Skip to main content
. 2018 Nov 30;51(6):547–551. doi: 10.5946/ce.2018.173

Table 1.

State-of-the-Art Deep Learning Based Methods for Capsule Endoscopy

Study Class No. of training/testing images No. of patients or videos Features Accuracy Sensitivity/Specificity
Zou et al. (2015) [27] Localizationa) 60K/15K 25 patients Alexnet 95.5% No info.
Seguí et al. (2016) [28] Scene classificationb) 100K/20K 50 videos CNN 96.0% No info.
Jia et al. (2016) [29] Bleeding 8.2K/1.8K No info. Alexnet 99.9% 99.2%/No info.
Li et al. (2017) [30] Haemorrhage 9,672/2,418 No info. LeNet 100% 98.7%/No info.
AlexNet
GoogLeNet
VGG-Net
Yuan et al. (2017) [32] Polyp 4,000 (No info.) 35 patients SSAE 98.0% No info.
Iakovidis et al. (2018) [34] Various lesionsc) 465/233 1,063 volunteers CNN 96.3% 90.7%/88.2%
852/344 No info.
He et al. (2018) [33] Hookworm 400K/40K 11 patients CNN 88.5% 84.6%/88.6%
Leenhardt et al. (2018) [31] Angiectasia 600/600 200 videos CNN No info. 100%/96%

CNN, convolutional neural networks; SSAE, stacked sparse autoencoder.

a)

Localization, Localization of stomach, small intestine, colon.

b)

Scene classification, Scene classification of Bubble, wrinkle, turbid, wall, clear.

c)

Various lesions, Gastritis, Cancer, bleeding, ulcer.