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Knowledge of seagrass distribution is limited to a few well-studied sites and

poor where resources are scant (e.g. Africa), hence global estimates of seagrass

carbon storage are inaccurate. Here, we analysed freely available Sentinel-2

and Landsat imagery to quantify contemporary coverage and change in sea-

grass between 1986 and 2016 on Kenya’s coast. Using field surveys and

independent estimates of historical seagrass, we estimate total cover of

Kenya’s seagrass to be 317.1+27.2 km2, following losses of 0.85% yr21

since 1986. Losses increased from 0.29% yr21 in 2000 to 1.59% yr21 in 2016,

releasing up to 2.17 Tg carbon since 1986. Anecdotal evidence suggests fish-

ing pressure is an important cause of loss and is likely to intensify in the

near future. If these results are representative for Africa, global estimates of

seagrass extent and loss need reconsidering.
1. Introduction
Despite the increasing sophistication of Blue Carbon science, some basic infor-

mation remains imprecise. Prominent among this is the regional extent of

seagrass habitats, which is essential in determining seagrass carbon (C)

stocks and flows. Knowledge of seagrass coverage is globally variable; for

example, the USA is well studied, representing 130 of the 215 sites detailed

in a review of global trends [1]. By contrast, Africa remains poorly mapped,

with paltry information on seagrass extent, ecology and C stocks [2]. Given

the large areas and high C concentrations that may be present in Africa and

other poorly researched tropical regions [3], current global estimates may be

very inaccurate.

Blue Carbon habitats are globally threatened; indeed the estimated 7% yr21

loss of seagrass may be the worst trend for any global habitat [1]. Having

good data on rates of decline and drivers of loss are essential. However, problems

involved in mapping current seagrass coverage are magnified when estimating

trends. Historical data are of widely varying accuracy with no information at

all for many sites before the late 1970s and the first Landsat satellite images.

The low radiometric resolution and spectral sensitivity of Landsat 1–5 imagery

impedes seagrass mapping, particularly for sub-tidal areas. While the advent

of high resolution, freely available imagery represents enormous progress,

logistical and technical challenges remain in using these for seagrass monitoring

and in deriving comparisons between current and historical data.

Here, we estimate current and historical seagrass coverage in Kenya. We

produce the first national analysis of seagrass cover change that begins to

address the large gap in knowledge from the African continent and allows com-

parison with better-known areas of the world. In addition, we aim to illustrate

an approach of relevance to seagrass mapping in general. Our objectives were:

1) To map the contemporary coverage of seagrass on Kenya’s coast using the

highest resolution freely available imagery.
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Figure 1. Seagrass coverage in Kenya. Inset panels display LC8 derived maps and temporal records for representative sites.
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2) To reveal rates of change over the past 30 years and

examine the implications for C storage and loss.

2. Methods
Seagrass coverage for 2016 was mapped using Landsat 8 (LC8)

and Sentinel-2 (S2). Coverage in 2000 and 1986 were estimated

using Landsat 7 (LE7) and Landsat 5 Thematic Mapper (LT5),

respectively. Sen2Cor and LEDAPS were used to convert S2

and Landsat imagery, to Bottom-of-Atmosphere reflectance

and to remove clouds. Images were projected to WGS 1984

UTM zone 37 South coordinate system. Images were paired

to represent high and low tide conditions. Water was separ-

ated from land by thresholding Normalized Difference Water

Index values, and differenced between image pairs to extract

image specific emergent and submerged zones. Correlating NIR

reflectance with the visible wavelengths in deep water allowed

us to correct for the specular reflection of light from the ocean

surface [4].

The emergent region was classified using the ISODATA

unsupervised classification method due to the absence of

spatially distributed field data. Resultant classes were merged

by assigning a similarity threshold to a dendrogram, computed

from individual class attributes. Groups of pixels (approx.

10–20) were assessed, and the presence of seagrass determined

by comparing reflectance profiles to ground-based spectral pro-

files [5], examining the original image, using local field

knowledge, and reviewing all relevant literature and official

reports on Kenyan seagrass.

For the submerged regions, we computed a relative water

depth grid (WDrel), based on the ratio between the linearized
blue (RBlue) and green (RGreen) bands in each image [6], and iso-

lated anomalies removed by using Segment Mean Shift within

ArcGIS 10.5. The transition to deep water is signalled by a

sudden drop in WDrel, and a threshold used to exclude these

pixels. Discrete zones of WDrel were extracted using a quantile

interval method, classified using the same approach as above,

and corrected for the presence of coral by thresholding the

ratio of the red to green band across all depths [7]. Such hierarch-

ical classification schemes circumvent the effects of water depth

changes to benthic reflectance [8].

Point measurements of seagrass presence and absence were

recorded from Gazi Bay (432) and Vanga Bay (27) (figure 1)

using a GoPro Hero 4 and a stratified random sampling tech-

nique in 2017 (see [9] for more information). Overall accuracy

(OA) was derived from a confusion matrix between the field

data and S2-derived seagrass coverage. The accuracy of LT5

(1986), LE7 (2000) and LC8 (2016) maps were determined by cal-

culating two independent estimates for each time period, from

separate image sets overlapping in time and space. A confusion

matrix was derived from this overlap, and OA computed (Landsat

image overlap method).

We mapped seagrass coverage for a single Landsat path

and row scene across four dates between 2015 and 2016 to

assess intra-annual and short-term variability and found it to

be minimal [9].

We estimated total organic carbon (Corg) stored within

Kenya’s seagrass using the following equation:

Total Corg ¼ A� (Biomass Corg þ Sediment Corg),

where A is total seagrass cover. Regional estimates of biomass

Corg and sediment Corg for seagrasses in Gazi bay (figure 1) are
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Figure 2. Changes in Kenyan seagrass coverage 1986 – 2016 using Landsat
(black) and S2 (red). Error bars were calculated by multiplying the % residual
accuracy by total coverage to give a+ range.

Table 1. Estimates of total Corg in Kenyan seagrass meadows.

year
regional carbon
estimate (Tg c)a

global carbon
estimate (Tg c)b

1986 10.28 7.16

2000 9.95 6.95

2016 8.11 5.78
aBased on [3].
bBased on [10].
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585+ 43 Mg C km22 and 23 557+ 2,437 Mg C km22 [3],

respectively. In comparison, global seagrass biomass Corg and

sediment Corg are estimated to be 251+48 Mg C km22 and

16 560 Mg C km22, respectively [10]. Destruction of seagrass

leads to loss of biomass Corg, whereas sediment Corg may stabil-

ize or be rapidly lost [11]. Here we estimate maximum feasible

C loss by assuming sediment Corg in the top 1 m reverts to

4967 Mg C km22 (the average value for unvegetated sediment

reported in [3]) following seagrass loss.
3. Results
Seagrass extends along the coast of Kenya, with the exception

of the Tana River delta, probably due to high turbidity

(figure 1). Total 2016 seagrass coverage was estimated as

317.1+27.2 km2 (LC8) and 308.4+40.8 km2 (S2) (figure 2).

Of this, 62% occurs north of Malindi (northern Kenya), par-

ticularly the Lamu Archipelago (figure 1). Southern Kenyan

seagrasses occupy the reef crests, inlets and lagoons from

Vanga Bay to Malindi (figure 1). Emergent seagrass (area

exposed at the time of image acquisition) made up 64.2% of

the total seagrass cover.

Kenya’s seagrass declined by 0.85% yr21 since 1986

(figure 2), accelerating from 0.29% yr21 (1986–2000) to 1.59%

yr21 (2000–2016). Losses in the north were consistent between

1986 and 2016 (1.02% yr21), whereas initial increases between

1986 and 2000 (1.95% yr21) were replaced by losses between

2000 and 2016 (2.11% yr21) in southern Kenya. In the

Watamu-Malindi region, a shallow reef system lost 77% of

its seagrass in 30 years (figure 1), with rates of loss increasing

from 0.73% yr21 (1986–2000) to 4.64% yr21 (2000–2016).

Seagrass cover increased in Gazi (0.95% yr21) and Vanga

(0.34% yr21) Bays between 1986 and 2000, then declined at

1.68% yr21 and 1.8% yr21, respectively. Pate Island suffered

the largest total decline (figure 1), losing 40.09 km2

(1.5% yr21) between 1986 and 2016.

S2-derived mapping accuracy from the field points was

73% (total), 76.7% (emergent) and 69.3% (submerged); we

assume this is indicative for the whole region when estimat-

ing extent. Using the Landsat image overlap method, we

estimated accuracies of 67.8%, 82.6% and 82.8% for the

1986, 2000 and 2016 maps, respectively. Emergent classifi-

cation accuracy was also higher across all images (85.65%)

compared to the submerged zones (80.03%).

Maximum total C loss from seagrass was 21.15% of the

original over 30 years (table 1). Total Corg loss was estimated

to be 0.07 Tg C yr21 using the regional estimate [3]; the
global mean [10] gives an estimate of 0.05 Tg C yr21. The

2000–2016 acceleration in decline implied loss rates of

0.12 Tg C yr21 and 0.07 Tg C yr21 for the regional and

global estimates, respectively. Total estimated C loss was

2.17 Tg over 30 years.
4. Discussion and conclusion
The last published estimate of seagrass coverage for Kenya is

112.39 km2 [12], potentially underestimating the total area by

204.7 km2. Estimating total C from Kenyan seagrass using

[10,12] gives 1.89 Tg, whereas our estimate of seagrass cover-

age and Corg from [3] gives 7.65 Tg C. If these figures are

representative of Africa, global analyses of C storage in sea-

grass meadows are significantly underestimating the

contribution from this region.

The rate of loss of seagrass in Kenya is below the global

estimate of 7% yr21 [1]. Patterns of loss vary between the

north and south, with some regions (e.g. Malindi) showing

more pronounced change. Slower rates of loss in Kenya

may reflect historically low population sizes and industrializ-

ation. Kenyan population growth is approximately 2.9% yr21

and is faster along the coast and in urban areas [13,14]; this

driver probably underpins the accelerating rate of loss. Sea-

grass decline is often caused directly by fishing pressures

and urban development and indirectly by eutrophication

and climate change [15]. In sites such as Gazi Bay, we

found numerous geometrical scars indicating fishing

damage to seagrass meadows; anecdotal information

suggests this occurs along the southern Kenya coast. Seagrass

loss in the north may be related to the destruction of man-

groves for large-scale irrigation, aquaculture and rice

paddies [16,17] leading to sedimentation, thus reducing the

area of seabed suitable for seagrasses. Because turbidity

may prevent the detection of seagrass using remote sensing,

our approach may not be as useful in areas with sporadically

high turbidity if this occurs in the images used.

Promoting sustainable fishing practices, non-destructive

land-use and communicating the importance of seagrass

habitats should be at the forefront of management strategies.

The role of seagrass as nurseries for fish has immediate trac-

tion for fishing communities, while including seagrass C in

payments for ecosystem services schemes, such as that

already operating for mangroves in Kenya [18] may bring

new opportunities for conservation funds. African seagrass

remains poorly researched; if these results are representative

then global estimates of seagrass coverage and C stocks are

underestimates.
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