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Agricultural, industrial and urban development have all contributed to

increased salinity in streams and rivers, but the likely effects of future devel-

opment and climate change are unknown. I developed two empirical models

to estimate how these combined effects might affect salinity by the end of

this century (measured as electrical conductivity, EC). The first model pre-

dicts natural background from static (e.g. geology and soils) and dynamic

(i.e. climate and vegetation) environmental factors and explained 78% of

the variation in EC. I then compared the estimated background EC with cur-

rent measurements at 2001 sites chosen probabilistically from all

conterminous USA streams. EC was more than 50% greater at 34% of

these sites. The second model predicts deviation of EC from background

as a function of human land use and environmental factors and explained

60% of the variation in alteration from background. I then predicted the

effects of climate and land use change on EC at the end of the century by

replacing dynamic variables with published projections of future conditions

based on the A2 emissions scenario. By the end of the century, the median

EC is predicted to increase from 0.319 mS cm21 to 0.524 mS cm21 with over

50% of streams having greater than 50% increases in EC and 35% more than

doubling their EC. Most of the change is related to increases in human land

use, with climate change accounting for only 12% of the increase. In extreme

cases, increased salinity may make water unsuitable for human use, but wide-

spread moderate increases are likely a greater threat to stream ecosystems

owing to the elimination of low EC habitats.

This article is part of the theme issue ‘Salt in freshwaters: causes, ecological

consequences and future prospects’.
1. Introduction
Anthropogenic salinization of rivers and lakes is increasingly recognized as an

emerging threat to freshwater resources, biodiversity and ecosystem functions [1].

The ‘salinization syndrome’ [2] is the result of the combined effects of anthro-

pogenic salt inputs, accelerated geological weathering and weathering of

construction materials (i.e. concrete and cement). Humans release salts in the

form of a variety of ions (calcium, magnesium, sodium, bicarbonate, sulfate,

chloride, etc.) via diverse activities such as industry, agriculture, resource

extraction and transportation [3]. In addition to accelerating weathering by

releasing strong acids, humans also now move more geological material than

natural processes by an order of magnitude [4,5], speeding up weathering by

exposing more rock. The problem of increased inputs is further compounded

by increased evaporative concentration of salts resulting from human activities.

Damming of rivers has been linked to increasing evaporative concentration,

causing 12% of the salinization along the Colorado River [6]. As an example,

a fourfold increase in salinity along the Rio Grande River has been related to

evaporation exacerbated by management and irrigation practices [7]. Human-

caused climate change also increases temperatures, which, in turn, increase

evaporative concentration [4] and in some regions decrease precipitation,
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Figure 1. Observations of EC used in this study. (a) EC at 1935 reference-quality sites (i.e. determined to be minimally disturbed by human activities affecting EC).
(b) EC at 2001 probabilistic sites (i.e. sites chosen randomly with respect to size) sampled as part of the National River and Stream Assessment (NRSA).
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causing lower dilution and greater salt concentrations.

Increased salinity in freshwater systems is expected to cause

extensive changes in biota and potentially in ecological

function, and some losses of freshwater resources. Ephemer-

optera, Plecoptera and Trichoptera are generally sensitive

to increased salinity, so salinity increases greater than

1.5 mS cm21 result in them being replaced by Diptera,

Coleoptera, Odonata and Hemiptera [8]. This alteration of

composition can then result in a shift in ecological function

as key organisms like Trichopteran shredders are removed

and not replaced by taxa performing similar functions. In

the USA, stream salinity (measured indirectly as specific elec-

trical conductivity, EC) naturally varies over four orders of

magnitude, from less than 0.01 to greater than 12 mS cm21

[9]. However, human activities can increase EC to over

54 mS cm21 [10], the average concentration of seawater.

Increased EC can make freshwater resources no longer suit-

able for human use. EC above 3 mS cm21 is considered no

longer usable for irrigation [11] and above 5 mS cm21 water

is no longer suitable for many industrial uses [12].

Although we know salinization is increasing, we lack an

estimate of how pervasive it might be, or how much more

change is possible given forecasted changes in land use and

climate. Long-term monitoring has shown increasing salinity

in streams across the USA over the last 25 years [2], but our

ability to make inferences about the pervasiveness and sever-

ity of salinization is limited by the number of places with a

sufficient record of EC. Examining past trends also does not

account for the predicted spatial patterns of land use and

climate changes. The SPARROW (SPAtially Referenced

Regressions on Watershed attributes) model relates salinity

to both natural and anthropogenic drivers [13] and could

be used to estimate the current loadings derived from

human activities, but does not allow estimates of future

loads or concentrations. Understanding the extent, severity

and locations of future salinization is needed to take steps

to manage and protect freshwater resources [1]. To effectively

address the challenge of salinization, we specifically need to

know how much salinity in streams has already been altered

by human activities and how much more alteration is likely

with increasing development and climate change.

To better understand how much EC has already changed,

and how much more change might be expected, my objectives
were to: (1) empirically model background salinity using both

static (e.g. geology) and dynamic (e.g. climate) natural environ-

mental factors, (2) determine the amount of current alteration

in salinity by comparing current salinity with predicted back-

ground, (3) model this alteration as a function of modelled

current land use and climate, and (4) replace predictions of cur-

rent land use and climate with future predictions to estimate

EC at the end of the century.

2. Material and methods
(a) Data
I used two datasets of observed stream EC as response variables

and an associated set of watershed environmental predictor vari-

ables to train the background and alteration models. The

background model used a reference dataset measured at sites

minimally affected by human activity. The alteration model

used a dataset measured at sites probabilistically selected repre-

senting the range of effects that human activity has on stream EC.

Although high flows and winter road salt applications can

result in transport of high loads, I limited both datasets and

resulting models to summer base-flow conditions because more

data were available for modelling during this period and EC

has a high potential to affect both human uses and aquatic

life during low base-flows. Predictors used in both models

included static (e.g. geology, long-term atmospheric deposition

and soils) and dynamic (e.g. climate, vegetation and land use)

characterizations of the watershed environments.

(i) Reference dataset
I used EC data collected at base-flow by multiple agencies from

1935 reference-quality sites (figure 1a; electronic supplementary

material, table S1). Most data were collected during single

visits, but in cases where multiple measurements were made, a

single sample was chosen at random. I verified that upstream

watersheds were only minimally altered by human activities, fol-

lowing Olson & Hawkins [14] (except atmospheric deposition,

which was treated as a natural variable because natural and

anthropogenic sources cannot be distinguished). From 2449 can-

didate sites, I removed any site with greater than 10% urban or

agricultural land use. I then used aerial photographs and maps

to examine the watersheds of all sites with greater than 1%

urban or agricultural land use or greater than 1 mS cm21 EC

and eliminated any site with evidence of activities that would

influence EC (e.g. mining, ranching and forestry). The remaining



Table 1. Potential predictor variables.

environmental
factor data source predictors

static predictors

geology geochemical and geophysical characteristics of the conterminous USA

(www.sciencebase.gov/catalog/folder/53481333e4b06f6ce034aae7)

% rock CaO

% rock MgO

% rock Na2O

% rock N

% rock P2O5 % rock SiO2

% rock Al2O3 % rock Fe2O3

% rock K2O rock strength

rock hydraulic conductivity

soil NRCS STATSGO Database (soils.usda.gov/survey/geography/statsgo/) bulk density permeability

soil erodibility

(K factor)

Soil Data Task Group soil organic carbon

atmospheric

deposition

National Atmospheric Deposition Program 10 year average concentration of

wet deposition (nadp.sws.uiuc.edu/NTN/maps.aspx)

Ca2þ

Mg2þ
SO4

22

topography National Elevation Database digital elevation models (DEMs) relief ratio elevation

(http://ned.usgs.gov/) shape factor watershed area

geography latitude longitude

dynamic predictors

vegetation and

land use

USGS, land carbon conterminous United States land-use/land-cover mosaics

1992 – 2100, for A2 emission scenario

(http://landcover-modeling.cr.usgs.gov/projects.php)

% evergreen

% deciduous

% canopy

% developed

% mine

% crop

% clear cut % hay/pasture

climate dynamically and statistically downscaled GCM data from NCAR Community

Climate System Model v. 3.0 using A2 mid-high scenario

minimum temperature

maximum temperature

annual precipitation

minimum precipitation

Hawkins et al. [16] dryness index
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1935 sites were well-distributed geographically (figure 1a),

although more sites were located in mountains than lowlands.

(ii) Probabilistic dataset
I used EC data collected by the U.S. Environmental Protection

Agency (EPA) from 2001 sites that were sampled in support of

the National River and Stream Assessment (NRSA, [15],

figure 1b). These sites were selected using a spatially balanced

sample representative of the range of perennial streams across

the contiguous USA designed to provide statistically representa-

tive assessments of the physical, chemical and biological

conditions of streams and rivers. A total of 146 sites from the

NRSA dataset had little to no human activity upstream and

were, therefore, also included in the reference condition dataset.

I excluded sites with contributing areas greater than 1 � 106 km2

(i.e. sites on the lower Missouri and Mississippi Rivers) because

of the excessive computational time needed for analysis of

these watersheds.

(iii) Potential environmental predictors
For each site in the reference and probabilistic datasets, I calcu-

lated watershed averages of 36 predictors (table 1) representing

natural and human environment using ArcGIS [17]. Potential
predictors were chosen based on observed importance in pre-

vious modelling [14,18]. I used model estimates of the current

conditions for the dynamic predictors (i.e. climate and land

use) instead of more direct observations so estimates of both cur-

rent and future conditions would be based on data derived in the

same manner. The background and alteration models were both

trained using climate and land use model hindcasts as dynamic

predictors. End of the century EC predictions were then made

using climate and land use model forecasts for 2100 based on

the A2 emissions scenario developed by the Intergovernmental

Panel on Climate Change (IPCC) Special report on emissions scen-
arios [19] as dynamic predictors. Estimates of current and future

climate were derived from the National Center for Atmospheric

Research (NCAR) Community Climate System Model v. 3.0,

which were bias corrected and downscaled to 4 km2 by applying

a combination of dynamic and statistical downscaling methods

(see [20] for details). Current and future land use estimates

were based on the US Geologic Survey Earth Resources Obser-

vation and Science (EROS) Center’s FORE-SCE model, which

spatially allocates land use change associated with the A2 emis-

sion scenario to create rasters of projected land use at a 250 m

resolution [21]. These land use allocations were based on logistic

regression models that used biogeophysical and socioeconomic

conditions as predictors.

http://www.sciencebase.gov/catalog/folder/53481333e4b06f6ce034aae7
http://ned.usgs.gov/
http://ned.usgs.gov/
http://landcover-modeling.cr.usgs.gov/projects.php
http://landcover-modeling.cr.usgs.gov/projects.php
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(b) Modelling and analysis steps
1. Empirically model background salinity (Objective 1). To esti-

mate site-specific background EC expected to naturally occur

in streams across the USA, I constructed a random forest

model [22] that related EC observed at minimally disturbed

reference streams to upstream watershed environmental attri-

butes (following [14]). Because I developed this model to

predict natural background EC, I excluded human land uses

from the potential predictors evaluated for this model.

2. Determine the amount of current alteration in salinity (Objec-

tive 2). I estimated background EC at probabilistic sites by

applying their watershed environmental attributes to the

background model. To assess how well the reference dataset

used to train the background model represented the range of

naturally occurring environments observed in the probabilistic

dataset (following Vander Laan & Hawkins [23]), I: (1) calcu-

lated the average Euclidian multidimensional environmental

distance (using the predictors selected for the background

model) between each reference site and its 10 nearest neigh-

bours in the reference dataset to produce a distribution of

nearest-site distances, (2) calculated the multidimensional

environmental distance between each probabilistic site and

its 10 nearest reference sites and then (3) classified probabilis-

tic sites as within the reference site environmental space if the

average distance to its 10 nearest reference sites was within the

99th percentile of nearest-neighbour distances observed for all

reference sites. Based on this analysis, 95% of the probabilistic

sites were classified as within the same environmental space

as the reference sites. I then estimated the amount of current

alteration in EC by subtracting the estimated background EC

at probabilistic sites from the EC observed at these sites. See

also electronic supplementary material, table S2 for compari-

son of the distributions of environmental predictors in each

dataset.

3. Empirically model current salinity alteration (Objective 3).

I developed a second random forest model to relate site-

specific alterations in EC (i.e. differences between observed

and predicted background EC at probabilistic sites) as a func-

tion of upstream human land uses (e.g. % crops or developed

land) and the same natural factors used in the background

model. EC expected in the presence of anthropogenic land

use was estimated by adding EC predicted by the background

model to the change in EC due to human land use predicted

by the alteration model.

4. Estimate the salinity at the end of the century (Objective 4).

I estimated values of EC expected at the end of the twenty-

first century at each of the probabilistic sites by adding

future changes in EC predicted by the alteration model to

the future EC predicted by the background model. Predictions

of future ECs were derived by replacing the FORE-SCE land

use and NCAR Community Climate System Model climate

hindcasts with end of century values in the background and

alteration models. I also assessed the relative impacts of

climate versus land use by comparing the amount of change

expected by predictions based on only future climate

change, only future land use change, and both combined.

(c) Model development and performance assessment
The background and alteration models were constructed using a

forward selection method described in Hill & Hawkins [24]. This

variable selection method adds predictors one at a time until no

improvement is seen in model performance. Models were built

with the ‘randomForests’ package in R with default settings

except I built 1500 trees and used the bias correction feature.

I assessed model performance by calculating R2 and root mean

squared error (RMSE) of the data not selected for the
construction of each individual tree (out-of-bag data), which is

analogous to cross-validation [25]. Although estimates of predic-

tive ability using external validation would also be valuable in

assessing model performance, previous comparisons of the per-

formance of similar models evaluated with both out-of-bag

and external validation data showed R2 values for external

data within 0.1 of the R2 values calculated from out-of-bag

data [14]. It is also not clear how informative external validation

based on current conditions would be for predictions of future

conditions. Therefore, to maximize the amount of environ-

mental variation in the training datasets (and thus the

generality of the resulting models), I used all data to train

models, and sacrificed the ability to assess model performance

using external validation data.
3. Results
(a) Empirically model background salinity
The model predicting background EC used 10 predictors,

including variables associated with watershed geology, cli-

mate, vegetation and soils. The relationships of these

natural factors to background EC (electronic supplementary

material, figure S1) are similar to those relationships seen in

earlier models (see [14]). This model had an R2 of 0.78 and

an RMSE of 0.067 mS cm21 (electronic supplementary

material, figure S2). Figure 2a shows the background

expected at the probabilistic NRSA sites derived from the

background model.

(b) Determine the amount of current alteration
in salinity

Comparing background EC at probabilistic sites (figure 2a) to

that currently observed (figure 1b) shows that EC has been

altered greatly in parts of the USA (figure 2b). EC increased

by more than 50% over background levels at 34% of prob-

ability sites. The largest relative increases occur in the

highly developed Northeast and the agricultural Midwest.

The greatest ECs and absolute increases tend to occur in the

central Great Plains, which is affected by a combination of

agriculture, groundwater pumping and resource extraction

(i.e. oil, gas and coal). A minority of sites had lower ECs

than predicted, although except for sites in the Great Plains

and western mountains these differences were less than

0.1 mS cm21. A portion of these differences are likely due

to model error, but groundwater pumping and inter-basin

transfer likely contribute to the largest decreases. Many

sites showed little to no absolute change from background

conditions (the mode of the distribution in figure 3a is near

0), but 17% of sites showed greater than 0.5 mS cm21 increase

in EC. Comparing the distribution of background EC with cur-

rent EC (figure 3b) shows a shift from low EC conditions (less

than 0.2 mS cm21) to much higher ECs (greater than

1 mS cm21), with the median increasing from 0.214 mS cm21

to 0.319 mS cm21.

(c) Empirically model alteration of current salinity
The alteration model (developed using deviations from back-

ground shown in figure 2b) included 11 predictors (electronic

supplementary material, figure S3) associated with land use,

but also climate, soils and geology. The inclusion of natural

factors in the alteration model was necessary to incorporate
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absolute change in mS cm–1predicted natural background EC at NRSA sites (mS cm–1)
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Figure 2. Predicted natural and altered EC at 2001 probabilistic sites sampled as part of the NRSA programme. (a) Predicted background EC at each site. (b) Change
in EC from background shown as per cent change (colour gradient) and absolute change (symbol size). Both the relative and absolute changes are characterized
using the same scale as figure 4b to allow for easy comparisons.
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Figure 3. Comparisons of current observed EC with background. (a) Kernel density plot showing the distribution of the differences in EC (current observed 2

natural background). (b) Histogram comparing the distributions of background EC to that currently observed (in 2008 – 2010).
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the effects of interactions between natural factors and land

use (e.g. agriculture has a larger effect on EC in arid areas

than in humid areas, see electronic supplementary material,

figure S4 for an example of this interaction). Human land

uses (i.e. % crops, % pasture/hay, % developed and %

mining) were all associated with increasing EC (electronic

supplementary material, figure S3), but were of lower impor-

tance than the interacting climatic and geological factors. The

alteration model had an R2 of 0.60 and an RMSE of

0.604 mS cm21 (electronic supplementary material, figure S5).

The predicted current EC at probabilistic sites (derived by

adding expected alteration to background) had an R2 of 0.66

(electronic supplementary material, figure S6).
(d) Estimate the salinity at the end of the century
EC predicted to occur at the probabilistic sites by the end of

the twenty-first century (figure 4a) indicates that salinity is

expected to continue to increase, with EC values greater

than 0.5 mS cm21 becoming common. The relative and absol-

ute differences from current observed EC (figure 4b) are

predicted to be even larger than changes seen between back-

ground and current conditions (figure 2b). The estimated EC

in 2100 was more than double current observed EC at 700

sites (35%) and increased by greater than 50% at just over

half of sites. The most extensive relative and absolute EC

increases occurred in the South, although large relative and

absolute increases also occur throughout the Southwest and

the Great Plains. Areas that have already been heavily altered
like the Midwest and Northeast showed the least amount of

change in the future. However, areas where EC has changed

little like the arid Southwest and Pacific Northwest show

large relative increases by 2100, with many sites increasing

by more than 100%. In the arid Southwest, many sites are

expected to have EC greater than 1 mS cm21. Absolute

changes in the Pacific Northwest are much smaller (less

than 0.1 mS cm21), but fewer sites now have EC values less

than 0.1 mS cm21 normally expected in this region. EC was

predicted to decrease by more than 50% at 32 sites, owing

to increased precipitation (median increase of 47 mm yr21

for these sites). Most sites showed increases by 2100

(figure 5a), with the estimated EC increasing at 20% of sites

by greater than 0.5 mS cm21. Comparing the current distri-

bution of EC to that expected at the end of the century

(figure 5b) shows that low EC conditions (i.e. less than

0.2 mS cm21) may no longer be the most frequent. The

median EC is expected to increase from its current value of

0.319 mS cm21 to 0.524 mS cm21.

The amount of change in EC calculated by changing only

climate values, only land use values, and both (figure 6),

showed that on average land use changes accounted for

more of the predicted change in EC than did climate.

Future EC changes predicted from only changes in climate

on average accounted for 12% of the total amount of

change expected by 2100 whereas land use alone accounted

for 55%. Mean EC increased 0.035 mS cm21 (5%) when only

changes in climate were applied, compared with

0.049 mS cm21 (8%) applying only land use changes.



(a) (b)

absolute change in mS cm–1predicted 2100 EC at NRSA sites (mS cm–1)

<0.1 >20.1–0.2 0.2–0.3 0.3–0.5 0.5–2.0 <0.1 >1100–200%50–100%–50–50%<–50%

per cent change

>200% 0.1–0.5 0.5–1.0

Figure 4. Modelled changes in low-flow, stream EC at probabilistic sites in 2100. (a) Site-specific predictions of stream EC in 2100. (b) Relative (% change indicated
by colours) and absolute (indicated by bubble size) changes in EC between modelled future (2100) and current EC.
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Figure 5. Comparisons of current observed EC with predicted end of century EC. (a) Kernel density plot showing the distribution of the differences in EC (2100
EC 2 current observed). (b) Histogram comparing the distributions of EC currently observed (in 2008 – 2010) to EC distribution expected in 2100.
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4. Discussion
The background model had similar performance to that

observed in previous EC models developed for the western

and contiguous USA [14,18]. However, the explanatory

power of the alteration model was relatively low because I

used only per cent land use as a measure of the effects of

human activities on stream EC. Other models predicting

regional stream EC from land use have also reported low
R2 (i.e. 0.49 [26] and 0.23 [27]). Factors like impervious sur-

face cover or population density may have more

explanatory power than the per cent land use, but projections

of how these factors might change in the future were not

available. Because I developed this model to explore how

EC might change in the future, I restricted explanatory vari-

ables to those with future predictions. The R2 between log

observed and log predicted EC was 0.72, similar to results

obtained by the SPARROW model [13] for predicting

salinity at 2560 water quality monitoring stations in the

USA (R2 ¼ 0.67). The ability of the combined background

and alteration models to predict current EC conditions

suggests that although future predictions based on these

two models may be reasonable, they are not very precise.

These predictions do provide a better understanding of

how EC might potentially change in the future, and increased

precision in these estimates should be pursued only after a

better understanding of the full range of possible changes

in EC have been determined.

These models represent a first step in quantifying the

amount of salinization that might be expected given fore-

casted changes in climate and land use, but estimates of the

range of possible salinities are still needed. This study only

develops a single model, using a single set of future climate

and land use forecasts, all based on a single emission scen-

ario. To better understand the possible range of future

salinities, additional work is needed to develop estimates

based on a suite of other emission scenarios, using other fore-

casts of climatic conditions (i.e. other global climate models

and other downscaling approaches), and other forecasts of



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20180005

7
land use (e.g. Future Land-Use Simulation system [28] and

Integrated Climate Land Use Scenario [29]). Examining the

array of combinations of models and scenarios would

better establish both the most probable change expected

and the range of future salinities that might occur. Because

land use was the predominant factor driving changes in

future salinity (figure 6) and land use models can vary

greatly in their predictions [30], quantifying the amount of

uncertainty in predictions of future salinity is certainly

needed. However, understanding of how much salinity

might change in the future is also needed now to provide

time to adapt and plan for these changes. Although this

study only provides single estimates of future salinity,

these estimates are still useful in understanding how much

change in salinity is possible and how changes in salinity

vary spatially.

The estimates of recent changes in EC (from background

to the present) from this study (figure 2b) matched well the

measured trends in EC observed by Kaushal et al. [2], but pro-

vided a more spatially complete view of how EC is changing

across the USA. Both maps showed the greatest increases in

EC occurring in the Northeast and Great Plains regions.

Both studies showed most streams in the arid Southwest

with decreasing or stable EC. Kaushal et al. [2] showed

increasing EC also occurring frequently across the Southeast,

but the estimated changes from background EC in this study

were generally small (i.e. increases were generally less than

50% and 0.1 mS cm21).

The amount of current and future alteration in stream ECs

due to climate and land use change varies greatly among

individual streams, but has generally increased nationwide

and is expected to increase more this century. The median

EC has already increased approximately 0.1 mS cm21 from

that predicted by the background model, and the median is

expected to increase an additional 0.2 mS cm21 by 2100.

Stream ECs in the Southeast and some parts of the Northwest

showed relatively little alteration of EC currently (figure 2b),

but had some of the largest expected increases in EC by 2100

(figure 4b), resulting in additional losses of low EC habitats

over the century.

As EC increases, the increasing salt concentrations

will lower the quality, and in some cases the quantity, of our

water resources. The EC model predicts that by 2100 12% of

streams will have ECs greater than 2 mS cm21 (figure 5b),

making them of ‘doubtful quality’ for irrigation [11]. Increas-

ing chloride and sulfate concentration (often the anions

associated with increasing salinity) can also cause corrosion

of water distribution systems, releasing lead or copper into

water supplies [31]. The 3% of streams that are currently unu-

sable for irrigation because their ECs are greater than

3 mS cm21 is expected to double by 2100, compounding

losses of water resource availability caused by increasing

droughts and other climate change effects.

The effects of the predicted increases in EC on aquatic

biota are likely to be even greater than the expected effects

on water resources. Biota are adapted to the range of salinities

that occurred naturally, and as EC values of streams increase

from this background range those taxa adapted to low EC

will be increasingly disadvantaged. Low EC streams (i.e.

streams with EC less than 0.2 mS cm21) were the dominant

EC habitat under natural conditions (figures 1a, 2a and 3b).

Currently, 27% of these low EC habitats that likely existed

in the past now have ECs greater than 0.2 mS cm21. The
future EC predicted in 2100 indicates losses of an additional

42% of this habitat, for a total loss of 69% of low EC habitat

in which most taxa evolved. Loss of these low EC habitats

would stress the biota in these systems adapted to low

salinity environments [32,33], leading to taxa losses, shifts

in composition and potentially changes in ecosystem

processes [34].

Because both the sensitivity of different taxa to increas-

ing EC [8,33] and the background EC vary widely,

predicting how biota might respond to EC increases must

be evaluated on a case by case basis. Taxa in streams with

naturally low ECs will respond differently to a

0.1 mS cm21 increase compared with taxa found in a natu-

rally high EC stream [33]. For example, sites in the

Southeast with background ECs of less than 0.1 mS cm21

(blue dots in figure 2a) are expected to have ECs at the

end of the century greater than 0.3 mS cm21 (orange and

red dots in figure 4a). Cormier et al. [33] predicted losses

of 5% of freshwater invertebrate taxa when streams with

current ECs of less than 0.1 mS cm21 increase to over

0.243 mS cm21 (equation (1) from [33]).

In addition to extirpation of taxa from individual streams

due to increased EC, the region-wide changes in EC pre-

dicted may result in regional extirpations. Many of the

increases in salinity shown in figures 2b and 4b are spatially

aggregated, as the agricultural, urban or mining causes of

these changes are also aggregated. Increases of EC for all

streams in a region may end up having disproportionate

effects on taxa by disrupting meta-populations through the

elimination of refugia from temporary disturbances or

source populations that maintain meta-population dynamics.

Changes in mean EC due to climate change alone were

associated with 5% increases, compared with 10–15%

increases in the mean seen by Dieu Hien et al. [35]. Predic-

tions of changes in macroinvertebrate distributions also

show larger responses to land use than climate change

alone [36]. However, the effects of climate change will be

much more pervasive, affecting even streams protected

from anthropogenic impacts. Increased EC in all streams in

a region including protected streams could potentially lead

to local extirpation of salinity sensitive taxa [37].

These predictions help illustrate the extent and sever-

ity of future salinization of rivers and streams. Because

model predictions are site-specific, they can be used to

identify sites that are already degraded, vulnerable, or

resistant to increasing EC, and appropriate plans made

to protect them or to mitigate damage. The predictions

of increasing salinization of streams and rivers highlight

the need for effective management and regulation

to ensure we protect water resources and freshwater

ecosystems [1,33].

Data accessibility. The datasets supporting this article are available from
the Dryad Digital Repository at: http://dx.doi.org/10.5061/dryad.
jt1kt04 [38] and are detailed in the electronic supplementary material.

Competing interests. I have no competing interests.

Funding. This work was funded by the Sulo and Aileen Maki Endow-
ment at the Desert Research Institute.

Acknowledgements. I am indebted to the work of field and laboratory
personnel who generated the primary data. Megan Dettenmaier,
Ben Poulsen and Nate McPherron helped with GIS analyses. Chuck
Hawkins and Susan Cormier commented on earlier versions of this
manuscript, and constructive comments from two anonymous
reviewers helped to substantially improve it.

http://dx.doi.org/10.5061/dryad.jt1kt04
http://dx.doi.org/10.5061/dryad.jt1kt04
http://dx.doi.org/10.5061/dryad.jt1kt04


8
References
rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20180005
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