural network for bleeding 
detection in wireless capsule endoscopy images. In: 2016 38th Annual 
International Conference of the IEEE Engineering in Medicine and Bi-
ology Society (EMBC); 2016 Aug 16-20; Orlando (FL), USA. Piscataway 
(NJ): IEEE; 2016. p. 639-642.

30.	 Li P, Li Z, Gao F, Wan L, Yu J. Convolutional neural networks for intes-
tinal hemorrhage detection in wireless capsule endoscopy images. In: 
2017 IEEE International Conference on Multimedia and Expo (ICME); 
2017 Jul 10-14; Hong Kong, China. Piscataway (NJ): IEEE; 2017. p. 1518-
1523.

31.	 Leenhardt R, Vasseur P, Li C, et al. A neural network algorithm for de-
tection of GI angiectasia during small-bowel capsule endoscopy. Gastro-
intest Endosc 2018 Jul 11 [Epub]. https://doi.org/10.1016/j.gie.2018.06.036.

32.	 Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless cap-
sule endoscopy images. Med Phys 2017;44:1379-1389.

33.	 He JY, Wu X, Jiang YG, Peng Q, Jain R. Hookworm detection in wireless 
capsule endoscopy images with deep learning. IEEE Trans Image Pro-
cess 2018;27:2379-2392.

34.	 Iakovidis DK, Georgakopoulos SV, Vasilakakis M, Koulaouzidis A, 
Plagianakos VP. Detecting and locating gastrointestinal anomalies using 
deep learning and iterative cluster unification. IEEE Trans Med Imaging 
2018;37:2196-2210.

35.	 Oliva A, Torralba A. Modeling the shape of the scene: a holistic repre-
sentation of the spatial envelope. Int J Comput Vis 2001;42:145-175.

36.	 Khan S, Yong SP. A comparison of deep learning and hand crafted 
features in medical image modality classification. In: 2016 3rd Interna-
tional Conference on Computer and Information Sciences (ICCOINS); 
2016 Aug 15-17; Kuala Lumpur, Malaysia. Piscataway (NJ): IEEE; 2016. p. 
633-638.

37.	 Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and 
rotation invariant texture classification with local binary patterns. IEEE 
Trans Pattern Anal Mach Intell 2002;24:971-987.

38.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 
Dropout: a simple way to prevent neural networks from overfitting. J 



   551 

 Hwang Y et al. Artificial Intelligence in Capsule Endoscopy

Mach Learn Res 2014;15:1929-1958.
39.	 Cogswell M, Ahmed F, Girshick R, Zitnick L, Batra D. Reducing overfit-

ting in deep networks by decorrelating representations. ArXiv e-prints 
2015. http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1511.06068.

40.	 Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of 
colorectal polyp histology by using a real-time image recognition sys-

tem and narrow-band imaging magnifying colonoscopy. Gastrointest 
Endosc 2016;83:643-649.

41.	 Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence 
in identification of diminutive polyps during colonoscopy: a prospective 
study. Ann Intern Med 2018;169:357-366.


