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Abstract

Macrophage accumulation and inflammation in the lung owing to stresses and diseases is a cause of lung cancer
development. However, molecular mechanisms underlying the interaction between macrophages and cancer cells, which
drive inflammation and stemness in cancers, are poorly understood. In this study, we investigated the expression of
ubiquitin-specific peptidase 17 (USP17) in lung cancers, and role of elevated USP17 in the interaction between macrophages
and lung cancer cells. USP17 expression in lung cancers was associated with poor prognosis, macrophage, and inflammatory
marker expressions. Macrophages promoted USP17 expression in cancer cells. TNFR-associated factor (TRAF) 2-binding
and TRAF3-binding motifs were identified in USP17, through which it interacted with and disrupted the TRAF2/TRAF3
complex. This stabilized its client proteins, enhanced inflammation and stemness in cancer cells, and promoted macrophage
recruitment. In different animal studies, co-injection of macrophages with cancer cells promoted USP17 expression in
tumors and tumor growth. Conversely, depletion of macrophages in host animals by clodronate liposomes reduced USP17
expression and tumor growth. In addition, overexpression of USP17 in cancer cells promoted tumor growth and
inflammation-associated and stemness-associated gene expressions in tumors. These results suggested that USP17 drives a
positive-feedback interaction between macrophages and cancer cells to enhance inflammation and stemness in cancer cells,
and promotes lung cancer growth.

Introduction

Lung cancer is the most commonly diagnosed cancer and
the leading cause of cancer-related death worldwide. The
two main histological subtypes are non-small-cell lung
cancer and small-cell lung cancer, accounting for 85% and
15% of cases, respectively [1, 2]. Inflammatory stress is a
major risk factor for lung cancer. The tumor micro-
environment contains various cells, including cancer cells,
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smoking and inhaled asbestos or silica act as carcinogens by
initiating chronic inflammation [6, 10—12]. Toll-like receptor
(TLR), tumor necrosis factor receptor (TNFR), and inter-
leukin (IL)-1 receptor initiate inflammatory signaling cascades
in tumor cells in response to endogenous and exogenous
carcinogenic stimuli, leading to nuclear factor-kB (NF-xB)
activation. NF-xB regulates gene expressions involved in
inflammation, anti-apoptosis, angiogenesis, and boost the
proliferation, survival, and invasion of cancer cells to support
tumor progression [13-15]. Inflammation also results in
increased stemness-associated gene expressions, leading
cancer cells to adopt a CSC phenotype [16-18]. CSCs can
self-renew and differentiate to promote tumor progression and
metastasis and are responsible for treatment resistance and
recurrence [19, 20]. Chemotherapy remains the standard
treatment for lung cancers; however, although conventional
cytotoxic therapies eliminate the bulk of tumor cells, among
residual cancer cells, CSCs continue to proliferate and survive
[21, 22].

A total of seven TNFR-associated factor (TRAF)
members (TRAF1 to TRAF7) have been characterized.
These TRAFs were originally identified as adaptor pro-
teins in the assembly of receptor-associated complexes for
the regulation of signal transductions. For example,
binding of TRAF2 to TNFR induces signaling, leading to
the activation of NF-kB and MAPKSs for the regulation of
inflammatory responses and cell death and survival. These
TRAFs, with the exception of TRAFI, contain an N-
terminal RING finger domain known to mediate the cat-
alytic activity of an E3 ubiquitin ligase [23-26]. For
example, TRAF2 and TRAF3 promote K63-linked ubi-
quitination during protein—protein interactions for signal
transduction [23, 24]. Furthermore, they form a complex
with the cellular inhibitor of apoptotic protein (cIAP) 1
and cIAP2 to promote K48-linked ubiquitination and
proteolytic degradation of client proteins [25]. Thus,
depending on their target protein, TRAFs can be a posi-
tive regulator or a negative regulator in inflammatory
signaling pathways.

Ubiquitination of a target molecule is a reversible process
and can be counteracted by deubiquitinases. Ubiquitin-
specific peptidases (USPs) comprise the largest family of
deubiquitinases. Of them, the USP17 (also termed DUB3) is
a member of the cytokine-inducible deubiquitinase family,
which consists of USP36 (DUB1) and USP17lc (DUB2)
[27, 28]. In this study, we found that high USP17 expres-
sion was associated with expression of inflammatory med-
iators, macrophage markers, and poor prognosis of lung
cancer. Macrophages induced the expression of USP17 in
cancer cells. The role and underlying mechanism of USP17
in a positive-feedback interaction between macrophages and
cancer cells to promote inflammation, stemness, and pro-
gression of lung cancers were investigated.
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Results

High USP17 expression correlate with inflammatory
and macrophage marker expressions, and poor
prognosis in lung cancer

The tumor microenvironment contains abundant cytokines.
Moreover, cancer cells interact with stromal cells such as
macrophages to support tumor development [3—6]. There-
fore, we hypothesized that the cytokine-inducible deubi-
quitinase USP17 should be highly expressed in cancer cells
and function in modulating tumor growth. We analyzed its
expression in normal tissues and lung cancer samples in six
datasets from the GEO and Oncomine databases. The data
revealed significantly higher USP17 expression in lung
cancer samples than in normal tissues (Fig. la). Survival
analysis of lung cancer data in KM plotter using an online
Kaplan—Meier Plotter software revealed that patients with
lung cancer exhibiting a high USP17 expression as high as
38.86% have a significantly lower survival rate than that of
patients with a lower USP17 expression (Fig. 1b). To elu-
cidate the mechanism of USP17 induction in lung cancers,
we examined the expression of USP17 and macrophage and
inflammatory markers in a set of cDNA array using 48
cDNA samples from patients with lung cancer with clinical
data as shown in Supplementary Table 1. Consistent with
the results obtained from the database analysis, lung cancer
tissues showed a higher expression of USP17 than that in
normal tissues. In addition, the expression level was ele-
vated in parallel with the increase of lung cancer stages
(Fig. 1c). In association with elevated USP17 expression,
the levels of inflammatory mediators, including IL-1f, IL-6,
and IL-8 were increased in lung cancer samples (Fig. 1d).
The expression levels of macrophage markers, including
cluster of differentiation (CD)11b, CD68, and CD163, were
also increased (Fig. le). Moreover, correlations were
observed between the increase in USP17 expression and the
expression of inflammatory and macrophage markers in
these lung cancer samples (Supplementary Figure la, b),
suggesting a relationship among macrophage accumulation,
inflammation, USP17 expression, and poor prognosis in
lung cancers.

Induction of USP17 expression in cancer cells by
macrophages

Macrophages are a large population of stromal cells and a
key source of cytokines in the tumor microenvironment;
thus, we investigated whether USP17 expression in cancer
cells is induced by their interaction with macrophages.
THP-1 monocytic cells (Mn) were activated by phorbol-12-
myristate-13-acetate into MO macrophages, which were
further polarized with interferon-y and IL-4 into M1 and M2
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Fig. 1 High expression of ubiquitin-specific peptidase 17, macro-
phages markers, and inflammatory mediators in lung cancers. a Dif-
ferent GEO and Oncomine datasets as indicated were analyzed for the
induction of ubiquitin-specific peptidase 17 (USP17) in tissue samples
obtained from patients with lung cancer. b Kaplan—-Meier plotter
analysis of USP17 expression and survival of patients with lung
cancer. Correlation between USP17 expression and survival of patients
with lung cancer was analyzed online by the Kaplan—-Meier Plotter

macrophages, respectively (Fig. 2a, top panel). Macrophage
polarization was confirmed by real-time quantitative PCR of
markers, such as CCL7, CCL19, CXCL11, INDO, and
iNOS for M1 macrophages, and MCR1, MAF, CCL13,
FLG2, and ARG1 for M2 macrophages [29, 30] (Fig. 2a,
bottom panel). Conditioned media from these different
macrophages were collected for culturing human H1299
lung cancer cells. Real-time quantitative PCR revealed that

software. The data of patients with lung cancer in the database of KM
plotter were collected from the GEO and Oncomine databases. ¢, d A
set of cDNA array prepared from 48 normal or lung cancer tissues was
subjected to RT-qPCR for analyzing the expressions of USP17 (c),
inflammatory markers (d), and macrophage markers (e) as indicated.
Clinic data of each sample are shown in Supplementary Table 1. Data
represent mean + standard deviation of three analysis, *P <0.05; **P
<0.01

conditioned media from MO, M1, and M2 macrophages
induced USP17 expression in lung cancer cells (Fig. 2b).
The induction of USP17 expression in cancers by macro-
phages was further verified using a cancer animal model for
studying the effects of macrophages on tumor growth.
C57BL/6J mice were subcutaneously (SC) injected with
1 x 10° Lewis lung cancer (LLC) cells or a 7:3 ratio mixture
of 1x10° LLC cells plus bone marrow-derived
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Fig. 2 Role of macrophages in inducing ubiquitin-specific peptidase
17 expression in lung cancers. a Top panel: Schematic diagram for Mn
THP-1 cells activation into MO macrophages, and their polarization
into M1 and M2 macrophages. Bottom panel: Polarization of M1 and
M2 macrophages was characterized by real-time quantitative poly-
merase chain reaction (RT-qPCR) of their markers. b Induction of
ubiquitin-specific peptidase 17 (USP17) in H1299 lung cancer cells by
conditioned media from different macrophage types. USP17 expres-
sion was analyzed by RT-qPCR. c—e Mice were subcutaneously
injected with 1 x 10° of Lewis lung cancer (LLC) cells alone or a
mixture of LLC cells and bone marrow-derived macrophages with a

macrophages derived from C57BL/6J mice, as illustrated in
Fig. 2c. Co-injection of macrophages resulted in in faster
tumor growth compared with the injection of cancer cells
alone, even when only 70% of cancer cells were coinjected
(Fig. 2d), and also resulted in the upregulation of USP17
and inflammation-associated genes in tumors (Fig. 2e).
These resemble the correlation among high expressions of
macrophage markers, USP17, and inflammatory mediators
observed in lung cancer samples (Fig. 1c—e). In addition,
these results suggested that macrophages induced the
expression of USP17 in tumors.

USP17 could be induced by cytokines secreted from
macrophages because various cytokines, including TNF-a,
IL-1B8, IL-4, IL-6, IL-8, IL-10, CXCLI12, CCL18, and
CCL22, were able to induce USP17 expression in H1299
and D121 lung cancer cells (Supplementary Figure 2a, b).
Moreover, USP17 promoter region analysis revealed

SPRINGER NATURE

7:3 ratio of a total number of 1 x 10° into C57BL/6) mice following
the schedule illustrated (c¢). Tumor volume was measured at the indi-
cated time-points, and the mean tumor size was plotted (mean +
standard deviation, n = 5). The mice were killed after 42 days, tumors
were collected and imaged (d). USP17 and inflammation-associated
gene expressions in the collected tumors were analyzed by real-time
quantitative PCR (e). Bars, data represent mean =+ standard deviation of
three independent experiments (a, b) or analysis (e), *P <0.05; **P <
0.01 compared with the group of MO macrophages (a), the group of
control medium treatment (b), or the group of injection with LLC cells
alone (e)

different transcription factor binding sites, including those
for transcription factors HIF-1, STAT3, STAT6, and NF-xB
(Supplementary Figure 3), which are known to be activated
on stimulating cancer cells by cytokines in a cross talk
between TAMs and cancer cells [10, 14].

USP17 promotes intrinsic inflammation and stimuli-
activated inflammatory responses in lung cancer
cells

We further investigated USP17 function in controlling
inflammatory responses in lung cancer cells. Lung cancer
H1299 and DI121 cells stably overexpressing USP17
(expression levels shown in Supplementary Figure 4a, b)
were treated with or without IL-1B. The production of
various inflammatory cytokines, including TNF-a, IL-1p,
IL-6, IL-8, IL-12, and IL-23, was measured by real-time
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Fig. 3 Role of ubiquitin-specific peptidase 17 in controlling intrinsic
and stimuli-induced inflammatory responses in lung cancer cells.
a—c HI1299 and DI121 lung cancer cells stably overexpressing
ubiquitin-specific peptidase 17 or stably transfected with control vector
were treated with or without 10 ng/ml interleukin-1p (a), 0.2 ug/ml

quantitative PCR. USP17 overexpression in these cells
enhanced basal production of these cytokines. IL-1f-
induced cytokine production was further enhanced by
USP17 overexpression in these cells (Fig. 3a). The effect of
USP17 could be through the regulation of NF-kB activation
since that was increased in parallel with the cytokine pro-
duction in HI299 cells (Supplementary Figure 5a). In
addition, in these cells, the expression of USP17 was
induced by the IL-1f stimulation (Supplementary Figure S5b
and Supplementary Figure 2a), which may provide some
explanation for the additive but not the synergistic effect of
USP17 overexpression plus IL-1p treatment in cytokine
inductions. TLR ligands are potent inflammatory stimulants
of cancer cells [13—15]. Thus, we investigated the role of
USP17 in regulating TLR ligand-induced inflammatory
responses. Cells were treated with Pam3Cys (TLR2 ligand)
and LPS (TLR4 ligand) to induce inflammatory responses.

Pam3cys (b), and 0.2 pg/ml LPS (c). The induction of cytokines in
these cells was analyzed with real-time quantitative PCR. Results are
shown as mean + standard deviation of three independent experiments,
**P < (.01 between the indicated groups

Similar to its effect on IL-1f-induced inflammatory
responses (Fig. 3a), USP17 enhanced cytokine production
induced by TLR2 and TLR4 activation (Fig. 3b, c).

USP17 promotes stemness and transformation
ability of cancer cells

Inflammation and stemness are suggested to enhance each
other and form a positive-feedback loop that promotes
tumor growth [31, 32]. In addition, TAMs have been shown
to enhance stemness in cancer cells [30]. Thus, we inves-
tigated USP17 function in regulating the stemness and
transformation ability of lung cancer cells. We examined the
sphere-forming ability of H1299 and D121 lung cancer cells
stably overexpressing USP17 (expression levels are shown
in Supplementary Figure 4a, b). USP17 expression pro-
moted sphere formation (Fig. 4a, top and middle panels).

SPRINGER NATURE
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Fig. 4 Role of ubiquitin-specific peptidase 17 in promoting stemness
in lung cancer cells. a, b Control and ubiquitin-specific peptidase 17
(USP17) stably overexpressing (a), and control and USP17 short-
hairpin RNA stably knockdown (b) H1299 and D121 lung cancer cells
were grown in defined serum-free medium for sphere formation. Top
panels: Cellular morphology of stemness-enriched spheres was

Analysis of stemness-associated gene expressions using
real-time quantitative PCR revealed elevated MYC, SOX2,
OCT4, KLF4, NANOG, CD44, CD117, CD133, ALDHI,
and ABCG2 expressions in USP17-overexpressing cells
relative to those in control cells (Fig. 4a, bottom panels). In
addition, using flow cytometric analysis, we verified that
the number of D121 cells with detectable levels of CD117
and CD133 on the cell surface was increased in the USP17-
overexpressed cells (Supplementary Figure 6). Conversely,
stable USP17 knockdown in cancer cells using a short-
hairpin RNA reduced their sphere-forming ability (Fig. 4b,
top and middle panels, and knockdown levels are shown in
Supplementary Figure 4a, b). Correlated with reduced
USP17 expression, stemness-associated gene expressions
were also reduced in these cells (Fig. 4b, bottom panels).
We assessed the effect of USP17 expression on the trans-
formation ability of cancer cells using cell proliferation and
anchorage-independent growth assays. USP17 over-
expression in H1299 and D121 lung cancer cells increased
their proliferation (Supplementary Figure 7a). Moreover, in
the anchorage-independent growth assay, significantly
higher colony numbers were evident with USP17-
overexpressing cells than with control cells (Supplemen-
tary Figure 7b). Thus, USP17 regulates stemness-
associated properties and transformation ability of lung
cancer cells.

SPRINGER NATURE

monitored. Middle panels: The number of spheres in the medium was
counted. Bottom panels: USP17 and stemness-associated gene
expressions in cells were analyzed by real-time quantitative PCR. Data
represent mean + standard deviation of three independent experiments,
*P<0.05; **P <0.01 compared with the control group

USP17 expression in cancer cells promotes
macrophage recruitment and cytokine production
by macrophages

Because USP17 overexpression in cancer cells promotes
intrinsic inflammation and stimuli-induced inflammatory
responses (Fig. 3), which can result in an inflammatory
tumor microenvironment favorable for macrophage
recruitment, we further investigated the role of USP17 in
cancer cells for their interaction with macrophages. A
macrophage recruitment assay was performed (Fig. 5a).
Control and USP17-overexpressing H1299 and D121 lung
cancer cells were treated with or without IL-1p. Conditioned
media collected from these cells were analyzed for their
ability to promote macrophage migration. USP17 over-
expression in cancer cells promoted macrophage recruit-
ment (Fig. 5b) and induced cytokine production by
macrophages (Fig. 5c). Macrophages promoted USP17
expression in cancer cells (Fig. 2), therefore we turned to
examine the role of macrophages in promoting inflamma-
tion and stemness in cancer cells. Macrophages and cancer
cells were cocultured in two-chamber transwell plates (Fig.
5d). Gene induction was analyzed by real-time quantitative
PCR. Correlated with upregulated USP17 expression (Fig.
Se), stemness-associated and inflammation-associated gene
expressions were upregulated when cancer cells interacted
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Fig. 5 Role of ubiquitin-specific peptidase 17 in the interaction
between macrophages and lung cancer cells to enhance inflammation
and stemness in cancer cells. a Schematic diagram of the macrophage
recruitment assay. Conditioned medium collected from control and
ubiquitin-specific peptidase 17 (USP17)-overexpressing cancer cells
stimulated with or without 10 ng/ml interleukin-1f were added to the
lower chamber of 0.4-um transwell plates. Macrophages were plated
on the upper chamber and incubated at 37 °C for 8 h. b Macrophages
that migrated into the lower chamber were fixed, stained with 0.05%
crystal violet, and counted. ¢ Macrophages were cultured with con-
ditioned media from control and USP17-overexpressing cells at 37 °C

with macrophages (Fig. Se, f), suggesting a role of USP17
in the interaction between macrophages to
inflammation and stemness in cancer cells.

increase

USP17 contains binding motifs that allow it to
interact with and disrupt the protein-degradation
ability of the TRAF2/TRAF3 complex

We assessed structural and functional mechanisms by which
USP17 enhanced inflammatory responses and analyzed
USP17 protein sequence. Besides the USP domain and
hyaluronan-binding motifs (HABMs) [27, 28]. We identi-
fied two TRAF2-binding motifs in the USP17 protein: first
located at position 428-431 and second at position
480-484. The second motif was also a TRAF3-binding
motif (Fig. 6a) [33, 34]. We showed that interactions occur
between USP17 and TRAF2 and TRAF3 by their co-
immunoprecipitation when coexpressed in HEK293 cells
(Fig. 6b). Similarly, coimmunoprecipitations of endogenous
USP17 and TRAF2 and TRAF3, respectively, were
observed in LLC cells (Supplementary Figure 8a). Fur-
thermore, we demonstrated the requirement of the identified
motifs for these interactions; mutation of residues in the first
binding motif in USP17 reduced its ability to coimmuno-
precipitate with TRAF2, and mutation of the second motif
reduced its ability to coimmunoprecipitate with both of
TRAF2 and TRAF3 (Fig. 6¢c, d). We investigated the
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for 8 h. Inflammatory gene expressions in macrophages were analyzed
with real-time quantitative polymerase chain reaction (RT-gPCR). d
Schematic diagram of coculturing macrophages and cancer cells. The
upper chamber of 0.4-um transwell plates was cultured with or without
macrophages; cancer cells were plated on the lower chamber. e, f The
cells were incubated at 37 °C for 8 h. Stemness-associated (e) and
inflammatory (f) gene expressions in the cancer cells were analyzed
using RT-gPCR. Data represent mean + standard deviation of three
independent experiments, *P < 0.05; **P < 0.01 between the indicated
groups, or compared with the control group

requirement of TRAF2 and TRAF3 binding for enhancing
inflammatory responses by USP17 in IL-1p-stimulated
HEK293 cells and LLC cells using an NF-kB-driven
luciferase-reporter assay. USP17 mutants with less able to
bind TRAF2 and TRAF3 were less able to promote NF-xB
activation (Fig. 6e and Supplementary Figure 8b). TRAF2
and TRAF3 are known to undergo K63-linked self-ubi-
quitination for protein—protein interactions [25, 26], there-
fore we also examined whether USP17 promotes TRAF2
and TRAF3 deubiquitination, and whether this deubiquiti-
nation activity is required for promoting inflammatory
responses by USP17. It is known that cysteine residue 89 in
the USP domain is required for the deubiquitination activity
of USP17 [35-37], thus this cysteine was mutated into a
serine residue (C89S) to generate an inactive mutant. When
coexpressed in HEK293 cells, wild-type USP17 promoted
K63-linked TRAF2 and TRAF3 deubiquitination, whereas
the C89S mutant did not (Fig. 6f). In addition, the C89S
mutant could not enhance IL-1p-induced NF-kB activation,
in contrast to wild-type USP17 in HEK293 cells and LLC
cells (Fig. 6g and Supplementary Figure 8c). We investi-
gated the role of USP17 in controlling TRAF2/TRAF3
complex formation. USP17 overexpression blocked TRAF2
and TRAF3 binding (Fig. 6h, top panel) and increased the
stability of client proteins of the TRAF2/TRAF3 complex,
including NIK, c-Rel, and IRF5 (Fig. 6h, bottom panel).

Therefore, the function of USP17 in enhancing

SPRINGER NATURE
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inflammation and stemness in cancer cells may result from
its ability to bind and disrupt the TRAF2/TRAF3 complex.

USP17 drives a positive-feedback interaction
between macrophages and cancer cells to promote
tumor growth

We further investigated the role of USP17 in control of
positive interaction between macrophages and cancer cells

with animal models of cancer. Injection of clodronate-
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containing liposomes into C57BL/6J mouse was able to
deplete about 70% of the mouse macrophages (Supple-
mentary Figure 9). Control and USP17-overexpressing LLC
cells (5 x 10°) were injected into C57L/B6 mice treated with
or without clodronate-containing liposomes to deplete
macrophages as illustrated in Fig. 7a. In contrast to the
results shown in Fig. 2c—e that macrophages promote
expression of USP17 and inflammation-associated gene in
tumors and accelerate tumor growth, depletion of macro-
phages in host animals reduced tumor growth, USP17
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Fig. 6 Ubiquitin-specific peptidase 17 disrupts formation of the
TNFR-associated factor 2/TNFR-associated factor 3 complex and
stabilizes their client proteins. a TNFR-associated factor (TRAF) 2-
binding and TRAF3-binding motifs were identified in ubiquitin-
specific peptidase 17 (USP17) as shown in the schematic diagram.
USP Ubiquitin-specific protease, HAMBs hyaluronan-binding motifs.
Numbers show the amino-acid residue positions. b USP17 was
coexpressed with TRAF2 (left panel) or TRAF3 (right panel) in
HEK?293 cells, and their interaction was analyzed by immunopreci-
pitation and immunoblotting with the antibodies indicated. ¢ Different
amino-acid residues in the two TRAF2-binding motifs of USP17 were
mutated. Wild-type (wt) USP17 and USP17 mutants were coexpressed
with TRAF2 in HEK293 cells, and the requirement of the amino-acid
residues in the binding motif of USP17 for TRAF2 binding was
analyzed by immunoprecipitation and immunoblotting with the anti-
bodies indicated. d Different amino-acid residues in the TRAF3-
binding motifs of USP17 were mutated. Wt USP17 and these mutants
were coexpressed with TRAF3 in HEK293 cells, and the requirement
of the amino-acid residues in the binding motif of USP17 for TRAF3
binding was analyzed by immunoprecipitation and immunoblotting
with the antibodies indicated. e HEK293 cells were co-transfected with
a nuclear factor-kB (NF-«xB)-controlled luciferase-reporter plasmid and
expression vectors encoding wt USP17 and different USP17 mutants.
These cells were treated with or without interleukin (IL)-1p (10 ng/ml)
and the relative luciferase activities were analyzed to determine the
requirement of TRAF2 and TRAF3 binding for regulating NF-xB
activation by USP17. f HEK293 cells were co-transfected with
expression vectors for wt USP17, C89S USP17, UB-K63, TRAF?2 (left
panel), or TRAF3 (right panel) and treated with MG132. The effects of
wt USP17 and C89S USP17 on the K63-linked ubiquitination of
TRAF2 and TRAF3 were analyzed by immunoprecipitation and
immunoblotting with the antibodies indicated. g HEK293 cells were
co-transfected with an NF-kB-controlled luciferase-reporter plasmid
and expression vectors encoding wt USP17 and C89S USP17. These
cells were treated with or without IL-1B (10 ng/ml) and the relative
luciferase activities were analyzed to determine the requirement of
deubiquitinase activity for regulating NF-kB activation by USP17.
h HEK293 cells were co-transfected with expression vectors for
USP17, TRAF2, and TRAF3, and the effects of USP17 on blocking
TRAF2/TRAF3 complex formation (top panel) and stabilizing the
client proteins of this complex (bottom panel) were analyzed by
immunoprecipitation and immunoblotting with the antibodies indi-
cated. Each set of blots is representative of three independent
experiments. In the bar figures, the data represent mean + standard
deviation of three independent experiments, *P <0.05; **P<0.01
compared with the wt USP17 group (¢, d), or the group without IL-1f
treatment (e, g)

expression, and inflammatory cytokine productions (Fig.
7b, c). In addition, these effects resulted by macrophage
deletion were partially restored by stable USP17 over-
expression in cancer cells (Fig. 7b, ¢). We further examined
the effect of USP17 expression on tumor growth by sc
injection of 1 x 10° control or LLC cells stably over-
expressing USP17 into C57L/B6 mice. USP17 over-
expression in cancer cells promoted tumor growth (Fig. 7d)
and increased inflammation-associated and stemness-
associated gene expressions in tumors (Fig. 7e, f). Thus,
these results demonstrate the positive role of USP17 in
regulating the interaction between macrophages and cancer

cells to enhance inflammation and stemness in tumors for
promoting tumor growth (Fig. 7g).

Discussion

Inflammation contributes to tumorigenesis and lung cancer
development. Macrophages are inflammatory cells that
accumulate in the tumor microenvironment throughout
tumor progression [3-5]. Thus, the interaction between
macrophages and cancer cells and the subsequent responses
could be a primary cause of malignancy. In this study, we
found that high USP17 expression was associated with
increased inflammatory and macrophage marker expres-
sions in lung cancers. These findings suggest a connection
among USP17 expression, macrophage accumulation, and
inflammation in lung cancer. In addition, our result of
database analysis revealed a correlation between high
USP17 expression and poor prognosis in lung cancers. In
this regard, this result is consistent with previously reported
that patients with USP17 positive tumors had significantly
reduced survival than patients with USP17 negative tumors,
and knockdown of USP17 inhibited tumorigenesis and
growth of non-small-cell lung cancer in xenograft animal
model [38, 39], although inhibitory effect of USP17 on
cancer cell growth was also reported, for examples co-
treatment of bromodomain and extra-C terminal domain
protein inhibitors and histone deacetylase inhibitors has
been shown to induce expression of USP17 and reduces
breast cancer cell viability [40]. USP17 and its substrate
SDS3 are involved in the inhibition of anchorage-
independent tumor cell growth [41].

USP17 was reported to reverse K63-linked ubiquitina-
tion of Ras-converting enzyme 1 and reduced its activity for
post-translational modification of Ras GTPases [42].
Another study identified high USP17 expression in lung,
colon, esophageal, and cervical tumors and showed that
USP17 expression is necessary for cell cycle progression by
regulating GTPases [43]. The K63-linked deubiquitinase
activity of USP17 is also involved in regulating SDS3,
reducing histone deacetylase activity in cancer cells [35].
Conversely, USP17-mediated K48-linked deubiquitination
protects Cdc25A from proteasomal degradation and pro-
moted oncogenic transformation [36]. USP17 also mod-
ulates both K48-linked and K63-linked ubiquitination of
RIG-I and regulates immune responses of IL-33 [37, 44]. In
this study, we showed that USP17 reduced K63-linked
ubiquitination of TRAF2 and TRAF3. Therefore, USP17
can remove both K48-linked and K63-linked ubiquitination
of target proteins to regulate their cellular functions.

Besides the HABMs and USP domain [27, 28], we
identified binding motifs for TRAF2 and TRAF3 in USP17.
TRAF2 and TRAF3 form a complex involving cIAPs that
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Fig. 7 Role of ubiquitin-specific peptidase 17 in the positive-feedback
loop of the interaction between macrophages and lung cancer cells to
promote tumor growth. a To investigate the effect of macrophages on
the induction of ubiquitin-specific peptidase 17 (USP17) expression
and tumor growth, C57BL/6 mice with or without injection of clo-
dronate liposomes for macrophage depletion were subcutaneously
inoculated with 5x 10° of LLC cells stably transfected with control
vector or LLC cells stably overexpressing USP17 following the illu-
strated schedule. b Tumor growth rates were monitored. ¢ These mice
were killed on day 42, USP17 and inflammatory gene expressions in
tumors were analyzed by real-time quantitative PCR (RT-qPCR). d-f
To investigate the effect of USP17 expression in tumor cells on tumor
growth, C57BL/6 mice were inoculated with 1x10° control or
USP17-overexpressing LLC cells and tumor growth rates were mon-
itored (d). These mice were killed on day 42. USP17 and inflammatory
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gene expressions in tumors were analyzed by RT-qPCR (e). Stemness-
associated gene expressions in tumors were analyzed by RT-qPCR (f).
Bars, data represent mean + standard deviation of three independent
analysis, **P <0.01 compared with LLC and control (b, d), and
compared with the control group (c, e, f). g Illustration of the role of
ubiquitin-specific peptidase 17 in the positive-feedback loop of the
interaction between macrophages and lung cancer cells to promote
tumor growth. In lung cancers, macrophages induce ubiquitin-specific
peptidase 17 (USP17) expression in cancer cells. USP17 stabilizes and
enhances NIK-, c-Rel-, and IRF5-mediated inflammation-associated
and stemness-associated gene expressions by disrupting the TNFR-
associated factor (TRAF) 2/TRAF3 complex. These effects further
recruit macrophages into tumors, driving a positive-feedback interac-
tion between macrophages and cancer cells to promote progression
and malignancy of lung cancers
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possessesE3 ligase activity and performs K48-linked ubi-
quitination on target proteins, including NIK, c-Rel, and
IRF5 for proteolytic degradation. These target proteins are
involved in controlling inflammatory cytokine expressions
[25, 45-47], thus proteins interacting with TRAF2 or
TRAF3 may disrupt the TRAF2/TRAF3 complex to
increase inflammatory responses. Consistently, USP17
expression in lung cancer cells enhanced basal and stimuli-
induced inflammatory responses by stabilizing NIK, c-Rel,
and IRF5 through disrupting the TRAF2/TRAF3 complex.

In this study, we found that USP17 expression in lung
cancer cells increases inflammation-associated and
stemness-associated gene expressions. Previous studies
have shown that NF-kB-mediated inflammatory responses
promote CSC phenotype by directly inducing NF-kB-
controlled stemness-associated gene expressions and
indirectly activating these genes through cytokines gener-
ated in inflammatory responses [16—18]. Two recent studies
demonstrated that a direct interaction between USP17 and
Snaill, a key transcription factor of
epithelial-mesenchymal transition (EMT) regulates EMT
phenotype and cancer invasion. USP17 stabilizes Snaill
through its deubiquitination activity, and USP17 knock-
down or inhibition can promote Snaill degradation and
suppresses cancer invasion and metastasis [48, 49]. The
EMT phenotype can initiate the metastasis of cancer cells
and their dedifferentiation into CSCs [18-20]. Hence,
USP17 may promote malignancy by directly controlling
NF-kB-mediated inflammation, and directly and indirectly
controlling stemness.

USP17 is a DUB enzyme inducible by various cytokines
[27, 28, 49, 50]. Lung cancers exhibit high USP17
expression because tumor cells occupy a microenvironment
containing abundant cytokines and other mediators that
support tumor growth. Macrophages constitute a major
cytokine-producing population in tumors. TAMs are not a
single uniform population but exhibit features of a spectrum
of states with M1 (or classically activated) and M2 (or
alternatively activated) phenotypes at opposite ends. A
simplistic model of their function is that M1 TAMs perform
proimmunogenic functions that favor the immuno-
surveillance of malignant cells, whereas M2 TAMs have
immunosuppressive effects and perform protumor func-
tions. Nevertheless, macrophage accumulation in tumors is
often associated with poor prognosis [7, 8, 51, 52]. Thus,
the role of TAMs in tumor progression may not be limited
to their effect on immunosurveillance, and their alternative
effects on cancer cells should be considered.

As illustrated in Fig. 7g, USP17 expression in lung
cancer cells was induced by cytokines secreted by macro-
phages with either M1 or M2 properties. Increased USP17
expression disrupted the TRAF2/TRAF3 complex forma-
tion and stabilized its target proteins, leading to elevated

inflammation, stemness, and transformation ability in lung
cancer cells and increased macrophage recruitment into
tumors. These findings suggest a novel mechanism for the
protumor effect of tumor-associated macrophages through
induction of USP17 in lung cancer cells, and high USP17
expression contributes to a positive-feedback interaction
between macrophages and cancer cells that drives lung
cancer progression. High USP17 expression in lung cancers
also implies that this protein represents diagnostic marker.
Inhibitors for USPs are currently under development sug-
gesting that these deubiquitinases are potential therapeutic
targets [53, 54]. Moreover, a small molecular-weight inhi-
bitor, WP1130,was recently shown to inhibit USP17 func-
tion and cancer metastasis [49]. Taken together, our
findings, together with the development of USP17 inhibi-
tors, suggesting that USP17 could be a therapeutic target for
lung cancer treatment.

Materials and methods
Bioinformatics analysis

The Oncomine (https://www.oncomine.org/) and GEO
databases (https://www.ncbi.nlm.nih.gov/gds/) were sear-
ched to analyze the expression profiles of USP17 and other
genes in normal and tumor tissues. The KM plotter (http://
kmplot.com/analysis/) [55, 56] was analyzed online for the
survival Kaplan—Meier estimates of patients with different
USP17 expression levels. Transcription factor binding sites
in the promoter region were analyzed with software avail-
able at the Gene Promoter Miner website (http://gpminer.
mbc.nctu.edu.tw/).

Cell lines and cell culture

Human H1299 lung cancer, human embryonic kidney
(HEK) 293, mouse D121, LLC lung cancer, and
RAW264.7 cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum (FBS). Human THP-1 monocytic cells and
mouse 4T1 breast cancer cells were grown in Roswell Park
Memorial Institute 1640 medium supplemented with 10%
FBS. The cells were cultured at 37 °C in an atmosphere
containing 5% CO,. The D121 lung cancer cell line was
developed by Dr. L. Eisenbach (Weizman Institute,
Rehovot, Israel [57]). All of the other cell lines are avail-
able from American Type Culture Collection. These cells
were periodically cultured with 25 pg/ml of Plasmocin
(Invivogen, San Diego, USA) to prevent mycoplasma
contamination and periodically checked with an EZ-PCR
Mycoplasma test (Biological Industries, Kibbutz Beit
Haemek, Israel) for contamination.
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Lentiviral expression vector construction, infection,
and stable cell lines

To generate a USP17 lentiviral expression vector, USP17
cDNA was cloned into the Nhel/EcoRI sites of the pLASSw
vector (RNAi Core of Academia Sinica, Taiwan) for protein
expression. The lentivirus was produced by harvesting
culture supernatants obtained upon transfecting 293T cells
with the generated constructs and packaging plasmids using
TransIT-LT1 (Mirus Bio LLC, Madison, WI, USA). Cancer
cell lines were spin infected by plating cells in 12-well
plates in the presence of lentiviral supernatants and 8 pg/ml
polybrene (Sigma-Aldrich Corp.), followed by centrifuga-
tion at 1100xg for 30 min. The cells were subjected to
selection with puromycin (3 ng/ml) to obtain stable cell
lines.

Reverse-transcription and real-time quantitative
PCR analyses

Total RNA was purified from cells using TRIzol (Invitro-
gen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. Reverse-transcription was performed using the
Super Script III first-strand synthesis system (Invitrogen)
and oligo-dT primers for first-strand cDNA synthesis.
Quantitative PCR was performed with gene-specific primers
(Supplementary Table 2) using an ABI PRISM 7900HT
sequence detection system (Applied Biosystems, Foster
City, CA, USA) and KAPA SYBR Fast qPCR Kit
(KK4605) for gene expression analysis. mRNA expression
was normalized to that of p-actin.

Ubiquitination assays

Expression vectors encoding tagged TRAF2 or TRAF3
were transfected into HEK293 cells with Flag-USP17 and
HA-Ubiquitin. The cells were treated with 10 uyM MG132
for 24h and then lysed with Nonidet P-40 lysis buffer
containing complete protease inhibitor cocktail. Ubiquiti-
nation of the indicated protein was analyzed by immuno-
precipitation, followed by immunoblotting using the
indicated antibodies.

Polarization of macrophages

THP-1 (Mn cells) were differentiated with phorbol-12-
myristate-13-acetate (100 ng/ml; EMD Calbiochem, La
Jolla, CA, USA); the media were changed the next day and
subsequently every 2 days for 6 days. Polarization of the
resting differentiated macrophages (MO cells) was per-
formed by 24h treatment with 20ng/ml of interferon-y
(R&D Systems, Inc., Minneapolis, MN, USA) for M1-like
polarization and 30 ng/ml of IL-4 (R&D Systems, Inc.) for
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M2-like polarization. The cells were washed and incubated
with fresh medium. Conditioned media from these polarized
cells was harvested after 24 h and frozen at —80 °C.

Macrophage recruitment analysis

Conditioned media collected from control and cancer cells
stably overexpressing USP17 were added to the lower
chamber of transwell plates containing polyethylene ter-
ephthalate membrane inserts with a 5-um pore size (Corning
Life Sciences, Tewksbury, MA, USA). THP-1 or
RAW264.7 cells were plated on the upper chamber and
incubated for 8h at 37 °C. Migratory cells were fixed,
stained with 0.05% crystal violet, and counted in five ran-
domly selected fields.

Sphere-formation assay

For sphere formation, cells were cultured at a density of 1 x
10° on ultra-low attachment six-well plates (Corning Life
Sciences) in culture medium consisting of serum-free
DMEM/F12-K medium, N2 supplement (Invitrogen),
20 ng/ml EGF, and 20 ng/ml bFGF. The spheres were then
photographed and counted.

Animal models of cancer

Animal experiments were approved by the Institutional
Animal Care and Use Committee of the National Health
Research Institutes, Miaoli, Taiwan. Male and female with
age from 1-6 months of C57BL/6J mice were maintained
and handled in accordance with the stated guidelines of 3Rs
(replacement, reduction, and refinement) for the research
design and statistical analysis of experiments using
laboratory animals. Mice included in the study were ran-
domized and blinded to the group assignment. Three dif-
ferent animal models were employed to investigate the
in vivo effect of macrophages on the induction of USP17
and tumor growth. First, 1 x 10° of mouse LLC cells, or a
mixture of LLC cells and bone marrow-derived macro-
phages at a ratio of 7:3, were subcutaneously (sc) injected
into C57BL/6J mice. Second, macrophages in C57BL/6
mice were depleted by injection of clodronate-containing
liposomes (FormuMax Scientific Inc., Sunnyvale, CA,
USA). An initiation dose of 200 pul of clodronate liposomes
was injected intraperitoneally into C57BL/6J mice 2 days
before the sc injection of 5 x 10° of mouse lung cancer LLC
cells. To prevent the repopulation of macrophages, the mice
were repeatedly injected with 100 ul of clodronate lipo-
somes every 5 days. Macrophage depletion was maintained
throughout the experimental period. Third, to evaluate the
effect of USP17 expression in lung cancer cells on tumor
growth, 1x10° of control cells and LLC cells stably
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overexpressing USP17 were sc injected into C57BL/6J
mice. The mice were monitored for tumor growth and killed
at the indicated times for different analyses. Tumor volume
(TV) was calculated using the following formula:

TV(mm®’) = (Length x width?) /2.

Statistical analysis

Statistical analysis was performed on data derived from
three or more independent experiments using the Student’s
t-test. Comparison between two groups was performed
using two-tailed r-test. Correlation between two groups was
determined by analysis of Pearson’s correlation coefficient.
All data are presented as means + standard deviation. A P-
value of <0.05 was considered to represent statistically
significant differences between the experimental groups.

Reagents and antibodies, plasmid construction, transfec-
tion and luciferase-reporter analysis, immunoblotting and
co-immunoprecipitation analysis, anchorage-independent
growth, and cell proliferation assay are described in the
Supplementary materials and methods.
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