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Human activities have globally increased and altered the ion concentration

of freshwater ecosystems. The proliferation of potash mines in Germany

(especially intense in the early 1900s) constitutes a good example of it. The

effluents and runoff coming from potash mines led to extreme salt concen-

trations (e.g. 72 g l– 1 of total salt content, approx. 149 mS cm– 1) in

surrounding rivers and streams, causing ecosystem degradation (e.g. mas-

sive algal blooms and fish kills). This promoted scientific research that

was mostly published in German, thereby being neglected by the wide scien-

tific community. Here, the findings of the German literature on freshwater

salinization are discussed in the light of current knowledge. German studies

revealed that at similar ion concentrations potassium (Kþ) can be the most

toxic ion to freshwater organisms, whereas calcium (Ca2þ) could have a tox-

icity ameliorating effect. Also, they showed that salinization could lead to

biodiversity loss, major shifts in the composition of aquatic communities

(e.g. dominance of salt-tolerant algae, proliferation of invasive species) and

alter organic matter processing. The biological degradation caused by fresh-

water salinization related to potash mining has important management

implications, e.g. it could prevent many European rivers and streams from

reaching the good ecological status demanded by the Water Framework

Directive. Within this context, German publications show several examples

of salinity thresholds and biological indices that could be useful to monitor

and regulate salinization (i.e. developing legally enforced salinity and ion-

specific standards). They also provide potential management techniques

(i.e. brine collection and disposal) and some estimates of the economic

costs of freshwater salinization. Overall, the German literature on freshwater

salinization provides internationally relevant information that has rarely

been cited by the English literature. We suggest that the global editorial

and scientific community should take action to make important findings

published in non-English literature more widely available.

This article is part of the theme issue ‘Salt in freshwaters: causes,

ecological consequences and future prospects’.
1. Introduction
The increase in the concentration of dissolved ions (i.e. salinization) in rivers

resulting from human activities has long been acknowledged as a water quality

problem [1–3]. Also, it was shown to have a negative effect on certain river

organisms by early ecological studies [4,5]. However, as Prof. W.D. Williams

pointed out in 2001 [6, p. 85]: ‘salinisation as a major global geochemical

event seems largely to lie outside the consciousness of most water resource

managers, conservationists and limnologists if not all’. The number of scientific

publications on river salinization has considerably increased since that statement

was made; however, it still receives much less attention by policy-makers,

water managers, scientists and society at large, than other environmental

issues [7]. This should change, because salinization is emerging as one of the

top causes of biological degradation of river ecosystems worldwide [8,9].
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Figure 1. The mine named ‘Güntershall’ situated at Wipper River below the city of Sondershausen (Thuringia, Middle Germany). This mine was one of the many
potassium mines that were founded in the early 1900s in this region. Its brines were discharged into the Wipper River, causing a strong salinization here [2,3].
Albrecht [25] reported that an accident had happened at one of these factories around 1930. A surveyor, P. Schiemenz, was instructed to investigate whether this
incident had damaged the fauna of Wipper River. In the report about his investigations he wrote that he had found many ‘small green chironomids’ in the sur-
roundings of one of these potash mines. This is the first known report about damage of the aquatic fauna by salinization [25]. Although industrial activities in this
mining area have been terminated since the 1990s, salinization owing to the introduction of drainage brines from the residue stockpiles still continues [26]. Picture
by an unknown photographer, kindly provided by Mr Hans-Jürgen Schmidt. (Online version in colour.)

Table 1. Types of salinization, their major sources and major ions in Germany.

type of salinization source of salinization major ions

primary salinization Keuper waters (Thuringia, Germany) Naþ, Ca2þ, Cl2, HCO3
22, SO4

22

primary salinization geogenically salanized waters other than Keuper waters Naþ, Kþ, Ca2þ, Mg2þ, Cl2, HCO3
22, SO4

22

secondary salinization potassium mining Kþ, Ca2þ, Mg2þ, Cl2, SO4
22

secondary salinization coal mining Naþ, Kþ, Cl2, SO4
22
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River salinization can have many different origins [10]. For

example, in Australia the substitution of deep-rooted veg-

etation by crops and pasture has led to reduced

evapotranspiration and rising groundwater tables; because

groundwaters can be naturally saline, this has produced the

accumulation of salts in the soil that are finally flushed into

freshwater bodies by surface runoff [11–14]. In North Amer-

ica, road salts [15–17] and coal mining [18–20] are probably

the causes of freshwater salinization most widely reported

by the English literature. In Europe, potash mining (mainly

used for fertilizers) has been shown to greatly increase the

salt concentration of rivers. For example, the estimated chlor-

ide load increased in the Rhine river from less than 50 kg s21

to more than 300 kg s21 in the 1960s mostly owing mainly to

the potash mines in Alsace (although industrial activities also

contributed to the high salt load) [1]. In Catalonia (Spain), the

impact of potash mines was already revealed during the civil

war (1936–39), since the bombings significantly decreased the
mining operations leading to lower salt concentrations in

rivers [21]. After that, mine operations resumed and grew,

currently posing a great risk to riparian vegetation and

aquatic organisms [22–24]. In Germany, salinization of run-

ning waters is closely tied with the increasing agricultural

application of fertilizers in the nineteenth and twentieth cen-

turies. Potassium-containing salt rock was mined to

manufacture potassium fertilizers. At several steps of the pro-

duction process, concentrated brines were generated and

disposed into nearby rivers and streams (figure 1). Potash

mining was especially intense from 1950s to 1980s and

decreased after the German reunification (1990s), when a con-

siderable number of potash mines were closed (mostly in the

region of Thuringia) [26,27]. Currently, in addition to potash

mining, inputs from (abandoned) coal mines might contribute

to river salinization (table 1), especially in Western Germany.

The salt pollution of German rivers by potash mining pro-

moted ecological research, leading to numerous papers



Table 2. Effects of salinization on individuals/populations of different taxa. NEOC, no effect of observed concentration.

reference organism (group)
indicator value/response
metric threshold value(s)

[28] Danio rerio salinity [8/oo) none

[29] Gammarids, Chironomus plumosus, Limnephilus

spec., Radix auricularia, Daphnia spec.

‘NEOC’ (no standardized

incubation times)

‘NEOC’ for Kþ

(mg l21):

Gammarids 200, Chironomidae . 700,

Trichoptera larvae . 1000,

snails 400

[3] Daphnia

Chironomus

tadpoles

eels

‘maximum tolerable

concentration’ of salt

mixtures

(Kþ salts, Ca2þ salts, Mg2þ

salts, Naþ salts)

highest toxicity: Kþ

middle toxicity: Ca2þ/Mg2þ

lowest toxicity: Naþ

[30] fish blood serum: concentration of

Kþ;

haematocrit value;

surface of erythrocytes;

condition of inner organs

chronic toxicity: 80 mg l21 Kþ

[31] fish occurrence of fish mortality Wipper River:

3000 mg l21 Cl2

Werra River:

6000 mg l21 Cl2

different thresholds are owing to

different Kþ concentrations
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published in German language. Unfortunately, these papers

were largely unnoticed by the wider scientific community.

For example, a search (performed the 15 March 2018) of the

term ‘freshwater salinisation’ in the Web of Knowledge pro-

vided 1203 results, whereas a search of the equivalent

German terms ‘Gewässerversalzung’ and ‘Flussversalzung’

provided 0 results. The same search in Google Scholar

resulted in 26 700 and 6 results, respectively. Here, we per-

formed a more exhaustive bibliographic search that found

35 papers published between 1911 and 2017. One paper

was provided by the Jena University literature collection,

the rest came from the first author’s personal collection.

Only those publications that yielded distinct information

were considered here, excluding papers with speculative con-

tent. The main findings of these papers are discussed here in

the light of recent advances in freshwater salinization. Most

data on salinization in German literature are reported as

chloride concentration; for readers who are more familiar

with electrical conductivity (EC), we converted chloride

data into meaningful terms using the following equation:

EC½mS cm�1� ¼ 2:0385� Cl�½mg l�1� þ 2381:456:

This equation was derived from long-term EC/chloride data

from Wipper River at the sampling location situated at the

gauge near the village of Hachelbich (Thuringia, Middle
Germany). It allows an approximate calculation of chloride

concentrations from conductivity data for carbonatic running

waters salanized by brines from the potash industry.

The equation was kindly provided by Dr Christian Feld,

University of Duisburg Essen (Germany).
2. Effects at the organism/population level
It has been widely proved that increasing salt concentrations

over a certain threshold are toxic to freshwater organisms

(table 2, [10]). For example, Meinelt & Stüber [28] reported

a 60, 50, 10 and 0% survival of zebrafish (Danio rerio) larvae

exposed to salinities of 2, 4, 8, 168/oo, respectively, in test sol-

utions prepared from potassium-containg salt rock. However,

salt toxicity is not exclusively dependent on total ion concen-

tration, because different ions have different toxicities. For

example, Ebeling [29] reported the following toxicity of chlor-

ide salts for the aquatic invertebrates Chironomidae and

Gammaridae: KCl . MgCl . NaCl. Hirsch [3] found a differ-

ent toxicity of Daphnia, eels, tadpoles and Chironomus larvae

to Naþ, Mg2þ, Ca2þ and Kþ, with Kþ having the greatest tox-

icity. Concordantly, in the 1970s Halsband [30,32] found a

partial paralysis in rudd (Scardinius erythrophthalmus) when

exposed to high Kþ concentrations coming from the Weser

River and showed toxic responses to chronic exposures to
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80 mg Kþ per kg of fish biomass. The greater toxicity of Kþ

when compared to other ions (table 2) was later confirmed

in the English literature. For example, Mount et al. [33]

reported that Kþ was the most toxic ion for Ceriodaphnia
dubia, Daphnia magna and fathead minnows (Pimephales pro-
melas). At the same time, several studies showed a

detoxification effect of Ca2þ over other ions [34–36]. This

was also later confirmed by other studies published in Eng-

lish [37–39], which suggested that it could be related to

reduced epithelial permeability, thus decreasing passive dif-

fusion and the energy required to osmoregulate. Besides the

toxicity of individual ions, the proportion of the different

anions and cations can be of great importance to aquatic

fauna. For example, Ziemann [31] found that the growth of

halophile algae was stronger when the relative alkali pro-

portion exceeded that of Ca2þ and that differences in ion

ratios explained the different threshold values for fish mor-

tality in the Wipper (3 g Cl2 l21, approx. 8.5 mS cm21) and

Werra (6 g Cl2 l21, approx. 14.6 mS cm21) Rivers. Ziemann

also found that the alteration of Kþ : Ca2þ ratios (which

were 2 : 1 in the Wipper River) could determine the distribution

of euryhaline diatom species such as Amphiphora alata,

Achnanthes brevipes, Bacillaria paradoxa, Melosira nummuloides
and Nitzschia sigma.

The toxicity of salts to freshwater organisms can depend

on their previous history of salt exposure [40]. For example,

in 1959 Schmitz [41] showed that Gammarus pulex individuals

coming from a naturally saline creek (salinity ¼ 5.5) were

more resistant to salt treatments than individuals coming

from a freshwater creek. More recently (2011–2017), intra-

specific variations in salinity tolerance have been suggested

by some studies [42–44], and progressive (i.e. multi-genera-

tional) adaptation to increased salinity (in the form of

NaCl) has been documented for Daphnia [44,45]. However,

other investigations have shown little variation in the salt

sensitivity of populations of aquatic insects coming from

streams with different background conductivities [46–48]

and no evidence that previous salinity exposure could affect

salt sensitivity in Daphnia [49]. Thus, the existence of intraspe-

cific differences in salt sensitivity according to previous salt

exposure is still under debate. Moreover, the mechanisms

behind possible acclimation or adaptation to salinization by

freshwater organisms remain unclear [45].
3. Effects on aquatic communities
The salt load in German rivers affected by potash mining was

extremely high in several cases. For example, in 1989 Buhse

[50] reported chloride concentrations of 22.6 (approx.

48.5 mS cm21) and 40.2 g l21 (approx. 84.3 mS cm21) and

salinities of 40.7 and 72 g l21 in the Werra River and one of

its tributaries (the Ulster River), respectively. The same

study reported massive algal blooms (Thalassiosira, causing

oxygen concentrations over 200%) and fish kills since the

1950s. The gill epithelium of the fish was damaged and par-

tially inactivated owing to elevated pH (up to 9.8 by algal

removal of carbonic acid for starch synthesis [51]) and free

oxygen, especially during hot summers when most fish die-

offs occurred. The proliferation of algal blooms by a combi-

nation of high nutrient and salt concentrations was also

reported by Ziemann [31], specifically for the diatom species

Thalassiosira fluviatilis, Cyclotellea meneghiniana and Cyclotella
nana. Regarding benthic invertebrates [52], chloride concen-

trations above background levels can lead to a decrease in

rhitral, rheophilic, coarse substrate settling species (with

implications for functional feeding groups), a deterioration

of the biological condition (e.g. as established by the

German Fauna Index [53]) and a general reduction in species

numbers (especially Ephemeroptera, Plecoptera and Trichop-

tera). For example, in 1954 Albrecht [25] reported a

significantly lower invertebrate biomass (weight m22) in

salinized sections of the Werra River when compared to

non-salinized sections. In cases of extreme salinities, an exten-

sive depletion of aquatic fauna was observed [25,31,54].

Overall, available studies from heavily salt-polluted rivers

in Germany confirm that salinization can be among the top

causes of biological impairment in freshwater ecosystems

[10,55,56].

In agreement with ecotoxicological data (see section

above), field studies show clear differences in the sensitivity

of aquatic organisms to salt pollution. For example, Coring

et al. [57] found the following sensitivity of the

different biotic components: fish . macrozoobenthos .

phytoplankton . macrophytes . diatoms. Regarding dia-

toms, it is important to consider that planktonic and

benthic taxa can show differing salt tolerances [58]. The sen-

sitivity of stream and river communities to salinization can

also vary with the catchment geology. For example, calcar-

eous waters have been reported to buffer salt pollution [52],

which could be related to the ameliorating effect of water

hardness on the toxicity of other ions [37,38]. Overall, the

impacts of salinization on community composition seem to

follow a salinity threshold pattern (i.e. salt-tolerant species

become dominant after a certain salt concentration range is

exceeded). For example, salinities of 1.6–2.0 g l21 (corre-

sponding to approx. 0.8 to 1 g Cl2 l21, approx. 4.0 to

4.4 mS cm21) led to an extreme situation in the Weser

River, characterized by slight salinity changes causing mass

developments of a few salt-tolerant algal species [59].

Owing to the threshold pattern, seasonal changes in salinity

can greatly modulate community composition. For example,

salt-sensitive algal species can dominate in spring when salt

dilution by the river is high, whereas they can be outcom-

peted by halophilous species during the summer when salt

concentrations are higher [31]. Shifts in community compo-

sition caused by salinity fluctuations can be very fast. For

example, Schulz [60] showed that the algal community recov-

ered 6 months after salt pollution ceased in the Urbach creek.

As exotic species tend to be more salt tolerant than their

native counterparts, river salinization can promote biological

invasions [52,61]. For example, Herbst [62] reported a replace-

ment of the native amphipods Gammarus pulex and G. roeseli
by the invasive G. trigrinus when a 1 mS cm21 conductivity

threshold was reached. Also, the colonization of Werra River

by diatoms was characterized by immigration, fast spreading

and mass developments of new species on the one hand, and

by a decrease or fluctuations in already existing species on the

other hand [63]. For example, the saltwater diatom M. nummu-
loides colonized the Werra River during the 1950s and

developed massively during a short time, becoming the

most frequent species during the monitoring years 1963 and

1964 [31]. However, not all of the species that reach salinized

rivers are able to maintain stable populations there [64].

Heuss [65] found that the aquatic invertebrates that drifted

into the Werra River from its tributaries usually died off



Table 3. Threshold chloride concentrations and conductivity values for the transition from good to the moderate status according to the European Water
Framework Directive [72]. The thresholds were calculated from monitoring data supplied by the German federal countries (modified from Halle & Müller [73]).
LAWA, German Working Group on water issues.

running water type

German stream
typology
(LAWA-typology)

chloride mg l21

annual mean upper
threshold

conductivity mS cm21

annual mean
upper threshold

running waters in the alpine foothills 2.1/3.1/2.2/3.2/4/11 40 600

brooks in the central highlands 5/5.1/5.2/6/6 K/7/11/19 40a/50b 400a/800b

small- to mid-sized rivers in the central highlands 9/9.1/9.1 K/19/12 40a/50b 400a/800b

large rivers and streams in the central highlands 9.2/10 50 800

brooks in the central plains 11/14/16/18/19 50a/70b 700a/1000b

small- to mid-sized rivers in the central plains 12/15/17 60a/90b 800a/1000b

large rivers and streams in the central plains 15 g/20 90 1000
aSilicious.
bCarbonatic waters.
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there because they did not tolerate the strong and frequent

salinity fluctuations resulting from the mining activity. Also,

truly marine algal species occur only seldom in salinized

inland waters; with the brown algae Ectocarpus confervoides
being one of the rare examples [66]. Finally, an investigation

on the species sensitivity distributions for maximum salinity

tolerance in the river Rhine found no significant differences

between native and non-native species [67]. Thus, this is a

topic that requires further study.

Beyond direct salt toxicity, freshwater salinization can have

unexpected consequences for aquatic organisms. For example,

Hübner [53] reviewed that salt concentration in the middle and

the lower Werra River had achieved such a level that the freez-

ing point of the water was lowered notably. As a consequence,

during the cold winter of 1962/1963 eels died in very large

numbers, most probably by hypothermia. Also, biochemical

cycles might be altered by salt pollution. Ziemann [68]

showed a strong degradation delay and inhibition of organic

matter degradation by bacteria at . 10 g Cl2 l21 (approx.

22.8 mS cm21) and a reduced oxygen consumption by floccula-

tion and sedimentation of organic substances and bacteria.

Concordantly, Sauer et al. [69] reported decreasing efficiency

of leaf litter degradation and phosphorus assimilation by

microorganisms with increasing salinity. However, a recent

microcosm study [70] showed that trade-offs between

growth and sporulation can maintain fungal growth and

decomposition at high levels along wide salinity gradients.
4. Management implications
The degradation of river ecosystems caused by salinization

has important implications for water management. For

example, in Europe the elevated salt concentrations in

many rivers [8,71] could prevent them from reaching the

good ecological status demanded by the European Water Fra-

mework Directive [72]. Halle & Müller [73] suggested that

Cl2 concentrations as low as . 0.04–009 g l21 could make

the achievement of the good ecological condition unlikely

in German rivers, although specific thresholds depend on

the geology of the catchment (table 3). Other studies on the

same dataset used change point analyses to identify that a

mean Cl2 concentration of around 25 mg l21 marked a
shifting point for invertebrate community composition

[74,75], with most taxa being negatively affected once concen-

trations reached 50 mg l21. However, these values are still

under debate: they are not only considerably lower than the

toxicity thresholds revealed by laboratory and field studies

so far, but they also seem to mismatch the geogenic hydro-

chemical situation of a number of running waters. For

example, the background salt concentration (i.e. salts of natu-

ral origin) found in many German rivers exceeds those given

by [73]. Thus, further investigations are necessary to evaluate

and validate salinity change points for biological organisms

and communities. It should also be taken into account that

river salinity can experience great temporal fluctuations

[23,76] owing to changes in river flow (affecting its dilutions

capacity), precipitation (affecting runoff ) and salinity point

sources (e.g. wastewaters). In this regard, it is clear that bio-

logical indices can be useful to monitor freshwater

salinization because they integrate temporal fluctuations

in environmental parameters [77,78]. However, current

biological indices do not seem to properly detect salt pol-

lution [22,23], suggesting that specific salinity indices

need to be developed and tested. One example is the Halo-

bion index [79], which classifies diatom assemblages into

seven classes according to the ecological range of effect

within the salinity spectrum, being able to discriminate

between different levels of salt pollution. Also, Halle

et al. [52] identified so-called orientation values for invert-

ebrates beyond which an achievement of the good

condition (European Water Framework Directive, EU

WFD) would become unlikely.

For management purposes, it is often helpful to use a

classification scheme that allows the grouping of waters of

similar salinization. In the 1990s, a number of classifications

were proposed [59,80] (table 4). What all these schemes

have in common is that they distinguish between 7 degrees

of salinization. This is consistent with the former German

chemical water quality classification. However, the foun-

dations of the approaches vary strongly, and the

classification schemes display considerable differences. For

example, the LAWA AK ZVs relied exclusively on chemical

parameters, whereas Ziemann [82] used changes in the com-

position of diatom assemblages while accounting for

background water chemistry (silicatic/carbonatic waters).
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Table 5. Summary of the main findings provided by this literature review and some key English references supporting and/or contradicting each finding.

main finding references

English literature
supporting the
finding English literature contradicting the finding

potassium is the most toxic ion for

freshwater fauna

[3,30,31,33] [33] Soucek et al. [39] found that Neocloeon triangulifer was

relatively less sensitive to K salts

toxic effect of an ion can be

compensated by other ions

(antagonism)

[2,34,35] [37 – 39] —

historical salt exposure can enhance the

salinity tolerance of freshwater fauna

[40,41] [42 – 45] [46,47,49]

salinization can cause massive fish kills,

which are among the most salinity-

sensitive freshwater organisms

[31,50,51,53] — —

salinization can cause massive algal

blooms

[31,59] — —

extreme salinization can lead to an

extensive depletion of aquatic fauna

[31,53] [24] —

salinization can promote biological

invasions

[52,62] [61] [67]

salinization can cause delay and

inhibition of organic matter

degradation by bacteria

[68] [69] Canhoto et al. [70] showed that trade-offs between

growth and sporulation can maintain fungal growth

and decomposition at high levels along wide salinity

gradients
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The approach by DVWK [59] is more comprehensive and

considers benthic invertebrates, algae and fish.

A central management question in rivers affected by

potash mining is how to dispose of brines from potash pro-

duction. One option that has been taken into consideration

on several occasions is the introduction of brines into

marine environments through collection systems [84–86].

The idea behind this practice is the assumption that once

introduced into the marine environment, brines will distri-

bute rapidly and evenly in a huge volume of seawater.

Thereby, no ecosystem damage should occur. However,

Michaelis [87] showed that several marine species (e.g. the

polyp Sertularia cupressina) colonized the tidal brackish

waters of the Jade estuary (East Frisian Wadden Sea,

German North Sea coast) after brine disposal from the gas

industry. Also, the brackish water crab Bathypreia pilosa,
which had been a widespread species in the Jade estuary, dis-

appeared. It is important to note that potash mining effluents

are not exclusively composed of Naþ and Cl2, but they can

also have high concentrations of other ions such as Mg2þ

and Kþ [88]. Because, as we have previously discussed,

different ions have different toxicities, the potential effects

of the alteration of ion ratios in receiving coastal waters

should also be evaluated before brines are disposed. Also,

salinization can promote ocean acidification by modifying

the quality of inorganic and organic carbon transported by

rivers [89]. Thus, the potential effects of brine disposal on

coastal ecosystems should be investigated to validate this

management practice. Moreover, brine collecting systems
need to be properly designed and maintained, because they

can pose a risk to groundwaters owing to leaks [90].

Beyond biological degradation, which could result in

diminished ecosystem services [91,92], freshwater salinization

can have important economic costs. For example, the annual

economic damage (i.e. infrastructure corrosion) caused by the

salt load of the Weser River was estimated 81 million Deutsche

Mark (DM) (around 41.4 million euros) for the year 1992, and

up to 1981 compensation payments of 414.5 million DM

(around 212 million euros) were necessary owing to salt intro-

ductions into the Werra and Weser Rivers [59]. Concordantly,

infrastructure damage amounted $700 million per year in the

Border Rivers catchment, Australia [93]. Moreover, salinization

can make river water unpalatable and even unsafe [21,94], thus

resulting in high economic costs associated with improved

water treatment through reverse osmosis [95].
5. Conclusion
Overall, it is clear that freshwater salinization can signifi-

cantly affect aquatic biodiversity and human welfare

through ecosystem degradation, economic costs and risk to

human health. Rivers and streams impacted by potash

mining in Germany constitute a great example of this.

German authors found that Kþ was the most toxic ion to

freshwater fauna, whereas calcium could ameliorate the tox-

icity of other ions (table 3). This is in agreement with several

studies published in English, although Soucek et al. [39]



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20180007

8
showed that the the mayfly Neocloeon triangulifer was rela-

tively less sensitive to Kþ salts than it was to other salts

such as NaCl, MgSO4 and Na2SO4. Thus, more studies on

specific ion toxicity and salt combinations are needed [7], as

well as on the transport mechanisms of each ion [96]. Interest-

ingly, we found some German papers suggesting that

populations historically exposed to elevated salt concen-

trations could be more tolerant to salinization [40,41]. This

is a controversial topic, because there are papers both

supporting and rejecting this hypothesis (table 5). Further

studies, ideally combining laboratory and field data, will be

required to assess the importance of historical salt exposure

in determining intraspecific variations on salt sensitivity.

The German literature reviewed here also revealed drastic

changes in biological communities exposed to severe saliniza-

tion, such as massive algal blooms and fish kills. These are

events that had been previously unnoticed by the English lit-

erature, probably because the very high salt loads registered

in German rivers polluted by potash mines (e.g. 40.2 g l21 of

Cl2, approx. 84.3 mS cm21) have rarely been reported else-

where (but see [24]). However, it should be noted that

freshwater salinization is being neglected in many parts of

the world such as Africa, Asia and South America [10],

where these very high concentrations could be reached,

posing a risk to freshwater biodiversity. The changes in com-

munity composition included the facilitation of biological

invasions, which has been confirmed by English studies,

although Verbrugge et al. [67] found no differences in the sal-

inity sensitivity of native and non-native mollusc species in

the river Rhine. Finally, we show that salinization can have

potential impacts on ecosystems functioning, because Zie-

mann [68] found that increased salinity delayed the

degradation of organic matter by bacteria. This is also a

very interesting finding that deserves to be further studied,
because it has been both confirmed and rejected by the

English literature (table 5).

In addition to these findings, the German literature that

we consulted includes some conductivity and salinity

values above which there would be damage to biodiversity

that would probably prevent rivers from reaching the good

ecological status demanded by the European Framework

Directive. It also provides economic estimates for damage

caused by freshwater salinization. These kinds of estimates

are unusual and can be very useful for building social aware-

ness. Overall, we can conclude that the findings summarized

in this paper are relevant and timely (even if some of them

are more than 100 years old). However, the German publi-

cations reviewed here have barely been cited by the English

literature, even when reporting similar results. This makes

us think about the probable significant amount of scientific

findings that have been and are still being published in the

non-English literature (e.g. Brazilian, Chinese, German, Rus-

sian, Spanish) and could be internationally relevant. Maybe

the global editorial and scientific community should take

action to make these findings widely available [97].
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Wasserführung in regenarmen Jahren auf das
stoffwechsel-physiologische Verhalten der Fische:
dargestellt am Beispiel der Weser in den Jahren
1971/1972 (The impact of an extremely low
discharge in dry years on the metabolic
behaviour of fishes: depicting the Weser river in
the years 1971/1972 as an example). Arch. Fisc
24, 95 – 103.

33. Mount DR, Gulley DD, Hockett JR, Garrison TD,
Evans JM. 1997 Statistical models to predict the
toxicity of major ions to Ceriodaphnia dubia,
Daphnia magna and Pimephales promelas ( flathead
minnows). Environ. Toxicol. Chem. 16, 2009 – 2019.
(doi:10.1897/1551-5028(1997)016,2009:SMTPTT.

2.3.CO;2)
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MA, Gonçalves F, Castro BB. 2015 Progressive
acclimation alters interaction between salinity and
temperature in experimental Daphnia populations.
Chemosphere 139, 126 – 132. (doi:10.1016/j.
chemosphere.2015.05.081)

50. Buhse G. 1989 Schadwirkung der Kali-Abwässer im
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57. Coring E, Bäthe J, Neele D. 2016 Indikation der
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