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e-mail: mcanedo.fem@gmail.com
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Salt in freshwaters: causes, effects and
prospects - introduction to the theme
issue
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Humans are globally increasing the salt concentration of freshwaters (i.e.

freshwater salinization), leading to significant effects at the population,

community and ecosystem level. The present theme issue focuses on pri-

ority research questions and delivers results that contribute to shaping

the future research agenda on freshwater salinization as well as fostering

our capacity to manage salinization. The issue is structured along five

topics: (i) the estimation of future salinity and evaluation of the relative

contribution of the different drivers; (ii) the physiological responses of

organisms to alterations in ion concentrations with a specific focus on

the osmophysiology of freshwater insects and the responses of different

organisims to seawater intrusion; (iii) the impact of salinization on ecosys-

tem functioning, also considering the connections between riparian and

stream ecosystems; (iv) the role of context in moderating the response to

salinization. The contributions scrutinise the role of additional stressors,

biotic interactions, the identify of the ions and their ratios, as well as of

the biogeographic and evolutionary context; and (v) the public discourse

on salinization and recommendations for management and regulation.

In this paper we introduce the general background of salinization, outline

research gaps and report key findings from the contributions to this theme

issue.

This article is part of the theme issue ‘Salt in freshwaters: causes,

ecological consequences and future prospects’.
1. Salinization of freshwater ecosystems: state of the art
and prospects

Freshwater ecosystems are essential for human societies, because they pro-

vide important services such as drinking and irrigation water, food,

climate regulation and recreation. These services crucially depend on the

integrity of populations and communities of freshwater organisms [1,2].

However, the extinction rates of freshwater species are among the highest

worldwide [3–5]. This is owing to a multitude of anthropogenic stressors,

including excess input of nutrients, hydromorphological alterations and

continuous or repeated pollution [6,7], which cause ecological degradation.

Although the exposure and effects of specific pollutants such as heavy

metals or pesticides in freshwaters have received attention [8,9], other pollu-

tants have been less studied. For example, although it has been known for a

long time that human activities alter the total concentration of major ions (or

salinity) and the composition of these ions in freshwater ecosystems [10],

this issue has received relatively little attention [11]. Despite the documen-

tation of salinity effects [12], it is often unknown how important salinity is

in comparison to other stressors and how it may interact with these
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stressors, how important the different drivers of saliniza-

tion (i.e. an increase in the concentration of ions) are and

how salinity might influence freshwater ecosystems in

the future. Research that answers these questions is pivotal

for a rational and efficient ecosystem management. The

diagnosis of these gaps stimulated the organization and

compilation of the present theme issue.

The ion content of inland surface waters is determined

by several natural factors, including rainfall, rock weather-

ing, seawater intrusion and aerosol deposits [13,14]. If

these natural processes are the driver of salinization, this

phenomenon is called primary salinization. However,

given the strong influence of humans even on regional and

global biogeochemical cycles, which have been captured in

calling the current era the Anthropocene [15], human activi-

ties can accelerate these natural processes [16,17]. For

example, construction activities, resource extraction and

changes in land cover can bring bedrock materials to the

surface that are subject to much more rapid chemical weath-

ering, consequently increasing the transport of ions to

surface waters [18–20]. Also, agriculture can produce

highly saline irrigation return flows that enter freshwaters

[21], and land clearing can bring naturally saline ground-

waters to the surface [22]. In cold regions, salts are often

applied to roads to prevent the build-up of ice and snow,

which are washed into surrounding freshwaters during

snowmelt and rain [23,24]. Overall, the salinization of fresh-

water ecosystems owing to human activities is called

secondary salinization (hereafter termed freshwater saliniza-

tion), and it has been documented in a wide variety of lakes

[25,26], rivers [12] and wetlands [27]. At the same time,

naturally saline ecosystems can be diluted owing to anthro-

pogenic freshwater inputs [28], although this has received

even less attention.

Freshwater animals need to maintain an osmotic bal-

ance between the ion concentration within their cells and

their body fluids, which are strongly influenced by the sal-

inity of the surrounding water owing to body permeability

[29,30]. The maintenance of this balance is key to cellular

stability (i.e. changes in osmotic pressure can cause cellu-

lar damage or death) and requires energy. Freshwater

salinization, through an increase in osmotic pressure, can

have drastic effects on the fitness and survival of fresh-

water organisms. In general, species richness declines

along the salinity gradient in inland waters [31,32] and

laboratory toxicity tests show that most freshwater species

are extirpated once a certain threshold of salinity is

exceeded [33–35]. However, this response largely depends

on the identity of the ions, because the toxicity of ions to

freshwater organisms varies [36–38]. Additionally, the

interactions among ions can modify their toxicity

[39–41]. Besides lethal effects, salinization can reduce

organism and population fitness through sub-lethal

effects; e.g. oxidative stress [42,43], delayed growth

[44,45], reduced feeding efficiency [46,47], increased drift

[38,48] and malformations [49,50]. Moreover, it can lead

to important changes in the ecosystem structure and func-

tioning by altering trophic interactions [51,52], biochemical

cycles [27] and leaf decomposition [53,54]. However,

as for other anthropogenic stressors, the implications of

freshwater salinization at the ecosystem level are still

poorly understood and our capacity for prediction is

very limited.
2. The context and focus points of the
theme issue

We have highlighted above that central research questions

need to be addressed to be able to understand, predict, miti-

gate and remediate the impacts of salinization on individual

organisms, populations, communities, ecosystems and

human welfare. The present theme issue focuses on priority

research questions and provides key findings, outlined

below, that contribute to shaping the future research

agenda on freshwater salinization as well as fostering our

capacity to manage salinization.
(a) Which are (and will be) the main causes
of freshwater salinization?

Early studies suggested that freshwater salinization was

almost exclusively restricted to (semi-)arid and Mediterra-

nean regions [55], but current knowledge suggests that it is

also widely occurring in cold and temperate regions

[12,17,25]. However, the relative contribution of different dri-

vers (e.g. agriculture, mining, road de-icing) to freshwater

salinization at large spatial scales remains unclear. In this

issue, Estevez et al. [56] show that urbanization and agricul-

ture are the main drivers of river and stream salinization in

Spain, resulting in almost one-third of the entire river net-

work salinized; though mining, which locally contributes to

salinization in Spain [57,58], was not considered in this study.

The proportion of salinized freshwater ecosystems can be

expected to increase in the future owing to a combination of

anthropogenic pressure intensification and climate change.

Le Trong et al. [59] predict an average increase in electrical

conductivity (EC) between 10 and 15% owing to climate

change in German surface waters towards the end of this cen-

tury, with EC increases greater than 50% in approximately

10% of the sites. In a similar study covering most streams

of the USA and including climate and land use change,

Olson [60] forecasts EC increases greater than 50% in half

of the streams and identifies land use change as the main

driver of this increase. Olson identifies land use change as

the main driver of this increase. Thus, both studies suggest

that climate change largely leads to rather mild increases in

Central European and US water bodies, though strong overall

increases may occur owing to land use change. Overall, having

robust estimates of future EC requires solid knowledge of

changes in different drivers (e.g. hydrology, land use change).
(b) What are the physiological effects of freshwater
salinization?

Although animal osmoregulation has been widely studied

[29,30], the physiological responses of freshwater organisms

to alterations in ion concentrations are still relatively poorly

understood. In this issue, Kefford [61] challenges well-estab-

lished biological principles by highlighting that mayfly

species can suffer substantial mortality at an osmolality (i.e.

osmotic concentration) lower than that of their internal

fluid. This could be related with the increase in the uptake

of ions, loss of pH regulation or Na poisoning, which requires

testing in future studies. Also, Buchwalter et al. [62] show that

elevated SO4
2 –, rather than causing a loss of SO4

22 regulation

in the mayfly Neocloeon triangulifer, imposes an energetic
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demand associated with maintaining homeostasis that is

manifested primarily in reduced growth rates and associated

developmental delays. They also identify two genes related to

SO4
22 transport in this species, which may be a promising tool

for investigating mechanisms of sulfate toxicity. Overall,

these papers highlight large research gaps in the osmophy-

siology of freshwater insects in general and mayflies in

particular, which is hampering our understanding of the

mechanisms of salinity toxicity and how changes in ionic pro-

portions alter toxicity.

Besides a lack of understanding of physiological mechan-

isms of salinity effects, we lack data on the sensitivity to salt,

hampering the identification of particularly vulnerable parts

of the ecosystem. For example, seawater intrusion will

expose aquatic and terrestrial organisms to high NaCl con-

centrations in coastal areas, and their potential response

remains largely unexplored. In this issue, Pereira et al. [63]

and Venâncio et al. [64] show that increased salinity can

considerably affect aquatic organisms (especially cyanobac-

teria and zooplankton), but may have little effect on soil

organisms.

(c) What are the impacts of freshwater salinization
on ecosystem functioning?

Given the links between biodiversity and ecosystem function-

ing [65,66], it is likely that the effects of freshwater

salinization on the former can lead to alterations of the

latter. Moreover, such changes in the aquatic system may pro-

pagate across ecosystems, e.g. affect riparian ecosystems [67].

Entrekin et al. [68] present a review and develop a conceptual

framework of the impact of salinization on the connections

between riparian and stream ecosystems. They suggest

three main pathways: (i) changes in the organic matter

processing (derived from riparian vegetation) by aquatic

organisms; (ii) changes in the quality and quantity of the

export of detritus from riparian vegetation into streams;

and (iii) changes in microbial decomposer and detritivore

growth in riparian areas, which may alter the quantity and

quality of organic matter entering the streams. In another

contribution, with a special focus on intermittent streams in

drylands, Berger et al. [69] review the effects of salinization

on ecosystem functioning and potential linkages to ecosystem

services. Although only few studies have been conducted,

they find a consistent negative effect on organic matter

processing with a similar concentration–effect relationship

across regions. They highlight research gaps regarding

other ecosystem functions and their links to human well-

being. Finally, in a study on the effect of salinization on

organic matter processing by aquatic hyphomycetes, which

is the dominant microbial group in streams [70], Gonçalves

et al. [71] find minor impacts (i.e. the sporulation rates and

conidia production were not affected by salt treatments).

Overall, these studies highlight that salinization can alter

ecosystem functioning, but that the magnitude of alteration

probably varies with the organism group (e.g. microbial-

driven ecosystem functions exhibit buffer capacity), and

that the links to ecosystem services remain to be established.

(d) Which factors can modify salt toxicity?
Freshwater ecosystems are subjected to multiple simul-

taneous stressors, thus it is crucial to understand how their
effect on biodiversity is modified by potential interactions

[72,73]. Kaushal et al. [74] describe a freshwater salinization

syndrome (FSS), which is common in rivers and lakes primar-

ily in North America and Europe. FSS results in a wide range

of physico-chemical changes associated with increases in

total salinity, pH, and concentrations of base cations, nutri-

ents and metals. The combined ecological effects of FSS

may involve complex and poorly understood interactions

between these physico-chemical components. In a quantitat-

ive review of experimental studies on the combined effect

of salinity and other abiotic factors on aquatic organisms,

Velasco et al. [75] show that although around half of the

changes were additive, antagonistic and synergistic inter-

actions were also important, making it difficult to predict

the effects of salinization when it co-occurs with other stres-

sors. Also, they found a stronger negative individual effect

of salinity on organismal performance traits than other stres-

sors, suggesting that freshwater salinization should be

prioritized in a multiple stressors context. An example of

combined effects relevant within a context of global warming

can be found in the study of Jackson & Funk [76], where NaCl

toxicity to four mayfly species increased with water tempera-

ture (5–258C).

One important issue that needs to be considered when

assessing salt toxicity is ion concentration. Salinity is com-

posed of multiple major ions that alter the sensitivity of

freshwater species. Schulz & Cañedo-Argüelles [77] provide

multiple examples for the variable sensitivity to different

ions in a review of the German literature on freshwater sali-

nization. Their study confirms that to fully understand the

potential impact of salinity requires the consideration of the

different ion mixtures. In this regard, Hills et al. [78] introduce

a novel approach to asses the toxicity of untested ion mix-

tures that builds on previous knowledge of the sensitivity

of aquatic fauna to other ion mixtures.

Finally, biotic interactions can moderate salinity stress.

Bray et al. [79] show that biotic interactions (e.g. competition

and predation) between salt sensitive and salt tolerant organ-

isms can be as important as salt toxicity in determining the

effect of salinity on stream macroinvertebrate communities.

Also, Arribas et al. [80] suggest that saline species occupy

saline habitats to avoid competition or parasitism, because,

physiologically and in the absence of biotic interactions (i.e.

according to laboratory toxicity tests), they can perform as

well as freshwater species in freshwater habitats. In a related

paper, Guitierrez-Cánovas et al. [81] analyse the response of

invertebrates to changes in a salinity gradient in both direc-

tions: dilution (i.e. freshwater inputs) and salinization. Their

results reveal that the regional pool of species and their dis-

persal and colonization capacities might play an important

role in the response of aquatic communities to salinity

changes. Finally, Hintz et al. [82] emphasize the role of the

evolutionary context in their contribution. Salinity adapted

Daphnia populations exerted a greater control on phytoplank-

ton abundance, although this depended on the type of salt

that they were exposed to.

Overall, these papers suggest that the impact which the

modification of ion concentrations can have on freshwater

organisms will depend on three main factors: (i) the identity

of the ions and their ratios; (ii) co-occurring abiotic stressors

and biotic interactions; and (iii) the biogeographic (e.g.

source and sink population dynamics) and evolutionary

(e.g. previous history of salt exposure) context.
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(e) How can we control freshwater salinization?
At present freshwater salinization is poorly regulated and

largely ignored in freshwater management. Salinity stan-

dards to protect freshwater biodiversity are lacking in most

states or confederation of states and they are usually not leg-

ally enforced [83]. Gorostiza et al. [84] argue in this issue that

this could be partly owing to the naturalization of salt pol-

lution, i.e. given that salts occur naturally in freshwaters,

people responsible for salt pollution have attributed high sali-

nities in freshwaters to natural sources. Even when such

attributions are incorrect, they can be difficult to counter in

public debate. Regarding regulation, research has shown

that ion-specific regulation is required to efficiently protect

freshwater ecosystems. In this context, Bogart et al. [85] ident-

ify the Ca : Mg ratio as a major driver of toxic effects for

freshwater species and suggest to establish guidelines based
on ion ratios and the natural background ion concentrations

of Ca and Mg. Similarly, Schuler et al. [86] provide detailed

recommendations for setting ion-specific regulations and

suggest management solutions that include developing

models to robustly estimate ion loadings from human activi-

ties and implementing technological solutions for

remediating salt pollution after trade-off evaluation. Overall,

the contributions stress the need for ion-specific regulations

and provide guidance on how to implement them.
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Thompson K, Kefford BJ. 2016 Effects of salinity on
leaf breakdown: dryland salinity versus salinity from
a coalmine. Aquat. Toxicol. 177, 425 – 432. (doi:10.
1016/j.aquatox.2016.06.014)
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