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Salinization of surface waters is a global environmental issue that can pose a

regional risk to freshwater organisms, potentially leading to high environ-

mental and economic costs. Global environmental change including

climate and land use change can increase the transport of ions into surface

waters. We fit both multiple linear regression (LR) and random forest (RF)

models on a large spatial dataset to predict Ca2þ (266 sites), Mg2þ (266

sites), and SO2�
4 (357 sites) ion concentrations as well as electrical conduc-

tivity (EC—a proxy for total dissolved solids with 410 sites) in German

running water bodies. Predictions in both types of models were driven by

the major factors controlling salinity including geologic and soil properties,

climate, vegetation and topography. The predictive power of the two types

of models was very similar, with RF explaining 71–76% of the spatial vari-

ation in ion concentrations and LR explaining 70–75% of the variance. Mean

squared errors for predictions were all smaller than 0.06. The factors most

strongly associated with stream ion concentrations varied among models

but rock chemistry and climate were the most dominant. The RF model

was subsequently used to forecast the changes in EC that were likely to

occur for the period of 2070 to 2100 in response to just climate change—

i.e. no additional effects of other anthropogenic activities. The future fore-

casting shows approximately 10% and 15% increases in mean EC for

representative concentration pathways 2.6 and 8.5 (RCP2.6 and RCP8.5)

scenarios, respectively.

This article is part of the theme issue ‘Salt in freshwaters: causes, ecologi-

cal consequences and future prospects’.
1. Introduction
Two types of processes can be distinguished that govern an increase of salinity:

primary and secondary salinization. Primary salinization is associated with

increasing salt input originating from natural processes such as rainfall, rock

weathering, sea-water intrusion and aerosol deposits [1]. Human-driven salini-

zation is called secondary salinization and is mainly induced by land

development, agriculture, discharge of industrial liquid or solid waste,

mining, road de-icing or intensive fertilization, and irrigation [2–4]. The effects

of stream salinization on water bodies range from physiological responses of

organisms [5] to alterations in freshwater communities, to subsequent

reductions in ecosystem functioning [6]. Reductions in the density and species

richness of multiple organism groups such as diatoms [7], macroinvertebrates

[5,8], amphibians [9], fish [10] and riparian plant communities [11,12] have

been reported in response to increasing surface water salinity.
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Figure 1. Location of EC monitoring sites (other ions, see electronic
supplementary material, figure S1).
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Climate change can accelerate natural salinization pro-

cesses, thereby increasing the salt load to water bodies.

For example, modelling of climatic forcing of the water

and chloride balance for freshwater lake Ijsselmeer in the

Netherlands shows that the peak chloride concentrations

can increase by up to 108 mg l21 (an increase of 14.3% com-

pared to the reference situation) through the climate

change scenario Wþ (characterized by a strong increase

in the global mean temperature) in 2050. The main driver

for the increase is the changing hydrology of the Rhine

River expected to change owing to snowmelt and rainfall

that dominate river water volume [13]; the case studies in

six lakes and reservoirs in southern Europe (Estonia,

Greece, Turkey and Italy) and the Middle East (Israel),

and one in Brazil reveal that changes in water level

owing to climate warming have significant effects on sal-

inity level and trophic structure of lakes and reservoirs

[14]. Future climate change projections for Central and east-

ern Europe forecast an increase in temperature extremes,

such as an increase in the duration and intensity of

droughts [15]. This may exacerbate salinization in this

region. Although salinization in Central European

countries such as Germany is currently considered rather

a localized problem, mostly originating from mining [16],

other studies indicated that salinization can interfere

with other stressors. For example, increasing salinity was

a major factor controlling the invasion of alien species

(molluscs and crustaceans) in German streams [17].

Finally, other human activities may interact with and

exacerbate the natural processes of salinization. Natural

salts in water bodies could be enhanced through human-

accelerated weathering [18–20]. For example, the disturbance

of lithology through urban construction can bring

bedrock materials to the surface that are subject to chemical

weathering [21].

Natural background ion concentrations are driven by salt

input originating from natural processes such as rainfall, rock

weathering, sea-water intrusion and aerosol deposits without

the presence of human activities. Models predicting baseline

salinity help to establish benchmark conditions that can be

used to assess whether stream water quality has degraded

through secondary salinization. Moreover, such models

inform on the changes and the range of variation that are

likely to occur compared to baseline salinity under different

scenarios of future climate change. Thereby, they also represent

a first step towards investigating future salinity, including

human drivers. Generally, such information is required to

assess and communicate the economic costs of ongoing and

future river salinization and thus to make decisions for

management regarding mitigation and local adaptation.

The major factors that control the natural background

level of salinity are lithology, climate, vegetation, relief and

soil properties [22–27], hydrochemical processes, size and

elevation of the watersheds [26–28] and groundwater

[29,30]. Here, we modelled and forecast the change in natural

background ion concentrations in running waters of

Germany based on these major factors, focusing on electrical

conductivity (EC, a proxy for total dissolved solids), Ca2þ,

Mg2þ and SO2�
4 . Major drivers of salinization (temperature

and with its resulting evaporation, dilution, etc.) are likely

to change. Hence, our study evaluates the importance of

the different drivers and gives a first indication of likely

consequences of climate change on salinization.
2. Material and methods
(a) General approach
We used the major natural factors controlling salinity such as

geologic and soil properties, climate, vegetation and topography

as predictors in models. We then compared the predictive power

of random forest (RF) and LR models for EC. We used RF models

because they can model nonlinear relationships, are insensitive to

over fitting and generally have high predictive performance com-

pared with other machine-learning methods [31–33]. However,

since machine-learning approaches are often complex to inter-

pret, we also fitted a statistical model. Since the ordinary linear

regression (LR) model can perform poorly in both prediction

and interpretability of results in situations with intercorrelated

predictors [34], we used a penalized approach, i.e. the elastic

net to overcome these drawbacks. Assessment of model perform-

ance, caveats and limitations of models are presented in

subsequent sections. The model with the best predictive perform-

ance was used to forecast EC in German streams for the period

from 2070 to 2100.
(b) Datasets and catchment selection
Data for EC and ion concentrations in streams, measured from

2005 to 2015, and the location of sampling sites were provided

by the German federal state authorities (figure 1 and electronic

supplementary material, figure S1). To identify sites that rep-

resent background EC and ion concentrations without major

human influence, we selected sites according to the following

two criteria: (1) less than 5% agricultural/urban land use in the

catchments, (2) no mining in the catchments. These criteria of

site selection were based on Olson & Hawkins [27], Herlihy

et al. [35] and Herlihy & Sifneos [36].

The source of geologic data used in the study is The Geological

Survey Map of the Federal Republic of Germany 1 : 200 000

(GÜK200) (see https://www.bgr.bund.de/EN/Themen/Sammlun-

genGrundlagen/GG_geol_Info/Karten/Deutschland/GUEK200/

guek200_inhalt_en.html, accessed on 16 July 2018). The map consists

of 55 layers that give the distribution of more than 3800 geological

https://www.bgr.bund.de/EN/Themen/SammlungenGrundlagen/GG_geol_Info/Karten/Deutschland/GUEK200/guek200_inhalt_en.html
https://www.bgr.bund.de/EN/Themen/SammlungenGrundlagen/GG_geol_Info/Karten/Deutschland/GUEK200/guek200_inhalt_en.html
https://www.bgr.bund.de/EN/Themen/SammlungenGrundlagen/GG_geol_Info/Karten/Deutschland/GUEK200/guek200_inhalt_en.html


Table 1. Response and predictor variables. Time periods for the mean variables are described in electronic supplementary material, table S2.

response/predictor variable category of variable variable unit

response EC electrical conductivity (EC) mS cm21

ion concentration Ca2þ mg l21

Mg2þ mg l21

SO2�
4 mg l21

predictor geology catchment mean CaO %

catchment mean MgO %

catchment mean S %

catchment mean unconfined compressive strength MPa

catchment mean log geometric mean hydraulic conductivity 1026 m s21

climate catchment mean annual temperature 8C

catchment mean annual precipitation mm

catchment mean number of freeze days days

soil catchment mean available water capacity dimensionless

catchment mean bulk density g cm23

catchment mean organic matter content %

catchment mean soil erodibility dimensionless

catchment mean soil permeability (kf ) m s21

catchment mean soil depth m

catchment mean water table depth m

topography catchment area km2

catchment mean elevation m

vegetation catchment mean enhanced vegetation index (EVI) dimensionless

groundwater catchment mean recharge speed mm year21
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units of the surface geology of Germany and adjacent areas. The geo-

logical units contain information on the stratigraphy (age), genesis

and component lithologies of the rocks.

The spatially dominant lithology was estimated for each geo-

logical unit based on 102 different lithologies listed by the

GÜK200. Then, we characterized five attributes for each unit com-

prising percentages of CaO, MgO and S; uniaxial compressive

strength as a proxy for rock strength and hydraulic conductivity

as a proxy for rock–water interaction. The values of the five attri-

butes for each lithology were derived from Olson & Hawkins [27]

(electronic supplementary material, table S1).

Climatic data such as mean annual temperature, precipitation

and the number of days of freeze were obtained from the DWD

Climate Data Center in Germany (see https://www.dwd.de/

EN/climate_environment/cdc/cdc_node.html, accessed 16 July

2018). Multi-annual grids of precipitation, air temperature

(2 m above ground) and freeze days over Germany for

1981–2015 at a resolution of 1 km � 1 km were used. For further

variables related to soil properties, vegetation and groundwater

recharge velocity, see electronic supplementary material, table S2.

Geographical information on mining, agricultural, conserva-

tion and urban land use was extracted from the Authoritative

Topographic-Cartographic Information System for Germany

[37]. For each sampling site, upstream catchments were derived

from a digital elevation model [26] based on the multiple flow

direction algorithm [38] as implemented in GRASS GIS 7

[39,40]. During the derivation of upstream catchments, we also

calculated topographic indices such as the area and elevation

for each catchment. In some flat areas, the algorithm failed to

delineate catchments (16% of all sites). In these cases, the
catchments were assigned based on information of drainage

basins provided by the Federal Institute of Hydrology for the

respective stream segments, and the derived information was

amalgamated with the other data [41].
(c) Modelling
There was no evidence of spatial autocorrelation, as indicated by

semivariograms calculated using the R packages SSN [42] and

openSTARS [43] (electronic supplementary material figure S2);

therefore, no adjustments for spatial autocorrelation were

needed. LR and RF models were used to develop predictive

models of natural background EC and ion concentrations in

streams in Germany. We compared the predictive power of

both models. We considered four responses (EC, Ca2þ, Mg2þ

and SO2�
4 ) and used 19 candidate predictive variables: 5 describ-

ing geological characteristics, 3 describing climate, 7 describing

soil properties, 2 capturing topography, 1 each for vegetation

and groundwater (table 1).
(i) Linear regression model
The LR model is given by: y ¼ b0 þ b1�1 þ b2�2 þ . . ..þ bpxp,

where x1, . . . , xp are predictors; y is the response and p is

number of predictors. The vector of regression coefficients b

(b0, b2, . . . bp) is derived in model fitting, for example, using

ordinary least squares (OLS) by minimizing the residual sum

of squares. However, OLS can perform poorly in both prediction

and interpretability of results, particularly with intercorrelated

predictors [34]. Penalized approaches such as the LASSO, ridge

https://www.dwd.de/EN/climate_environment/cdc/cdc_node.html
https://www.dwd.de/EN/climate_environment/cdc/cdc_node.html
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regression and the elastic net have been suggested to improve

OLS. The LASSO imposes an L1-penalty on the regression coeffi-

cients and simultaneously does both continuous shrinkage and

automatic variable selection such that only the important predic-

tor variables remain in the model. On the other hand, by

bounding on L2-norm of the coefficients and continuous shrink-

age, ridge regression [44] can minimize root-mean-squared errors

(RMSE) and achieve higher prediction performance. The

regression coefficients in these techniques are shrunk towards

zero by imposing a penalty on their size [33]. Bühlmann & van

de Geer [45] showed that when predictor variables are correlated,

analyses with the elastic net can result in a lower mean squared

error (MSE) than LASSO and ridge regression. Moreover, the use

of the elastic net method has been shown to identify a higher

number of influential variables than LASSO and ridge regression

approaches [46].

Given that many predictors were highly correlated (electronic

supplementary material, table S3), we fitted LR models by apply-

ing the elastic net (R package glmnet) [47]. The elastic net

represents a combination of ridge regression and LASSO as

suggested by Zou & Hastie [34] employs the elastic net penalty

P(b) composed of two component penalty functions:

P(b) ¼
Xp

j¼1

1

2
(1� a)b2

j þ ajbjj
� �

: ð2:1Þ

The first penalty is the ridge penalty (L2) that minimizes the

weighted sum of squared regression coefficients, whereas

the second component is the LASSO penalty (L1) minimizing

the weighted sum of absolute regression coefficients. The penalty

parameter a [(0,1) determines the bias variance trade-off

between L1 and L2 (i.e. how much weight should be given to

either the LASSO or ridge regression). The elastic net with a ¼

0 performs ridge regression, whereas a ¼ 1 is equivalent to the

LASSO; b denotes the values of the regression coefficients.

We tuned a and l in our models and selected the optimal

model as the a and l combination (electronic supplementary

material, table S4) that yielded the highest prediction perform-

ance based on five-fold cross-validation. The l is the shrinkage

parameter selected from a range of 0.0001 to 1 and hyper-

parameter a ranged from 0 to 1. Before developing the LR

models, we applied spread-level plots (car package; [48]) to

assess the residuals for heteroscedasticity which suggested that

the response variable be log-transformed. We also log-trans-

formed the predictor variables catchment area and organic

matter content to improve linearity between these predictors

and the response variables. Predictor variables with a larger

coefficient are considered to be most important.
(ii) Random forests
RF is a machine-learning method introduced by Breiman [31] to

enhance predictive accuracy and classification accuracy without

overfitting data. RF is based on the principle of classification

and regression trees (CART). RF uses several bootstrap samples

of the data that are randomly selected at each node as a subset

of explanatory variables to build many binary decision trees

[31]. We used the R package randomForest for fitting RF [32].

We checked for variables that exhibit very low variance and

removed highly correlated variables that were unlikely to be

informative. We also used partial dependence plots to identify

predictors with uninterpretable relationships with the responses,

and we removed these predictors from the final models. By

implementing the function tuneRF with 1500 trees, the optimal

number of terminal nodes (mtry) at each node that produced

the minimum out of bag error (OOB error) was determined (elec-

tronic supplementary material, table S5). In detail, a bootstrap

sample of the original data was used to construct each tree in

the tuneRF function. The observations that are not used to
construct a tree are denoted out-of-bag (OOB) observations.

OOB observations can then be predicted from the trees to evalu-

ate prediction accuracy, where the resulting error is referred to as

OOB error. The best performing model (optimal mtry) is ident-

ified as the one with minimum OOB error. Variable importance

was evaluated as the mean decrease in accuracy (%IncMSE), a

measure of how much the model error increases if that variable’s

information is removed by randomizing it.

(d) Assessment of model performance
In elastic net regression, we applied a five-fold cross-validation

approach to estimate the model with the highest predictive accu-

racy, whereas in RF the OOB error was used to identify the best

model. To compare the models, we also calculated the coefficient

of determination (R2) and the MSE of the variance for both

models. The R2 is a goodness of fit measure, whereas MSE is

an absolute measure of predictive accuracy. All calculations

and graphics were performed in R version 3.3.1 [49].

(e) Forecasting future EC
We examined the effects of likely climate change (temperature

and precipitation) on future EC, while holding all other factors

constant (i.e. geology, soil properties, vegetation and ground-

water). We selected 610 standard water monitoring sampling

sites in small German streams that are spatially evenly distribu-

ted and therefore representative for the whole of Germany

(UBA—German Federal Environmental Protection Agency).

The dataset of environmental factors for these 610 sites was

extracted from the same sources as described in table 1, however,

with the future data for temperature and precipitation. We

applied the established RF model that showed the best predictive

performance to the new dataset to predict current and forecast

future EC. Then, we calculated EC alteration as the difference

between the predicted 2070–2100 EC (both scenarios RCP2.6

and RCP8.5) and the baseline scenario to identify any tendencies

of natural salinity to change in Germany’s streams in the future.

For climate change projections, we used statistically down-

scaled datasets from the Delta Method for the Fifth Assessment

Report of Intergovernmental Panel on Climate Change [50].

The CSIRO MK. 3.6.0 model was applied with a 30 s resolution

for the time period 2070–2100 under the RCP 2.6 and RCP 8.5

(RCP—representative concentration pathways) for future climate

change. While the RCP 2.6 represents one of the scenarios that

aims to limit the increase of global mean temperature to 28C,

RCP 8.5 is based on a comparatively high greenhouse gas emis-

sions scenario where the range of temperature increase is

expected to be 3.5–4.58C by 2100 [50].
3. Results and discussion
(a) Model fit, model evaluation and important variable
RF generally resulted in more parsimonious models com-

pared with LR. The number of selected predictors in the

models ranged from 12 for Mg2þ to 19 for both Ca2þ and

SO2�
4 in the LR models, and from 7 for Ca2þ to 10 for SO2�

4

in the RF models (electronic supplementary material, table

S6). We found clear differences among ions in the relative

importance of the factors for predicting stream chemistry.

Nevertheless, the most dominant factors in predictive

models were rock chemistry and climate (electronic sup-

plementary material, table S6). Previously, Nédeltcheva

et al. [24] found annual rainfall and the proportion of different

minerals in the bedrock to be the two main factors driving

stream water chemistry, Olson & Hawkins [27,51] showed
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that both rock chemistry and climate were important predic-

tors of stream chemistry. Stream chemical composition in

Queensland is a consequence of both geological history,

and past and present climates [52].

Stream Ca2þ, Mg2þ and SO2�
4 concentrations were posi-

tively correlated with percentages of CaO, MgO and S in

the catchment rock, representing the effect of different bed

rock types on stream chemistry, caused primarily by the geo-

chemical weathering and erosion. During chemical

weathering, these elements become separated from the

rocks as dissolved ions or colloids. Subsequently, they may

be incorporated into secondary minerals or remain as pri-

mary resisted minerals. Solutions that have reacted with

rocks and contain dissolved ions, colloids and suspended

matter will eventually reach surface water bodies and thus

increase concentrations of Ca2þ, Mg2þ and SO2�
4 that make

up a large portion of EC. Based on catchment studies in the

USA, Walling [53] found that ion concentrations in surface

water were independent of solubilities of the minerals present

in these rocks. Since ultrabasic rocks are rich with pyroxenes

and olivine, the predominant ion expected from these rocks

in surface water is Mg2þ. Similarly, Ca2þ is the dominant cat-

ionic contribution in water bodies from calcareous or

dolomitic soils.

EC and ion concentrations in streams correlated nega-

tively with mean annual precipitation. This result likely

indicates that increasing precipitation results in large water

volumes in streams, which causes dilution of most solutes

[2,22]. Moreover, the amount of precipitation also influences

the amount of flow through the soil as well as the soil

water retention time before it enters streams and lakes. We

found a positive relation between temperature and EC, and

between temperature and ion concentrations, which may

also indicate an effect of water volume. An increase in

water temperature increases evaporation [54], which in turn

reduces dilution capacity, translating into higher salinity [55].

Between 70% and 75% of the variance in stream water EC,

Ca2þ, Mg2þ and SO2�
4 was explained by environmental factors

in LR (figure 2 and electronic supplementary material, figure

S3), respectively, with MSEs all less than 0.06. The predictive

power of RF and LR models were likely similar, with RF

explaining 71–76% of the spatial variation in ion concen-

trations and LR explaining 70–75% of the variance (figure 2

and electronic supplementary material, figure S4). The SO2�
4

concentration was best explained in both models (R2 ¼ 76%,

MSE ¼ 0.033 in RF; R2 ¼ 75%, MSE ¼ 0.043% in LR).
(b) Forecast future EC
For Germany, climate change is expected to result in

increased mean temperature and a decrease in mean precipi-

tation until end of the century, based on the selected

scenarios (electronic supplementary material, figure S5 and

table S7). Evaporation is expected to rise when temperature

increases [54]. A decrease in the amount of precipitation

results in a decrease in catchment runoff [56]. Reduced

river discharge implies a lower dilution capacity that also

contributes to higher salinity concentration [55].

We forecast an approximately 10–15% increase in mean

EC for the climate change scenarios for German small

streams. The average ECs in the period from 2070 to 2100

for scenarios RCP 2.6 and RCP 8.5 were predicted to be

0.407 (+0.008 ( ¼ 2 s.e.)) and 0.418 (+0.007) mS cm21
compared with 0.366 (+0.010) mS cm21 for the period from

2005 to 2015 (figure 3). Furthermore, the magnitude of the

difference between the two scenarios in forecast EC was not

as large as expected (0.407 versus 0.418 mS cm21) because

precipitation was considered the most important factor in

stream chemistry in the RF model, but there was only a

slight difference in predicted precipitation between the two

scenarios (electronic supplementary material, figure S5b).

An increase in EC was also found over the past decades in

the United States (US) and Australia but mainly driven by

anthropogenic factors including mining, resources extraction,

agriculture and urbanization. A large proportion of the

streams (37%) in the US have been impacted by increasing

EC over the past 50 years [18] and the predicted rate of

increase in EC is 50% [51]. In Australia, the predicted rates

of average river salinity change for the period from 1998 to
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2100 showed strong regional differences. The average of sal-

inity at the lower River Murray (Southeast Australia) was

predicted to increase from 0.57 to 0.90 mS cm21 in 100

years (i.e. 58%), whereas this rate was 60% and 505% for

Central East and Northeast Australia, respectively [57,58].

Statistically increasing trends in EC were observed at

approximately 80% of sites (610 sites, electronic supplemen-

tary material, figure S6) for RCP2.6 and RCP8.5, whereas

this proportion is 37% for the US [18]. This finding suggests

a more homogeneous response in Germany, which is not sur-

prising given the wider gradients in climate and lithology in

the US. In some cases, the predicted change in EC was sub-

stantial: for example, EC in RCP2.6 and RCP 8.5 was

predicted to increase by 50% at 5% and 10% of sites, respect-

ively, mostly in south Germany (figure 4). An increased EC

can negatively impact ecosystem processes [13,55]. Popu-

lations of invertebrates (e.g Heterocypris sp.) may be

reduced from present levels if streams salinity increases by

more than 50% [59]. Shifting food habits and reducing fish

production are likely consequences of a salinity-induced

disruption in the benthic invertebrate forage base [59]. A

large-scale study by Kefford et al. [5] found approximately

13%, 9%, 12%, 8%, 4% and 20% species loss in all taxa, all

insects, EPT, non-EPT insects, crustaceans and molluscs,

respectively, for a 30% change in EC in Southeast Australia,

leading to community changes [60]. Finally, loss in community

trait diversity was linear along the salinity gradient [61].

(c) Model limitations
First, owing to the selection criteria for the sampling sites

(less than 5% agricultural and urban land use in the catch-

ments, no mining) and owing to the fact that we relied on

data monitored by the respective federal authorities, the

sampling sites were spatially unevenly distributed and

some areas of Germany lacked sampling sites (figure 1 and

electronic supplementary material, figure S1). Therefore,

some environments were not adequately represented in our

models (especially environments in Bavaria with high

elevation and more continental climates) and our predica-

tions for these areas may be biased. Second, natural

salinization processes can interact with other human and
non-human processes. For example, increasing oceanic alka-

linity has been driven by an interplay of acidic

precipitation, amongst other factors [62]. Acid rain interacts

with lithology through weathering to increase dissolved inor-

ganic carbon in river water and in turn conductivity [20].

Such factors (e.g. pH of precipitation or atmospheric depo-

sition (Ca2þ, Mg2þ, SO2�
4 and other minerals)) were omitted

from our model, which means that our forecast may underes-

timate the increase in natural background salinity. Finally,

extrapolating statistical relationships outside the range of

observed data should be interpreted with care. In other

words, if the new predictor values are outside of the range

on which the model was fit, the relationship between the

independent variables and the dependent variable might

change outside of that range [63]. The extreme temperatures

expected in the future exceed the range of measured tempera-

ture (electronic supplementary material, figure S5) in our

study, which likely causes RF to underestimate the actual

change in salinity at these sites. Most climate models estimate

future temperatures higher than current ones; therefore, this

issue is likely to be a general one in statistical models.
4. Conclusion
We fit two statistical models (LR and RF) to forecast ion con-

centrations and EC in streams in Germany. The model

findings may on the one hand directly inform on potential

risks in other Central European regions with similar gradi-

ents in lithology and climate. On the other hand, the

models may be adopted in other European regions with simi-

lar major drivers in stream chemistry to begin to establish a

continent-wide assessment of both current and future

changes in salinity. The results of EC projections show a

slightly elevated conductivity in German streams in the

period from 2070 to 2100 under climate change. Changes in

other human and non-human processes such as changes in

the acidity of atmospheric deposition or land use may exacer-

bate natural salinization processes, though incorporation of

such processes was beyond the scope of this study. In particu-

lar, incorporating land use information may enhance our
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predictive capacity and understanding of the future

anthropogenic influence on stream salinity.
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der Ohe PC, Pettigrove V, Schulz R, Nugegoda D,
Kefford BJ. 2012 Effects of pesticide toxicity, salinity
and other environmental variables on selected
ecosystem functions in streams and the relevance
for ecosystem services. Sci. Total Environ. 415,
69 – 78. (doi:10.1016/j.scitotenv.2011.05.063)

7. Busse S, Jahn R, Schulz C-J. 1999 Desalinization of
running waters. Limnologica 4, 465 – 474. (doi:10.
1016/S0075-9511(99)80053-X)
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