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The trade-off between reproductive investment and survival is central to life-

history theory, but the relative importance and the complex interactions

among the physiological mechanisms mediating it are still debated. Here we

experimentally tested whether baseline glucocorticoid hormones, the redox

system or their interaction mediate reproductive investment–survival trade-

offs in wild great tits (Parus major). We increased the workload of parental

males by clipping three feathers on each wing, and 5 days later determined

effects on baseline corticosterone concentrations (Cort), redox state (reactive

oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total

non-enzymatic antioxidants), body mass, body condition, reproductive suc-

cess and survival. Feather-clipping did not affect fledgling numbers, chick

body condition, nest provisioning rates or survival compared with controls.

However, feather-clipped males lost mass and increased both Cort and GPx

concentrations. Within feather-clipped individuals, GPx increases were posi-

tively associated with reproductive investment (i.e. male nest provisioning).

Furthermore, within all individuals, males that increased GPx suffered

reduced survival rates. Baseline Cort increases were related to mass loss but

not to redox state, nest provisioning or male survival. Our findings provide

experimental evidence that changes in the redox system are associated with

the trade-off between reproductive investment and survival, while baseline

Cort may support this trade-off indirectly through a link with body condition.

These results also emphasize that plastic changes in individuals, rather than

static levels of physiological signals, may mediate life-history trade-offs.
1. Introduction
Life-history theory centres on the concept that trade-offs exist between reproduc-

tive investment and survival [1–4]. Trade-offs are mediated by processes that

compete with each other for resources that are potentially limited [1,4,5]. How-

ever, the physiological systems that mediate such trade-offs are still debated

[6,7]. At present, two major physiological processes are being discussed as poten-

tial mediators: the endocrine and the redox systems [6,8–10]. Among endocrine

signals, glucocorticoid hormones (GCs) have emerged as systemic regulators of

life-history trade-offs [11–14]. GCs are often referred to as ‘metabolic hormones’

because one of their main functions is the mobilization of energy sources to sup-

port increased energetic needs of tissues [15–18]. These functions render GCs

prime candidates for mediating trade-offs that are based on energy allocation.

Indeed, high circulating concentrations of GCs, such as induced by the endocrine

stress response, can directly inhibit reproductive processes through actions on the

brain and the hypothalamic–pituitary–gonadal axis [13,15,16,19–21]. Hence, at

high stress-induced concentrations, GCs reduce investment in current reproduc-

tion and prioritize processes that promote survival behaviours like escape and

foraging to restore internal resources [19]. However, whether GCs play a role in

mediating such trade-offs at low baseline concentrations is less clear, although
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their involvement has been hypothesized [22]. Baseline

GCs are elevated when individuals experience increased

energetic demands [11,12,17,18,22–25], for example, in the

reproductive season when parents provision their offspring

[18,26–31]. These findings prompted the hypothesis that base-

line GCs may mediate trade-offs, but in an opposite way to

stress-induced concentrations: baseline GCs would support

investment in current reproduction at the expense of survival

[22,32,33]. However, thus far the evidence for GCs supporting

reproductive investment [22,26,34–37] or impairing survival is

mixed [22].

According to the ‘oxidative stress life-history theory’, trade-

offs can be a direct consequence of oxidative damages induced

by exposure to reactive oxygen species (ROS) that have signifi-

cant pro-oxidant effects [8,38–41]. If the concentrations of

ROS cannot be counterbalanced by antioxidant defences, oxi-

dative stress will ensue, which can generate cellular oxidative

damage [42–44]. ROS can damage vital molecules such as

DNA and proteins, impair cellular functionality and impact

longevity [44–46]. Oxidative costs can arise both from an

increase in oxidative damages and a change in antioxidant

concentrations [47–50]. Antioxidants can be upregulated to

cope with a pro-oxidant challenge or can be depleted when

ROS cannot be buffered, thus exposing the organism to

oxidative damage [46]. The central concept of the ‘oxidative

stress life-history theory’ is that ROS are produced proportion-

ally to metabolic rate. Since metabolic rate typically increases

during reproduction, more resources have to be allocated to

antioxidant protection [38–41,51]. While there is some evi-

dence that reproductive investment does entail oxidative

costs [52,53], the postulated positive association between meta-

bolic rate and the production of ROS has not been widely

supported [47,54,55]. At least partly, such conflicting results

could arise from the correlative approaches that have been

used in most investigations thus far, where individuals are

allowed to decrease their reproductive effort to minimize

exposure to pro-oxidants [47]. Therefore, experimental studies

in which the metabolic factors that cause cellular oxidative

stress are manipulated are essential to properly test this

hypothesis [54]. Moreover, we still need to understand whether

changes in the redox system that are within the normal physio-

logical range, and not only acute oxidative damage, are linked

to life-history trade-offs.

Increasing the workload of parents during the reproduc-

tive period in free-ranging individuals has been shown to be

an effective method to elevate their costs and two recent exper-

imental studies in swallows suggest an involvement of baseline

Cort in the resulting increased parental effort [56,57]. However,

neither of these studies investigated the existence of costs like

impaired survival or health state. Thus, the question of whether

baseline Cort mediates life-history trade-offs has not been con-

clusively answered. Likewise, a study that feather-clipped great

tits (Parus major) prior to the nesting phase did not reveal oxi-

dative costs of reproduction because manipulated parents

decreased their reproductive investment by laying smaller

clutches [58]. A recent study raised the workload of reprodu-

cing European starling (Sturnus vulgaris) females by

mounting a backpack radio transmitter, feather-clipping three

wing feathers or combining the two handicaps [59]. Cort con-

centrations were higher in individuals carrying a radio

transmitter but lower in individuals with both handicaps,

rendering the interpretation of the findings difficult. Females

subjected to both handicaps did show evidence of costs by
having increased concentrations of ROS and lower return

rates in the following breeding season [59].

The majority of the studies reviewed above conducted their

analyses at the population level, which can obscure processes

occurring at the individual level. For example, individuals

can differ in trade-off strategies depending on their body con-

dition or ecological circumstances, such that individuals in

optimal condition or living in high-quality environments can

maximize both survival and reproductive success [4,60–62].

Hence, analyses of individual variation are required to truly

understand life-history trade-offs and to test for direct links

between physiological measures and fitness.

Here, we experimentally increased energetic costs during

reproduction in a free-living bird species to test for effects on

fitness variables like reproductive investment and survival as

well as physiological mechanisms like baseline Cort concen-

trations and the redox system. We designed our experiment

along the lines of the ‘ideal manipulation’ concept [62] by

avoiding any direct effects of the experimental manipulation

on reproductive success (which in turn would influence

the reproductive investment of the parents) or on survival

(figure 1, arrows 1, 2 and 6). Instead, we aimed at inducing

physiological changes in experimental individuals to test for

consequences on reproductive investment and survival.

Specifically, we clipped three primary feathers on both wings

of male great tits (Parus major) during the offspring provi-

sioning phase to increase wing load and thus energetic costs

of flight and nestling provisioning (our measure of reproduc-

tive investment) [57,63–65]. With this experiment, we aimed

at testing whether baseline Cort, the redox system or both

may mediate the trade-off between reproductive investment

and survival. In general, we expected that the increase in

wing load, an unexpected worsening of conditions for parental

individuals, will lead to an upregulation in baseline Cort con-

centrations, to an increase in oxidative damage and to a change

in antioxidant concentrations (either increase or decrease) [48].

We analysed the resulting changes in male great tits both at the

population and the individual level.
2. Material and methods
The study was carried out between March 2015 and November

2017, in a mixed forest located in the district of Starnberg, southern

Germany (478990 N–118390 E; for further details on field work, see

electronic supplementary material). Adult great tits were captured

two times in their nest-box between 08.00 and 15.00 h by triggering

a remote-controlled flap at the nest-box entrance (for a time line,

see electronic supplementary material, figure S1). During the

first trapping, when chicks were 7 days old (electronic supplemen-

tary material, figure S1), we clipped three primary feathers on both

wings in experimental males (FC-males), leaving approximately

1.5 cm of the feather shaft intact. Control males (C-males) and all

females were caught and handled similarly, but had no feathers

cut. To assess the effect of the treatment, on chick day 12 males

were re-trapped and re-measured as described above. Following

each capture, a blood sample of maximally 80 ml was taken from

the wing vein within less than 3 min (see electronic supplementary

material) from the remote-controlled closure of the nest-box

entrance. The number of 15-day-old nestlings and their body

mass were recorded as proxies for fledging success.

One day before each trapping, we video-recorded the nest

provisioning rate of both parents, our proxy for reproductive

investment. Apparent survival was estimated by the presence/

absence of an individual at the study site in the following breeding
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season or during fall recaptures in the year after the experiment

[26]. Previous studies have suggested that presence/absence

data closely match actual survival rates of great tits [66]. Plasma

corticosterone concentrations were determined using enzyme

immunoassay following a double diethyl ether extraction (see elec-

tronic supplementary material). We measured changes in the redox

system by quantifying its two main components: the potential oxi-

dative damage incurred as well as the antioxidant defences (both

enzymatic and non-enzymatic antioxidants). Potential oxidative

damage was quantified by measuring the plasma levels of reactive

oxygen metabolites (ROMs; d-ROM test kit, Diacron International).

ROMs are organic hydroperoxides, end-products of the oxidation

of lipids, proteins and nucleic acids that are generated by hydrogen

peroxides produced primarily during mitochondrial respiration

[67]. The non-enzymatic antioxidants (OXY) present in the

plasma, which can be either produced by the organism or acquired

through the diet were quantified with a colorimetric assay (OXY-

Adsorbent test kit, Diacron International) [67]. The intra-cellular

antioxidant enzymatic activity was quantified through glutathione

peroxidase (GPx; kit Randox Laboratories) concentrations. GPx has

the unique function to enzymatically convert hydrogen peroxides

into water. We quantified protein carbonyl concentrations in red

blood cells (kit Cayman Chemical Company), which indicates

terminal oxidative damage to proteins [46], following a validated

protocol for birds [49]. All samples were measured in duplicates

(number of plates run for each assay and data on assay quality

are provided in the electronic supplementary material).

We were able to sample 43 males twice (23 FC-males and 20

C-males; n ¼ 86 repeated measures, but total n ¼ 112 including

individuals trapped only once). Before the onset of the experiment,

FC- and C-males did not differ in any of the variables measured

(see electronic supplementary material). To verify that the treat-

ment had no direct effects on reproductive success (figure 1,

arrow 1), we ran two separate general linear models with

number of fledglings and mean body condition of fledglings as

response variables. The body condition of nestlings (and that of

adults, see below) was calculated as body mass scaled by wing

length [68]. These models included treatment group as a fixed

factor while controlling for provisioning rate recorded on day 15,

year and hatching date. We next tested for direct effects of

feather-clipping on reproductive investment (figure 1, arrow 2)

by using a linear mixed model with nest provisioning (number

of nest visits � h– 1) standardized for brood size as the response

variable, including treatment and day of sampling (two levels:
day 7 and day 12) as fixed factors in a full factorial model. Individ-

ual identity was nested into treatment and included as random

factor [69]. We used similar models to determine whether

the feather-clipping manipulation affected aspects of male physi-

ology (figure 1, arrow 3), specifically using Cort concentrations

(ng ml– 1), body mass (g) and body condition as body mass

standardized for wing length (g) [68], d-ROMs (mM H2O2 equiva-

lents), Oxy (mM HOCl), GPx (Units—U l21) and protein carbonyls

(nmol mg21 of proteins) as response variables.

To investigate whether the physiological variables that changed

following the treatment could predict male reproductive invest-

ment (figure 1, arrow 4), we ran a repeated measure model with

provisioning rate per chick as the response variable and Cort,

body condition and GPx as predictors. Among the predictors, we

also included year because in 2015 Cort was higher, but GPx

lower and nestling body condition worse. The two groups were

analysed separately because they showed divergent changes in

physiological variables (treatment � time interactions; see Results).

Model selection was carried out using the Akaike information

criterion [70] for small sample sizes (AICc). We considered the

models with the lowest AICc value as well as those with an

AICc difference lower than 2 (electronic supplementary material,

tables S1–S3) [70]. The final model included the predictors that

were present in the majority of the best models and its AICc was

compared to the AICc of a null model that did not include any

predictors (intercept-only model).

To assess whether the physiological changes observed during

the experiment explained annual survival (figure 1, arrow 5; 0¼

not survived, 1 ¼ survived), we included change in GPx, Cort and

standardized body mass (i.e. all variables that were affected by the

treatment; changes were calculated as the difference between days

12 and 7) into a logistic model, together with year and treatment.

This model also allowed us to test for a direct effect of feather-

clipping on survival (figure 1, arrow 6). For reasons of sample

size, the two treatment groups were pooled for this analysis. Also,

changes in physiological variables were calculated because repeated

measurements of individuals were not available due to the nature of

the survival data. To provide a similarly structured analysis for

reproductive investment, we used changes in GPx, Cort and stan-

dardized body mass as predictors, together with year and

treatment in a model run for both treatment groups combined.

In addition to the analyses depicted in figure 1, we assessed

whether the Cort concentrations explained variations in the redox

system (i.e. whether Cort could potentially be a mediator of
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trade-offs). For this, we ran separate models for FC- and C-males

with the response variables being GPx, OXY, ROM and protein

carbonyl, respectively, and Cort being the predictor. A similar

model was used to assess the relationship between body condition

and Cort.

All analyses were performed using JMP v. 12.2.0 (SAS

Institute Inc. Cary, NC, USA), which provides a p-value for

each fixed effect in the model based on F- or x2-statistics by test-

ing the null hypothesis that the parameters associated with that

effect are zero. In line with this approach, we analysed post hoc
within-individual differences with the Tukey’s HSD test. For all

models, we used z-score normalized variables. All data are

given as means+ s.e.m. Further statistical details are provided

in the electronic supplementary material.
3. Results
(a) Treatment effects on reproductive success

and parental provisioning rate
Feather-clipping male great tits did not affect their reproductive

success (figure 1, arrow 1). Our final model for the number

of fledglings as a function of the feather-clipping included

hatching date and year as predictors and showed that FC-

and C-males did not differ in number of fledglings produced

(electronic supplementary material, table S1). Supporting this

finding, this model had a lower fit than the intercept-only

model. Similarly, the final model for the body condition

of fledglings as a function of feather-clipping showed that

fledgling condition did not differ for treated versus control

males (electronic supplementary material, table S1). Only

year explained the body condition of nestlings (F(1,43)¼6.91,

p ¼ 0.01), with condition being worse in 2015. Again, the null

model had a better AICc value than the final model.

The treatment did not affect the rate at which nestlings

were fed by their parents (figure 1, arrow 2). The final

model selected for nest provisioning as a function of the

feather-clipping included year, mate nest provisioning

and hatching date, but treatment did not significantly

explain nest provisioning and this model had a similar fit

than an intercept-only model (electronic supplementary

material, table S2). Overall, the provisioning rate of males

was positively associated with that of their female

partners (b ¼ 0.48+0.14, F1,85 ¼ 12.45, p , 0.001; electronic

supplementary material, table S2).
(b) Treatment effects on body mass, corticosterone and
redox system

Feather-clipping induced changes in three physiological

parameters of male great tits (figure 1, arrow 3). First, body

mass was significantly affected by the treatment, as FC-males

decreased body mass (change: 20.36+0.10 g, p ¼ 0.004)

while C-males did not (0.13+0.11 g, p ¼ 0.59; figure 2a;

table 1; electronic supplementary material, table S3A). The

final model also included number of fledglings, with heavier

males producing more fledglings (table 1; electronic supplemen-

tary material, table S3). Male body condition was similarly

affected by the treatment, as was body mass (table 1; electronic

supplementary material, table S3B). However, in the final model

for body condition, the number of fledglings was not retained

(electronic supplementary material, table S1B).

Second, variation in baseline Cort concentrations was sig-

nificantly explained by the treatment (figure 2b; table 1;

electronic supplementary material, table S3C), as FC-males

increased Cort over time after feather-clipping (change: 4.53+
1.44 ng ml21, p ¼ 0.015), while C-males did not (0.31+
1.56 ng ml21, p ¼ 0.99; figure 2; electronic supplementary

material, table S1C). The final model for Cort also included

bleeding duration, which increased with longer blood sampling

times (table 1; electronic supplementary material, table S3C).

Third, red blood cell GPx concentrations were affected by

the treatment and increased from day 7 to day 12 in FC-

males (change: 8.14+2.74 U l21, p ¼ 0.02) but not in C-males

(0.69+2.89 U l21, p ¼ 0.99; figure 2c; table 1; electronic sup-

plementary material, table S3D). Year was also included in

the final model (table 1, electronic supplementary material,

table S3D).

By contrast, feather-clipping did not affect ROM con-

centrations (electronic supplementary material, table S3E) or

protein carbonyl concentrations (electronic supplementary

material, table S3G), and the null model had the best fit for

ROMs and equal fit for protein carbonyl model. We then

included GPx in the models for ROMs, because hydrogen per-

oxides are produced by this enzyme, and obtained a better fit

of the final model compared to the null model (electronic sup-

plementary material, table S3F). Treatment still had no effect on

ROM concentrations, but ROMs were positively related to GPx

concentrations (table 1; electronic supplementary material,

table S3F). Finally, feather-clipping did not change plasma

OXY concentrations (electronic supplementary material, table



Table 1. Significant predictors of the best-supported repeated-measure models for physiological variables (for chick days 7 and 12). Model selection, whole
model and variance analysis of random effects are reported in electronic supplementary material, table S3A – F.

estimate s.e d.f. F p-value

body mass (R2¼ 0.89)

time � treatment 20.03 0.009 142.26 11.45 ,0.01

number of fledglings 0.27 0.12 147.31 5.03 0.03

body condition (R2¼ 0.98)

time � treatment 20.12 0.03 142.64 13.80 ,0.001

corticosterone (R2¼ 0.51)

time [day 7] 20.04 0.02 147.41 5.21 0.03

time � treatment 0.04 0.02 147.48 3.93 0.05

year [2015] 0.06 0.02 156.23 9.23 ,0.01

bleeding duration 0.24 0.11 181.4 4.72 0.03

GPx (R2 ¼ 0.16)

treatment [C] 20.05 0.02 136.84 4.47 0.04

time � treatment 0.05 0.02 141.23 4.92 0.03

year [2015] 20.07 0.02 141.93 41.92 ,0.01

ROMs (R2¼ 0.65)

GPx 0.18 0.07 1.74.69 5.80 0.02

OXY (R2¼ 0.55)

body mass 0.32 0.17 167.11 4.24 0.04
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S1H), but males with higher body mass had higher OXY levels

(table 1; electronic supplementary material, table S3H).

(c) Effects of physiological variables on reproductive
investment and survival rate

Reproductive investment (i.e. provisioning rate) of FC-males

was positively associated with variation in GPx between days

7 and 12 (figure 3a; table 2; electronic supplementary material,

table S4), but was not explained by Cort variation (arrow 4

in figure 1; electronic supplementary material, table S4).

FC-males in better body condition provided more parental

care (figure 3b; table 2; electronic supplementary material,

table S4). In a separate analysis, we found that in FC-males,

body condition was negatively related to circulating levels of

Cort (ß ¼ 20.14, F(1,22.91) ¼ 6.74, p ¼ 0.016; figure 3c), but not
to GPx (FC-males: F1,21¼ 1.81, p ¼ 0.19). The provisioning

rate of C-males was not explained by changes in Cort, GPx or

body condition (electronic supplementary material table S4).

Body condition of C-males was not explained by Cort levels

(F(1,20.48) ¼ 0.55, p ¼ 0.55) or GPx (F(1,20.79) ¼ 0.0005, p ¼ 0.98).

Since the model for survival (see below) was run by pooling

the two treatment groups and including the changes in physio-

logical variables from chick days 7 to 12 as predictors, we

ran the same model for reproductive investment as well.

None of Cort, GPx or body condition changes explained male

provisioning rates (electronic supplementary material, table S5).

In the year after each experimental manipulation, we

recorded the presence of 9 FC-males (39% survived) and 6 C-

males (30% survived) out of the 43 birds for which we have

repeated measures (figure 1, arrows 5 and 6). Irrespective of

the treatment (which did not affect survival), individuals that



Table 2. Only significant predictors of the best supported repeated measure model on provisioning rate as response variable for the two groups separately.
Model selection and variance analysis of random effects are reported in the electronic supplementary material, table S4.

standardized provisioning rate estimate s.e d.f. F p-value

feather-clipped (R2 ¼ 0.40)

year [2015] 0.08 0.034 124.77 5.91 0.022

body condition 0.30 0.13 119.54 5.50 0.030

GPx 0.34 0.15 139.89 5.17 0.028

controls (R2 ¼ 0.55)

none
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Figure 4. Apparent survival (1 ¼ yes, 0 ¼ no) versus change in glutathione
peroxidase concentrations (GPx; chick day 12—chick day 7). Red filled circles
indicate FC-males, blue open circles indicate C-males, black triangles show
mean values (+95% confidence intervals).
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increased GPx more were less likely to survive (electronic sup-

plementary material, table S6; b ¼ 4.84+2.28, F1,37 ¼ 6.18,

p , 0.01; figure 4). Neither changes in Cort or in body con-

dition were related to survival (electronic supplementary

material, table S5). Change in Cort concentrations also did

not explain any redox variable in either group (electronic

supplementary material, table S7).
4. Discussion
Increasing the workload of male great tits during nestling

provisioning by feather-clipping did not directly alter their

nestling provisioning rates, reproductive success or survival.

These were three important requirements for our study

(figure 1, arrows 1, 2 and 6) that enabled us to assess how

increased workload affects the physiological mechanisms that

mediate the life-history trade-off between reproductive invest-

ment and survival. In response to the experimental treatment,

feather-clipped males upregulated both Cort and GPx, and lost

3% of their body mass (similar results were obtained for body

condition). Furthermore, the increase in GPx in feather-clipped

males was positively related to their nest provisioning

rates, while individuals that upregulated GPx suffered lower

survival rates across treatment groups. We could not detect

similar physiological changes in control males and, in both

groups, individual changes in Cort concentrations did not
explain male provisioning rate or overwinter survival. These

results indicate a role of the redox system, in particular of

GPx concentrations, in the life-history trade-off between repro-

ductive investment and survival. While they cannot discount

an involvement of baseline Cort, the relationships observed

in feather-clipped males between body condition, parental

care and Cort suggest that its effect may be indirect, perhaps

through a link with body condition.

As predicted, baseline Cort concentrations increased in

feather-clipped male great tits. Our experimental manipulation

was successful, as Cort concentrations of FC-males at the end

of our experiment were within the range of baseline levels

observed for this species [26]. However, we found no associ-

ation between changes in Cort and nest provisioning rate of

males, our measure for post-hatching reproductive investment.

This finding suggests that baseline Cort does not mediate

investment in current reproduction. We cannot exclude an

indirect relationship between Cort and nest provisioning rates

via Cort’s link with body condition, because FC-males that

lost more body mass (standardized for body size) provisioned

their offspring less often, but showed higher levels of Cort

(figure 2).

An indirect involvement of Cort in regulating reproduc-

tive investment via body condition may in fact explain some

inconsistencies in the current literature. While some studies

show that absolute levels, as well as plastic changes, of baseline

Cort are positively associated with the degree of parental care

[26,27,36,71,72], other investigations disagree. For example,

two recent correlative studies showed a negative association

between chick feeding rates and baseline Cort concentrations

[30,73]. Thus, the relationship between Cort and reproductive

investment (or success) appears to vary across species and/or

environmental context. This is not surprising, because if base-

line Cort is intrinsically related to the energetic state of an

individual [16], variation in body condition or environmental

settings during the breeding season are expected to shape the

link between this hormone and fitness traits [74]. Indeed, a

recent three-year study in blue tits (Cyanistes caeruleus) demon-

strated that the relationship between circulating levels of Cort

during the parental phase and number of fledglings varied

among years with contrasting environmental conditions [75].

Likewise, a multi-year study in parental tree swallow females

showed that Cort increased after feather-clipping in females

that also decreased body mass [76]. Together with our present

data, these studies highlight that only by incorporating

measures of individual state (such as body condition) and

environmental context into our analyses can we achieve a full

understanding of the role of Cort in the regulation of life-history
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trade-offs (see also [74]). The present study focused on baseline

Cort, but other Cort traits like stress-induced levels (see Intro-

duction), the strength of the negative feedback to normalize

stress-induced concentrations production and the maximal

capacity to secrete Cort may also all play a role in regulating

life-history trade-offs [23].

Our experimental treatment did not reduce male nest visits,

demonstrating that we provided a metabolic challenge during

the reproductive season that allowed males to maintain their

initial degree of parental care [62]. This finding also demon-

strates that male great tits can cope with a deterioration in

conditions during parental care rather well, probably aided by

the observed changes in physiology. It is plausible that the

mass loss in FC-males, which has been observed in other species

subjected to a similar treatment [57,59], helped the birds to

decrease wing load and save energy [59]. Strikingly, the mass

loss recorded in our study was similar to that shown by

female starlings (3%), irrespective of the severity of their exper-

imental handicap [59]. However, mass loss did not attenuate

oxidative costs associated with feather-clipping as we did not

find any relationship between changes in mass and GPx

concentrations.

We did not identify a link between Cort and survival in the

present study. Even though our sample size was limited, the

finding that survival ratewas predicted by GPx changes demon-

strates that we had sufficient power to detect links between

physiological variables and this fitness-relevant trait. The lack

of an association between Cort and survival casts further

doubt on the idea that baseline Cort mediates reproductive

investment–survival trade-offs, at least in this species.

However, as suggested by the oxidative stress life-history

hypothesis [8,38,40], our study did identify an involvement of

the redox system in the reproductive investment–survival

trade-off. Feather-clipped males that invested more in parental

provisioning also upregulated GPx more strongly, and an

increase in GPx was associated with a lower survival rate

across treatment groups (figure 3). This pattern, however, did

not emerge in a statistical model in which we pooled the two

groups and included the calculated changes in the physiological

variables between the nestling days 7 and 12. This discrepancy

in results could be due to the fact that only FC-males, but not

C-males, showed changes in GPx and body condition, which

probably masked any association with a labile trait such as

nest provisioning. For this reason, we drew our conclusions

from the repeated measure model, which better represents the

real-time variation in the physiological and behavioural traits

of individuals in our experiment. The enzyme GPx is directly

involved in detoxifying intra-cellular hydrogen peroxides by

oxidizing glutathione [46], and its increase is generally associ-

ated with an increase in metabolic rate [77]. For example, in

model species ranging from rats to humans GPx can be upregu-

lated by 20–177% during low–medium endurance exercise

[78]. Likewise, GPx was also elevated in female great tits

caring for experimentally enlarged broods [79], in migra-

tory European robins (Erithacus rubecula) during nocturnal

endurance flight [80], and in short-tailed field voles (Microtus
agrestius) thermoregulating at low ambient temperatures [77].

However, high workload can also result in decreased levels of

GPx, as observed in zebra finches raising experimentally

increased brood sizes [50]. Indeed, GPx synthesis is expected

to be inhibited when the oxidative challenge is too high to

be buffered, because oxidative stress can damage the genes

responsible for encoding GPx expression [81].
The link between metabolic rate and GPx reviewed above

could be the cause of the observed GPx upregulation in our

feather-clipped male great tits (figure 3). Feather-clipping

increases the costs of flight [33,57,63–65], and because

feather-clipped males maintained provisioning rates at levels

similar to those of control males (table 1), they probably had

to elevate metabolic rate. The GPx increase apparently buffered

any workload-induced production of ROMs, as plasma ROM

concentrations did not change following feather-clipping.

However, we observed a positive association between GPx

and ROMs, suggesting that individuals that increased GPx

more also experienced a greater oxidative challenge. Moreover,

individual males that upregulated GPx had decreased chances

to survive to the subsequent year. Mounting an antioxidant

defence can be a costly process in terms of allocated resources,

especially when it involves the re-establishment of original

levels of reduced gluthatione (which are oxidized by GPx to

buffer the production of hydrogen peroxides [46]). While this

is the first study to report a survival cost of increases in GPx

concentrations, breeding Seychelles warblers (Acrocephalus
sechellensis) that upregulated total non-enzymatic capacity

(OXY) during reproduction also had a lower probability to

survive to the next year [82].

The negative association between GPx concentrations and

survival rate may represent a delayed cost, induced in two

potential ways: via cumulative damage caused by the initiation

of a costly process involving this enzyme [46,54] or, alterna-

tively, by a cell-signalling role of ROS [41,54,83,84]. Studies

on intra-cellular signalling of ROS, especially of peroxide mol-

ecules, show that they are able to regulate several processes

related to cell growth [84]. We did not find an increase in

plasma ROMs (i.e. extracellular organic hydrogen peroxides),

but in our study red blood cell GPx levels were positively

related to plasma ROM concentrations. We cannot exclude

the possibility that ROS concentrations increased inside the

cells of diverse tissues. Trade-offs could be mediated by just

small alterations of the redox system, and low ROS levels can

activate signalling pathways that regulate complex biological

processes [85]. Furthermore, not only ROS but also antioxi-

dants can have signalling effects [86]. For example, besides its

role as antioxidant, GPx can block the biosynthesis of prosta-

glandins, lipids with extensive vital roles including the

regulation of the vascular system, cell growth and inflamma-

tory processes, or affect apoptosis [86]. Thus, similar to

hormones, specific components of the redox system could

function as active mediators of life-history trade-offs.
5. Conclusion
Our results are in line with general predictions from life-history

theory but are the first experimental data that indicate a role of

the redox system in the reproduction–survival trade-off. The

current study also highlights the importance of experimental

approaches and individual-level analyses in investigations of

trade-offs. Furthermore, our findings emphasize the need

for further theoretical work. Thus far, the vast majority of

hypotheses that have considered the physiological processes

underlying life-history trade-offs propose associations between

absolute values of physiological traits measured at a single

point in time with those of life-history traits also measured

once in an individual. However, the physiological system is cru-

cial for responding to an array of external and internal
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challenges, and therefore analysing individual changes (or reac-

tion norms) are perhaps as important as absolute values, or even

more important [23,31,87–91]. The field is now ripe for the

development of quantitative predictions for the links between

changes in physiology and life-history decisions of individuals.
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86. Brigelius-Flohé R, Flohé L. 2003 Is there a role of
glutathione peroxidases in signaling and
differentiation? Biofactors 17, 93 – 102. (doi:10.
1002/biof.5520170110)
87. Williams TD. 2008 Individual variation in endocrine
systems: moving beyond the ‘tyranny of the Golden
Mean’. Phil. Trans. R. Soc. B 363, 1687 – 1698.
(doi:10.1098/rstb.2007.0003)

88. Dingemanse NJ, Edelaar P, Kempenaers B. 2010
Why is there variation in baseline glucocorticoid
levels? Trends Ecol. Evol. 25, 261 – 262. (doi:10.
1016/j.tree.2010.01.008)

89. Lema SC, Kitano J. 2013 Hormones and phenotypic
plasticity: implications for the evolution of
integrated adaptive phenotypes. Curr. Zool. 59,
506 – 525. (doi:10.1093/czoolo/59.4.506)

90. Hau M, Goymann W. 2015 Endocrine
mechanisms, behavioral phenotypes and
plasticity: known relationships and open
questions. Front. Zool. 12, S7. (doi:10.1186/
1742-9994-12-S1-S7)

91. Taff CC, Vitousek MN. 2016 Endocrine flexibility:
optimizing phenotypes in a dynamic world? Trends
Ecol. Evol. 31, 476 – 488. (doi:10.1016/j.tree.2016.
03.005)

http://dx.doi.org/10.1016/j.biocon.2015.10.021
http://dx.doi.org/10.1016/j.biocon.2015.10.021
http://dx.doi.org/10.1016/S0891-5849(00)00263-X
http://dx.doi.org/10.1016/S0891-5849(00)00263-X
http://dx.doi.org/10.1152/physrev.00031.2007
http://dx.doi.org/10.1525/cond.2010.080071
http://dx.doi.org/10.1371/journal.pone.0097650
http://dx.doi.org/10.1038/nrm3352
http://dx.doi.org/10.1038/nrm3352
http://dx.doi.org/10.1111/1365-2435.12861
http://dx.doi.org/10.1093/biosci/biw176
http://dx.doi.org/10.1021/bi9020378
http://dx.doi.org/10.1016/j.cub.2014.03.034
http://dx.doi.org/10.1002/biof.5520170110
http://dx.doi.org/10.1002/biof.5520170110
http://dx.doi.org/10.1098/rstb.2007.0003
http://dx.doi.org/10.1016/j.tree.2010.01.008
http://dx.doi.org/10.1016/j.tree.2010.01.008
http://dx.doi.org/10.1093/czoolo/59.4.506
http://dx.doi.org/10.1186/1742-9994-12-S1-S7
http://dx.doi.org/10.1186/1742-9994-12-S1-S7
http://dx.doi.org/10.1016/j.tree.2016.03.005
http://dx.doi.org/10.1016/j.tree.2016.03.005

	Enzymatic antioxidants but not baseline glucocorticoids mediate the reproduction-survival trade-off in a wild bird
	Introduction
	Material and methods
	Results
	Treatment effects on reproductive success and parental provisioning rate
	Treatment effects on body mass, corticosterone and redox system
	Effects of physiological variables on reproductive investment and survival rate

	Discussion
	Conclusion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgement
	References


