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In many dry parts of the world, salinization of water resources threatens

freshwater biodiversity and the livelihood of people. However, ecological

impact studies remain scarce. Here, we review field-observations of salinity

impacts on ecosystem processes such as leaf decomposition, metabolism,

biomass production and nutrient cycling, with a special emphasis on dry-

land ecosystems. In addition, we discuss the potential linkages of these

processes to ecosystem service delivery—the benefits that humans derive

from ecosystems—as additional nature conservation arguments and the

challenges associated with this endeavour.

This article is part of the theme issue ‘Salt in freshwaters: causes, ecological

consequences and future prospects’.
1. Background
All life depends on water. Since water is scarce in drylands, rivers are the most

dominant factor shaping the ecology of these environments including people

[1]. Drylands occupy around 40% of the world’s land mass and host over

one-third of the world’s population [2,3]. However, little is known on the ecol-

ogy of dryland rivers compared with their temperate counterparts [4–6].

Intermittency is often found in these rivers, meaning that they cease to flow

or dry out for variable periods of time at differing locations [7]. Only recently

several publications have called for increased research efforts on such intermit-

tent rivers and ephemeral streams (IRES), partially driven by the fact that their

occurrence is expected to increase as many parts of the world have become

drier, a trend that is predicted to continue owing to climate change [4–6]. As

their temperate counterparts, dryland rivers, both perennial and intermittent,

are under extreme pressure from artificial flow modifications (e.g. dams for

irrigation, water retention or power generation, water abstraction, and channe-

lization for shipping), exotic species introductions, waste-disposal effluents

from households and industry, changes in catchment land-use (e.g. agriculture

and mining) and climate change [8–10]. These factors contribute variously to

changes in water physico-chemistry including salinization—the focus of this

special issue. In semiarid and arid regions, rivers and streams are often natu-

rally saline owing to underlying geology and high evaporation; however,

irrigation agriculture is one of the main causes of secondary, i.e. anthropogenic,

salinization [11,12], the mechanisms of which have been summarized and

management options suggested [13]. In addition, flow modifications through

dams, mining activities, and industrial and household wastewater input can

be important contributors. Although salinization is not a recent phenomenon

[14], studies on the ecological impacts are scarce [12,15]. The impacts of stres-

sors on river ecosystems are predominantly investigated through the lens of

structural descriptors of river biota, such as species richness, abundance diver-

sity and community composition [16]. Salinization of freshwater habitats has

been correlated with reduced biodiversity indices such as species or functional

richness and has been related to changes in aquatic community composition

(see references within reviews, [12,17,18]). It is known that freshwater organ-

isms have varying sensitivities towards salinity stress [19–22] and thus
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increasing salinity can safely be expected to alter community

compositions either directly (species loss due to toxicity) or

indirectly through altered species interactions [23,24],

irrespective of whether acting as a single stressor or in concert

with multiple stressors [25,26]. However, in the past 20 years,

nature conservation has departed from protecting species or

habitats for their intrinsic value towards preserving ecosystem

services—the benefits that humans derive from ecosystem

functions—as a stronger conservation argument [27–29].

For this reason, the interest in measuring ecosystem functions

in relation to environmental change directly has been increas-

ing, providing a potentially more suitable and mechanistic

link to ecosystem service delivery than species compositions

[30–34]. Unfortunately, the term ecosystem functions is

rather ill-defined and various meanings can be identified in

the literature [35,36]. It is used to refer variously to the habitat,

biological or system properties or processes of ecosystems [28].

Here, we understand ecosystem functions as a set of processes

that regulate the fluxes of energy and matter in ecosystems as a

consequence of the joint activity of organisms [33,37].

The aim of this review is to summarize the knowledge on

changes in ecosystem processes such as organic matter break-

down, metabolism and nutrient cycling in relation to salinity.

Our main interest was to advance understanding of anthro-

pogenic dryland salinization; however, anthropogenic as

well as natural salinity gradients in inland rivers from dry

as well as humid climates are considered, owing to the scar-

city of studies. Moreover, potential links to ecosystem service

delivery are discussed and research gaps identified.
2. Material and methods
We reviewed changes in ecosystem processes related to saliniza-

tion and natural salinity gradients in river ecosystems, focusing

on field studies in arid and semiarid regions. Salinity can alter

purely physical and chemical processes, as well as coupled bio-

geochemical cycles that mobilize, for example carbon, nitrogen,

phosphorus and sulfur [38]. However, we focused on studies

including aquatic organisms such periphyton, invertebrates or

fish. A recent review [20] has a stronger focus on salinization

impacts on chemical and biogeochemical cycles in aquatic

environments, though not focused on dryland rivers (see also

[38]). Ecosystem processes such as organic matter decomposition

as well as primary and secondary production are at the base of

many potential ecosystem services [36] and were the main

target of our search in the Web of Science. The key words

were: ‘salinization’ (or ‘salinit*’, ‘conductivi*’, ‘ion*’, ‘hardness*’)

and ‘ecosystem process*’ (or ecosystem function*, ‘purification’,

‘metabolism’, ‘productivity’, ‘production’, ‘biomass’, ‘decompo-

sition’, ‘regulation’, ‘uptake’, ‘removal’) and ‘river’ (or ‘aquatic’,

‘freshwater’, ‘lotic’, ‘stream’, ‘wetland’) and ‘dryland’ (or ‘arid’,

‘semiarid’, ‘dry’, ‘oasis’, ‘desert’) and ‘impact’ (or ‘affect’,

‘effect’, ‘correlat*’, ‘relationship*’, ‘gradient*’, ‘experiment*’).

Approximately 3000 publications were scanned by title, resulting

in approximately 150 studies that appeared to deal with salinity

impacts (excluding salinity gradients studied in estuaries) on an

ecosystem process. These were analysed in greater detail and

their reference lists as well as citing papers were screened for rel-

evant literature sources (footnote chasing). Studies from estuaries

or coastal wetlands were excluded, because our focus was on

inland rivers. Each study was classified into a climatic category

(hyper-arid, arid, semiarid or dry subhumid or humid) based

on reported location and the associated aridity index [3].

Owing to a scarcity of studies in real drylands, studies from

humid climates were also included for comparison, if all other
selection criteria were met (investigation of a biologically

mediated in-stream ecosystem process in relation to salinity

that is not influenced by seawater intrusion). Manipulative meso-

cosm studies were included, because of their power to

differentiate effects from correlated variables, although the litera-

ture search was not specifically targeting mesocosm studies and

their coverage may not be exhaustive. Single species studies

investigating growth, nutrient uptake or processing were not

considered, nor studies investigating the composition of species

without at least one process-oriented measure.

(a) Data analysis
The ranges of response variables were extracted from tables or

using Plot Digitizer v. 2.6.8 (http://plotdigitizer.sourceforge.

net) from figures as necessary. Reported salt concentrations

were converted to mS cm21; if reported in weights a factor of

0.7 was used to convert to electric conductivity. Response

patterns were classified based on the reported outcome in the

individual studies and were summarized into four broad

categories: increase, decrease, no response or an inverted

U-shaped response pattern (initial increase followed by a

decrease) based on statistical significance in the related studies.

For joint analysis of decomposition rates, results from four case

studies published in three papers were combined that were

most similar in terms of the methods used (deployment of

leaf bags (3�) and wood sticks (1�) that allowed decomposition

by microorganisms and invertebrates). Breakdown rates per

degree day (dday21) were standardized relative to the break-

down rate determined at a conductivity of approximately

1700 mS cm21, which was a level occurring across all studies.

Linear regression was used to analyse the relationship across

studies using the statistical software R, v. 3.4.1 [39]. The effect

of increased salinity on decomposition in different mesocosm

studies was compared by calculating the mean % difference in

leaf mass loss relative to the respective control level.
3. Results
The search criteria were met by 10 studies from semiarid cli-

mates in Australia, the USA and Spain, and a further eight

studies from humid climates in Australia, Canada, Japan

and Poland. Six studies investigated terrestrial leaf litter

decomposition [40–45], 11 studies looked at metabolism,

biomass production or dietary carbon source use

[41,43,46–54], of which two considered the dilution of natu-

rally saline streams as a stressor instead of salinization

[46,47]. Nutrient cycling (nitrate uptake and denitrification)

was addressed in two studies [55,56]. One study investigated

pollution attenuation [57]. A further study investigating pri-

mary and secondary production in an agriculturally

influenced prairie river was omitted, because siltation con-

founded the results and the sample size was too low [14].

The origin of salinity gradients in the field studies varied

from coal mining, through groundwater treatment effluents

and land-use change, to natural geology, and the salinity

ranges varied broadly (table 1). These differences as well as

the variety of applied methods render quantitative compari-

sons between studies difficult. The methods, salinity ranges,

sources, response ranges and response directions from the 13

field investigations and six mesocosm or microcosm exper-

iments are summarized in tables 1 and 2. For example, the

maximum considered salinity varied between 2 mS cm21

and more than 70 mS cm21, and some studies focused on

the spatial variability, investigating up to 24 sites; others

focused on temporal variability of a single site. The most

http://plotdigitizer.sourceforge.net
http://plotdigitizer.sourceforge.net
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Table 2. Summary of mesocosm and microcosm studies investigating ecosystem processes in relation to salinity changes. DE, decomposition; ME, metabolism;
BP, biomass production; RD, response direction of measured variables with increasing salinity (� negative association, � positive association, > inverted U-
shaped, — no clear response pattern); ref., reference; DO, dissolved oxygen.

process

country
and
climate experimental unit treatments

response variable
(method) RD ref.

DE Australia,

semiarid

mesocosms colonized

by microorganism

three salt types (sea

salt, NaCl and

NaHCO3), two salinity

levels (1,

10 mS cm21)

% leaf mass loss (fine

leaf bags)

fungal biomass (ergosterol

measurement)

�

—

[39]

DE Australia,

semiarid

mesocosms colonized

by microorganism

six salt (NaCl)

concentrations: (0,

0.05, 0.1, 0.2, 0.5,

1 mS cm21)

% leaf mass loss (fine

leaf bags)

>— [39]

DE Spain,

semiarid

artificial flow-through

stream systems

colonized with

invertebrates and

microorganisms

three salt concentrations

(sea salt): 5, 10 and

15 mS cm21, as

repeated pulses of

3 h duration

leaf mass loss (coarse litter

bags, Populus nigra)

fungal biomass

(as ergosterol)

biofilm biomass

(chlorophyll a)

�

>

—�

[43]

DE Portugal,

humid

microcosms

conditioned with

5000 fungal conidia

four salinity (NaCl)

concentrations: 0, 2.8,

5.7, 11.4 mS cm21

leaf mass loss (discs of

Quercus robur L.)

fungal respiration, growth

and sporulation rate

(oxygen consumption,

counting of conidia)

�

�

[44]

ME/BP Argentina,

humid

recirculating

microcosms with

stream colonized

glass tiles

salinity (NaCl) pulse

(30 min d21) and

press (72 h) exposure

with 1.5 mS cm21,

control with no salt

addition

biofilm biomass (chlorophyll

a concentration)

bacterial density (counting)

community respiration

(oxygen consumption)

—

�
�

[51]

BP Germany,

humid

microcosm with

stream conditioned

periphyton

salinity (Na2SO4 and

CaCl2) at 2 and

5 mS cm21, control

0.6 mS cm21

biofilm biomass (minimal

fluorescence of

photosynthesis pigments)

� [52]

ME USA, humid mesocosms with

invertebrate

community

three salt types

(NaHCO3, MgSO4,

NaCl) with six

concentrations

between 0.07 and

4.4 mS cm21

difference between day and

night-time DO

concentrations (open-

system, single-station

approach for continuous

DO measurement)

� [53]
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frequently and uniformly assessed ecosystem process was

organic matter decomposition, for which the joint analysis

displayed a reduced decomposition (R2 ¼ 0.43, p , 0.001)

with increasing salinity (figure 1a,b). Including the factor

‘study’ as an explanatory variable in addition to ‘salinity’
in the linear regression models increased model prediction

(R2 ¼ 0.61, p , 0.001), where an approximately equal

amount of variability in decomposition rates was explained

by the two factors (‘study’ ¼ 52% and ‘salinity’ ¼ 48%) in

hierarchical partitioning [58].
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Figure 1. (a) Relationship between conductivity and organic matter breakdown rates (R2 ¼ 0.43, p , 0.001). Data are combined from four case studies (different
symbols) published in three papers [39,41,45], n ¼ 57. Breakdown rates per degree day were standardized relative to the breakdown rate determined at a con-
ductivity of approximately 1700 mS cm21, which was a level occurring across all studies. (b) Difference in the mean % leaf mass loss relative to a low salinity
control level from controlled mesocsom experiments [39,43,44]. Different symbols denote different salt types used to achieve experimental conductivity levels; circle
with plus sign, NaCl; filled square, sea salt; times, NaHCO3.
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4. Discussion
(a) Context-dependent impact: rivers in dry versus

humid climates
The effect of salinity on ecosystem processes depends on

many factors, such as the salt concentration, salt type,

exposure duration (acute or chronic) and most importantly

the environmental context (e.g. the natural background

salinity, climate and biotic community). All these factors

varied between studies and the overall scarcity of studies

dealing with salinity impacts on ecosystem processes limited

the derivation of generalizable associations or mechanisms as

well as direct comparisons between different climatic regions.

Generally rivers in dry and humid regions share many simi-

larities, but a very distinctive difference is the much more

variable nature of dryland rivers. Their extreme hydrology,

where flow gradually decreases, leaving behind isolated

water pools, before drying up completely, as well as the

altered lateral, vertical and longitudinal connectivity (or frag-

mentation, respectively) between stream subsystems and the

terrestrial surrounding, is known to influence all ecological

and biogeochemical processes [59,60]. Their mean coefficient

of variation in annual flows is twice that of rivers from humid

regions and changes in long periods of drought and extreme

floods shape the variable stream bed morphology and sedi-

ment transport [61]. Ideally anthropogenic salinization

needs to be investigated against this naturally variable back-

ground. For example, drying is naturally associated with

increases in salinity, and thus river discharge is often nega-

tively correlated with salinity [46,56]. Thus, depending on

the cause of salinization, salinity may occur as a single stres-

sor (e.g. point source effluent) or as a stressor complex

together with increased habitat fragmentation and flow

reduction (e.g. water abstraction). However, reviewing the

impact of intermittency on ecosystem processes, which is an

important field of research, is beyond the scope of this

review (see [4] for an overview). Notwithstanding, we discov-

ered trends of effects and research gaps that may inform
future research and management and discuss potential

differences between climatic regions.

(b) Leaf litter decomposition
Leaf organic matter may be respired or assimilated by fungi,

bacteria, invertebrates or even fish. Both field and mesocosm

studies display a rather consistent trend of reduced decompo-

sition rates with increasing salinity in humid as well as

semiarid climates (figure 1a, tables 1 and 2; [62,63]). Unclear

or nonlinear response patterns were found exclusively at low

salinity ranges (less than 3 mS cm21) [39,64,65]. Interestingly,

the effect of conductivity on decomposition rates was related

to the salt type in two studies (figure 1b; [39,66]), which

confirms studies suggesting that ion-specific thresholds are

required in management [15,67]. Mostly, leaf associated

fungal biomass or microbial activity is measured together

with decomposition rates, because microorganisms are

important decomposers. Negative associations (see also

[66]) as well as no apparent relation between these potential

decomposers with salinity have been observed (table 1).

Thus, the underlying mechanisms for reduced decomposition

remain controversial. Whereas a recent study [68] showed

that fungal decomposers obtained from both salinized and

undisturbed sites largely maintained their function at exper-

imental high salinity concentrations, a previous study [39]

revealed lower leaf decomposition rates for microorganism

communities from a salinized reach compared with those

from an undisturbed site, which may hint towards a

salinity-driven selection of less efficient bacterial decom-

posers. Despite the rather consistent reduction in

decomposition with increased salinity, many other factors,

such as nutrient availability, litter type and temperature,

affect decomposition rates [46,65]. These may explain why

the highest decomposition rate was observed at the most

saline site in a study comparing different Mediterranean

stream types [42].

Leaf litter is considered the key carbon source sustaining

the biomass of higher trophic levels in temperate forest
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streams, although the importance of algae is disputed [69],

and is therefore connected to ecosystem services such as

fish production. Owing to generally more sparse vegetation,

and consequently less litter input in arid than in temperate

regions [70], less shading and the intense photosynthetically

active radiation in drylands, it is almost universally agreed

that autotrophic organisms such as algae are the dominant

carbon source for animal production in these rivers

[47,69,71,72], but see [50]. If other carbon sources can sustain

biomass production, reduced decomposition will have little

direct impact on secondary production. However, litter

could accumulate, leading to habitat modifications and

increased downstream transport of organic matter, with

indirect negative effects on production as well as other pro-

cesses [45,47]. Moreover, litter decomposition may be

considered as proxy for organic matter processing, a

reduction of which may indicate slower carbon turnover

and production. Reduced decomposition could also lead to

lower CO2 emissions and to carbon sequestration, which

may be considered a positive effect for the ecosystem service

of climate regulation.
0

(c) Metabolism and biomass production
Whole river ecosystem metabolism refers to ‘the production

and destruction of organic matter, and the associated fluxes

of nutrients, through the gross photosynthetic and respirat-

ory activity of organisms’ [73, p. S101]. It is estimated from

the variation in oxygen production and consumption using

simple [73,74] or increasingly sophisticated models [75].

Key factors influencing metabolism are light, which is

controlled by latitude, season, shading and turbidity, as

well as temperature, disturbances and nutrient availability.

Disturbances such as high floods and desiccation are thought

to control large parts of the variability in stream metabolism

by removing photosynthetically active stream bed biota and

habitat available for production, respectively [73,76,77],

which may apply particularly to the highly dynamic dryland

IRES. However, overall our understanding of factors control-

ling river metabolism across regions and seasons is still

limited compared with lake and forest metabolism and is

based on few studies only [73]. Some desert rivers have

among the highest rates of primary and secondary pro-

duction that have been recorded in lotic systems [71,78].

Since they are naturally more saline than temperate rivers,

there may not be a universally negative association between

salinity and metabolism. For example, biomass depletion

and a reduction in the production to respiration ratio to

values below 1 were observed for a saline stream chronically

disturbed by freshwater input compared with an undisturbed

saline stream [47]. Additional short-term dilution stress at

both sites induced, however, different responses, with biofilm

mass decreasing at the saline reference, but increasing at the

chronically disturbed site. This study highlights the complex-

ity and context-dependency of responses as well as the need

to differentiate between short-term and chronic disturbances

that can have very different impacts [47]. Unfortunately, we

found no field study that investigated stream metabolism in

relation to increasing salinity from a semiarid or arid

region. From humid regions, no response [41] and an initial

increase in metabolism followed by a reduction at higher

salt concentrations were observed [48], whereas a mesocosm

study with similar salinity concentration ranges reported a
negative correlation [53] (see tables 1 and 2 for concen-

trations). Measures of biomass production are often

restricted to specific components. Here, biomass from bio-

films increased rather consistently, also in different

environments [79,80] with some exceptions [43,51], and

may be attributed to high salt tolerance of cyanobacteria

and diatoms [47]. Total primary and secondary biomass

production are, however, poorly investigated.

Overall, dryland rivers are more likely to be net carbon

exporters fuelling adjacent low productivity terrestrial dry-

land ecosystems than to rely on the subsidies of energy and

nutrients [71,73]. For example, riparian spiders from Sycamore

Creek, USA obtained 68–100% of their carbon intake from in-

stream sources [81]. Thus, although generalizable relations

between salinity and metabolism are lacking, changes in

river metabolism and primary production may strongly

impact terrestrial biota such as birds, which are often highly

valued by society, constituting an ecosystem service.

(d) Nutrient uptake and retention
Human activities—mainly fertilizer production—convert

around 120 million tonnes of N2 into bioavailable nitrogen

species, globally, which is considered to exceed ‘the safe oper-

ating space for humanity’ [82, p. 472]. Therefore, the capacity

of rivers to assimilate NO3
2 into biomass and to remove N

via denitrification (transformation of NO3
2 to gaseous N2) is

generally considered an ecosystem service per se. It is strongly

associated with the self-purification capacity of water and it

prevents downstream nutrient transport and associated eutro-

phication of coastal zones [33]. Thus, although nutrient cycling

refers to all nutrients, the main interest lies in the limiting

nutrients nitrogen and phosphorus. However, only two

studies from the same authors investigated denitrification or

whole ecosystem NO3
2 uptake through nutrient addition

experiments in relation to salinity gradients in streams

(table 1). Salinity explained 5% of the variability in denitrifica-

tion rates in one study [56]; however, no association between

denitrification or NO3
2 uptake and salinity was found in a

follow-up study [55]. It was concluded that salinity does

apparently not constrain these processes. By contrast, wetland

salinization is generally associated with decreasing nitrogen

removal [20]. Thus, further research is required, including

improvement of concept and methods for application in nutri-

ent saturated streams, where added nutrients cannot be taken

up and uptake rates can hardly be quantified [83,84]. More-

over, current studies strongly focus on the bottom-up

regulation of nutrient cycling. However, it may also be

worth targeting the effect of altered top-down regulation in

future. Charismatic megafauna are most prone to extinction,

because of their large size, sparseness and rarity, late maturity

and low fecundity, as well as high market value [85]. Their

loss may substantially alter ecosystem processes, which is

currently hardly considered, but may serve as strong impetus

for conservation action [86].

(e) Associations with ecosystem services
Ecosystem services represent the benefits humans/society

receive from ecosystems and their processes and functions;

therefore, a link between ecosystem processes and the

human sphere must be established and must be demon-

strated [87,88] and, ideally, it should be quantified how and

to what extent the well-being of humans is influenced by



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20180010

8
these functions. Research in this field has thrived in recent

years as the need to develop sound methods to identify,

quantify and value ecosystem services has become apparent

and such information has been demanded more and more

by policy makers [89]. Currently, the identification, quantifi-

cation and valuation of ecosystem services of rivers and river

catchments, in general, is an on-going research process that is

still in its infancy [31]. To achieve these objectives, sound and

comprehensive knowledge about water-related ecosystem

processes and functions and their interconnectedness with

human activities is required and should be coupled in

system-like models. Such integrating endeavours are, for

example, the research and modelling frameworks InVEST

and ARIES [90]. While these are large projects or even well-

established scientific institutions with significant personnel,

the respective models still have gaps and the valuation of ser-

vices is still rather coarse. We see that for the specific context

of intermittent streams, dryland areas and especially the pro-

blem of freshwater salinization, the existing approaches are

by far not suited to adequately capture the challenges laid

out above. Therefore, as a first step, we approach this lack

of a coherent knowledge and modelling framework by iden-

tifying those specific ecosystem services under focus in

dryland areas and their intermittent streams and laying out

the specific challenges for future research. Following [91],

we suggest six most important ecosystem services of dryland

rivers, of which four belong to provisioning services (crop

irrigation, drinking water for livestock, drinking water for

humans and fishing), one to regulating services (controlling

desertification) and one to cultural services (supporting veg-

etation for cultural identity with the landscape). There may

be more specific types of ecosystem services to be identified

for specific kinds of landscapes (e.g. the dry phase of inter-

mittent rivers, [92]) and areas depending on the settlement

and economic structure of those areas.

Focusing on the effects of in-channel salinization in dry-

land rivers, it is clear that an assessment of the associated

changes in ecosystem services requires understanding and

quantitative assessment of the effects on the adjacent natural

or managed systems because ecosystem services materialize

mostly not only in the streams themselves, but also in those

adjacent systems in connection to human use, for example,
reduced crop growth related to irrigation with salinized

water [93] or stream energy transfer to birds. In this context,

desert rivers may represent a model system for investigating

aquatic–terrestrial linkages, because of their rather well-

defined boundary between river-associated oasis and desert

landscapes. We, therefore, argue that the assessment of eco-

system service changes due to salinization of intermittent

streams in dryland areas is still in its infancy and requires

(i) deeper and broader understanding of the ecosystem

processes in the rivers and especially their links to adjacent

systems (see [94]), (ii) integrative modelling of processes

in connection to human use of those systems and (iii) valua-

tion approaches adapted to diverse and heterogeneous

socio-economic contexts.

( f ) Conclusions and outlook
We have reviewed salinity-driven changes in ecosystem pro-

cesses of rivers, with special interest in dryland intermittent

rivers and ephemeral streams (IRES) and discussed potential

links to ecosystem service delivery. Most uncertainties remain

for the effects on the processes of metabolism and nutrient

cycling, where studies are scarce, but may be particularly

important for ecosystem services of dryland rivers. More

information regarding natural background variability is also

needed and increasingly affordable sensors for continuous

monitoring of, for example, dissolved oxygen may revolutio-

nize our understanding of river ecosystem energetics in

future [73]. Moreover, a recent review [33] on various

methods for the quantification of different river ecosystem

processes may aid in the design of further salinity impact

studies. The establishment of close links between salinization

and ecosystem service delivery mediated through changes in

ecosystem processes is currently a major research gap. To

address this gap it will be necessary to transcend the natural

sciences and to integrate social sciences in inter- and transdis-

ciplinary research processes, where rivers are conceptualized

and modelled as socio-ecological systems [95,96].
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5. Döll P, Schmied HM. 2012 How is the impact of
climate change on river flow regimes related to the
impact on mean annual runoff? A global-scale
analysis. Environ. Res. Lett. 7, 014037. (doi:10.1088/
1748-9326/7/1/014037)

6. Acuña V, Hunter M, Ruhı́ A. 2017 Managing
temporary streams and rivers as unique rather than
second-class ecosystems. Biol. Conserv. 211, 12 – 19.
(doi:10.1016/j.biocon.2016.12.025)

7. Datry T, Larned ST, Tockner K. 2014 Intermittent
rivers: a challenge for freshwater ecology. BioScience
64, 229 – 235. (doi:10.1093/biosci/bit027)

8. Malmqvist B, Rundle S. 2002 Threats to the
running water ecosystems of the world. Environ.
Conserv. 29, 134 – 153. (doi:10.1017/
S0376892902000097)
9. Nel JL, Roux DJ, Maree G, Kleynhans CJ, Moolman J,
Reyers B, Rouget M, Cowling RM. 2007 Rivers in
peril inside and outside protected areas: a
systematic approach to conservation assessment of
river ecosystems. Divers. Distrib. 13, 341 – 352.
(doi:10.1111/j.1472-4642.2007.00308.x)
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Schäfer RB, Schulz C-J. 2013 Salinisation of rivers:

http://dx.doi.org/10.1098/rstb.2011.0323
http://dx.doi.org/10.1088/1748-9326/7/1/014037
http://dx.doi.org/10.1088/1748-9326/7/1/014037
http://dx.doi.org/10.1016/j.biocon.2016.12.025
http://dx.doi.org/10.1093/biosci/bit027
http://dx.doi.org/10.1017/S0376892902000097
http://dx.doi.org/10.1017/S0376892902000097
http://dx.doi.org/10.1111/j.1472-4642.2007.00308.x
http://dx.doi.org/10.1038/nature09440


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20180010

9
an urgent ecological issue. Environ. Pollut. 173,
157 – 167. (doi:10.1016/j.envpol.2012.10.011)

13. Smedema LK, Shiati K. 2002 Irrigation and salinity:
a perspective review of the salinity hazards of
irrigation development in the arid zone. Irrig. Drain.
Syst. 16, 161 – 174. (doi:10.1023/A:1016008417327)

14. Silva EIL, Davies R. 1997 The effects of irrigation
effluent on a western Canadian prairie river.
Hydrobiologia 344, 103 – 109. (doi:10.1023/
A:1002906428167)
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