
rsif.royalsocietypublishing.org
Research
Cite this article: Lai AKM, Biewener AA,

Wakeling JM. 2018 Metabolic cost underlies

task-dependent variations in motor unit

recruitment. J. R. Soc. Interface 15: 20180541.

http://dx.doi.org/10.1098/rsif.2018.0541
Received: 16 July 2018

Accepted: 23 October 2018
Subject Category:
Life Sciences – Engineering interface

Subject Areas:
biomechanics, bioenergetics, bioengineering

Keywords:
motor recruitment, musculoskeletal modelling,

motor units, muscles
Author for correspondence:
Adrian K. M. Lai

e-mail: adrian_lai@sfu.ca
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Metabolic cost underlies task-dependent
variations in motor unit recruitment

Adrian K. M. Lai1, Andrew A. Biewener2 and James M. Wakeling1

1Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia,
Canada
2Concord Field Station, Harvard University, Bedford, MA, USA

AKML, 0000-0002-8931-0878; AAB, 0000-0003-3303-8737

Mammalian skeletal muscles are comprised of many motor units, each con-

taining a group of muscle fibres that have common contractile properties:

these can be broadly categorized as slow and fast twitch muscle fibres.

Motor units are typically recruited in an orderly fashion following the

‘size principle’, in which slower motor units would be recruited for low

intensity contraction; a metabolically cheap and fatigue-resistant strategy.

However, this recruitment strategy poses a mechanical paradox for fast,

low intensity contractions, in which the recruitment of slower fibres, as pre-

dicted by the size principle, would be metabolically more costly than the

recruitment of faster fibres that are more efficient at higher contraction

speeds. Hence, it would be mechanically and metabolically more effective

for recruitment strategies to vary in response to contraction speed so that

the intrinsic efficiencies and contraction speeds of the recruited muscle

fibres are matched to the mechanical demands of the task. In this study,

we evaluated the effectiveness of a novel, mixed cost function within a mus-

culoskeletal simulation, which includes the metabolic cost of contraction, to

predict the recruitment of different muscle fibre types across a range of loads

and speeds. Our results show that a metabolically informed cost function

predicts favoured recruitment of slower muscle fibres for slower and iso-

metric tasks versus recruitment that favours faster muscles fibres for

higher velocity contractions. This cost function predicts a change in recruit-

ment patterns consistent with experimental observations, and also predicts a

less expensive metabolic cost for these muscle contractions regardless of speed

of the movement. Hence, our findings support the premise that varying motor

recruitment strategies to match the mechanical demands of a movement

task results in a mechanically and metabolically sensible way to deploy the

different types of motor unit.
1. Introduction
Mammalian muscles contain many motor units; each comprising of a bundle of

muscle fibres with generally similar contractile properties. However, the con-

tractile properties of muscle fibres among different motor units within a

muscle typically vary [1,2] and can be broadly categorized into slow twitch

and fast twitch motor units. When the muscle is activated, the activation

level of each motor unit can also vary, as well as the population of motor

units that are recruited. An ‘orderly’ recruitment plan of motor units based

on motor unit size was introduced by Henneman and colleagues [3,4], in

which motor units innervated by the smallest motorneurons are most excitable

and recruited first, and motor units innervated by the largest motorneurons are

least excitable and recruited last. During orderly recruitment, motor units

recruited first have slower muscle contractile properties than motor units

with higher thresholds and faster contractile properties that are recruited later

[5,6]. Given this pattern of neural recruitment, the fastest motor units would

only be recruited at the highest level of motor activity. Because the contractile
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properties of different types of muscle fibres vary, the popu-

lation of motor units that is recruited affects the mechanics of

a muscle when it contracts [7–10].

This ‘size principle’ of orderly recruitment has advan-

tages in the relative simplicity of its control pattern, leading

to efficient and fatigue-resistant contractions when motor

activity is low or contractions are slow [11]. However, orderly

recruitment based on size can pose a mechanical paradox at

fast velocities. Fast muscle fibres generate greater power

and are mechanically more efficient during fast contractions

than slow fibres [12,13]. Thus, for mechanical and energetic

reasons, it makes sense to favour the recruitment of faster

motor units for high-velocity contractions, even if the force

and required activity is low; which is when the size principle

would predict that slower motor units are recruited [14,15].

Studies have shown that the size principle of recruitment

can be altered depending on the context of the movement

task (for review see [16]). Varied coordination patterns between

muscles of different fibre-type composition have been observed

in both animal and human studies depending on the move-

ment velocity [17–21]. Although it is experimentally more

challenging to detect, evidence indicates that recruitment pat-

terns among motor units within muscles can also be altered

depending on the mechanics of the task, with slower motor

units being suppressed for both high velocity and high

frequency contractions [14,15,21–24].

The direct experimental measures of muscle force and

length that are required to evaluate the biomechanical func-

tion of a muscle’s contraction, however, have only been

made for a limited number of muscles, in a limited number

of studies. Because of this, computer simulations are com-

monly used to predict muscle activity during dynamic

movements for the many muscles for which measurements

have not been made (e.g. [25,26]). Nevertheless, the majority

of muscle models do not consider the heterogeneity of fibre-

type properties [27], orderly recruitment plan [28] or recruit-

ment patterns of muscle fibres that may depend on the

mechanics of the task [8,9,29,30]. Hence, muscle models

that do not include these fibre-type and recruitment proper-

ties may not be able to adequately predict the recruitment

patterns and the subsequent force and function of muscles

contracting under dynamic conditions of movement.

Muscle activations are typically predicted by specifying a

cost function believed to mimic the strategy chosen by the

central nervous system to solve the muscle redundancy pro-

blem while satisfying a set of constraints that represent the

musculoskeletal system. A commonly used cost function is

to minimize the muscle activation required to perform a

movement [31,32]. However, faster motor units that generate

higher forces than slower motor units when they shorten

would produce similar force at lower activations and thus

would always be favoured by such a cost function [30]; this

would contravene the generally accepted size-principle

pattern of recruitment.

The purpose of this study was to evaluate the effectiveness

of a novel, mixed cost function that includes the metabolic cost

of contraction, over the typical activation-based cost function.

We hypothesized that a metabolically informed cost function

would favour the activation of slow motor units at isometric

and slow contraction speeds, consistent with the size principle

that is known to be effective in these conditions. However, we

additionally hypothesized that the same mixed cost function

would favour the recruitment of faster motor units for faster
movements and contraction speeds, in a manner consistent

with experimental studies [21,22] but not predicted by the

orderly recruitment size principle.

2. Methodology
2.1. Approach to the problem
To test our hypotheses for an appropriate cost function, muscle

fibre heterogeneity and motor recruitment patterns during different

contraction speeds, we generated simulations using experimental

data, an adapted musculoskeletal model and dynamic optimization

techniques.

The musculoskeletal model was based on an existing generic

musculoskeletal model of the lower limb [33] adapted to suit the

aims of this study. To simulate muscle fibre heterogeneity, we

used an alternative approach to our previous implementation

in Lai et al. [30]. Previously, the fast and slow muscle fibres

within a muscle were represented as two parallel muscle–

tendon units (MTU) connected to a MTU that represented a

shared tendon. In contrast, for practical and computational

reasons, in this study we used two parallel MTUs that had

identical muscle attachment points and force generating

capacities. The series elastic element of both MTUs was set to

be rigid, and thus, the absolute muscle fibre length and velocity

in the MTUs were identical. Hence, the configuration was

analogous to two distinct fast and slow motor unit populations

within a single muscle. To test the two different cost functions

implemented in our model, we solved an optimal control

problem using direct collocation methods and predicted time-

varying muscle activations. To predict muscle fibre recruitment

patterns during different contraction speeds, the musculoskeletal

model was driven to track the simulated dynamics of a typical

ramped isometric contraction experiment and experimental data

collected across a range of pedalling conditions [29].

2.2. Musculoskeletal model
The adapted musculoskeletal model used in this study included

thigh, shank, foot and pedal segments of the right leg. The model

had eight degrees of freedom (d.f.); the hip was modelled as a six

d.f. joint that positioned and orientated of the right leg in the

global space to match the experimental data, the knee and

ankle joints were modelled as one d.f. hinge joints and the

pedal was welded to the foot segment. The model was driven

by three MTUs. As stated previously, two MTUs were used to rep-

resent two muscle fibre types within a single bi-articular

plantarflexor. The remaining MTU represented a uni-articular

ankle dorsiflexor. The muscle – tendon properties of the plan-

tarflexor and dorsiflexor MTUs were taken from medial

gastrocnemius and tibialis anterior muscles, respectively,

reported by Rajagopal et al. [34] with updated optimal fibre

lengths and tendon slack lengths reported in Lai et al. [33].

Each MTU actuator consisted of a massless Hill-type actuator

with contractile and series elastic elements. The contractile

element represented the muscle fibre with normalized active

force–length (F̂a(l)) and force–velocity (F̂(v)) relationships and

a passive force–length relationship (F̂p(l)) [35]. These relation-

ships were scaled for each MTU to their maximum isometric

force (F0), optimal fibre length (l0) and pennation angle at opti-

mal fibre length. The series elastic element that represented the

free tendon and other connective tissues was assumed to be

rigid in this study. This assumption neglects the influence of

tendon compliance on muscle fibre behaviour (see Discussion).

However, because it was unchanged for all simulations, this

assumption does not influence the variation in predicted acti-

vations across contraction speeds. Ideal linear and torque

actuators were applied at the hip and knee joints to drive

these joints without muscle actuation and to account for the
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Figure 1. (a) Normalized muscle force, (b) mechanical power, (c) metabolic rate and (d ) efficiency properties of the three muscle fibre types used in this study
plotted against normalized fibre velocity. Fibre velocity was normalized by the maximum contraction velocity (V0). Muscle force was normalized by the maximum
isometric force (F0). Mechanical power was calculated as the product of muscle force and muscle fibre velocity. Metabolic rate function was adapted from Minetti &
Alexander [36]. Mechanical efficiency was the calculated as mechanical power over metabolic rate. (Online version in colour.)
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bi-articular configuration of the ankle plantarflexor (i.e. the

medial gastrocnemius spans the knee and ankle joints).

2.3. Metabolic energy model
To predict metabolic rate, we used the metabolic model defined

by Minetti & Alexander [36] (figure 1). The metabolic model was

defined by a nonlinear metabolic rate function that was pro-

portional to the fibre velocity and scaled linearly with

activation (â), F0 and maximum contraction velocity (V0)

(figure 1). The metabolic rate function was calibrated to exper-

imental data from frog sartorius muscle under various

contraction conditions [37]. This metabolic model has been

shown to predict metabolic rates during running that were con-

sistent with complex metabolic models derived from the First

Law of Thermodynamics and the free energy liberated by ATP

hydrolysis during cross-bridge cycling [38]. Furthermore, this

metabolic model was chosen because it was smooth and continu-

ous to the second derivative, and hence was well-suited for

dynamic optimization; the method used in this study to predict

muscle recruitment patterns [39]. We modified the metabolic

rate function to account for muscle fibre type by including a scal-

ing factor so that the mechanical efficiency of purely slow and

fast muscle fibre types were consistent with experimentally

reported isokinetic concentric contractions in mice [40] as well

as another metabolic model that accounted for fibre types in

humans [28]. Similar mechanical efficiencies were reported in

other mammalian skeletal muscles [41,42]. We also assumed

that the scaling factor of the rate function varied linearly with

the V0 of each fibre type. For example, the scaling factor for a

mixed muscle fibre type predicted a metabolic rate that

was the average of the purely slow and fast muscle fibre types.

Mechanical efficiency was defined as mechanical power output

divided by metabolic rate.

2.4. Muscle fibre type properties
To represent slow, mixed and fast muscle fibre types, the muscle

properties of two muscle fibre types of the plantarflexor were

varied via three properties: V0, the curvature of the concentric

portion of the force–velocity relationship and the activation

and deactivation time constants for the first-order excitation–

activation dynamics [26]. V0 of the slow, mixed and fast fibres

was set at 5, 7.5 and 10 l0 s21, respectively, consistent with pre-

vious modelling studies of muscle fibre types [8,23] and within

the range reported for human muscle [43]. The curvature of the

force–velocity curve of the slow, mixed and fast fibres were

fitted to the curvature value, k, defined in Otten’s formulation

of 0.18, 0.235 and 0.25, respectively [44]. Specifically, the curva-

ture of the faster muscle fibre was significantly flatter than that

of the slow muscle fibre (figure 1). The activation time constants

for the first-order excitation–activation dynamics of the slow,
mixed and fast fibres were 45, 35 and 25 ms, respectively, derived

from reported values from tetanic contractions in cats [30,45].

The deactivation time constants were set such that the ratio of

activation to deactivation time constants was 0.6 for all muscle

fibre types [26]. Two muscle fibre combinations were used in

the plantarflexor in this study; (i) one muscle fibre was assigned

purely fast contractile properties and the other was assigned

purely slow contractile properties, or (ii) both muscle fibres

were assigned identical mixed contractile properties. Note that

the F0 of the two muscle fibres were identical and unchanged

for all simulations. The dorsiflexor muscle fibres were assigned

mixed fibre properties connected to a rigid tendon and remained

unchanged for all simulations. In all simulations, the predicted

activation patterns of the dorsiflexor muscle were similar in

timing and magnitude irrespective of alterations to the properties

of the muscle fibres of the plantarflexor and the cost function

described below.

2.5. Experimental and simulated data during different
contraction speeds

To generate simulations of different contraction speeds, we drove

the musculoskeletal model to track the dynamics of experimental

data collected from a range of pedalling conditions. Experimental

data were taken from three female cyclists (mean+ s.d., age:

28.3+5.9 years; height: 169.2+4.2 cm, mass: 66.3+2.0 kg) ped-

alling on a stationary bicycle (Indoor Trainer, SRM, Julich,

Germany) as part of a larger study [29,46]. Informed consent

was obtained from the cyclists and the protocol was approved

by the Institutional Review Boards at Simon Fraser University

and Harvard University. For this study, we extracted and analysed

six pedalling conditions; one condition at a cadence of 60 RPM at

an average crank torque of 44 N m and five conditions at five

cadences (60, 80, 100, 120 and 140 RPM) at an average crank

torque of 13–14 N m. The average powers for these pedalling con-

ditions were 275, 80, 115, 135, 165 and 200 W, respectively. 3D

marker trajectories of 15 active markers attached on the thigh,

shank, foot and pedal of the right leg were collected at 100 Hz

using a motion capture system (Certus Optotrak, NDI, Waterloo,

Canada). Pedal force normal and radial to the crank were collected

at 2000 Hz using instrumented pedals (Powerforce, Radlabor,

Freiburg, Germany). One crank cycle was taken from each trial

and used as the tracking data for the simulations.

To generate simulations during an isometric contraction, we

drove the musculoskeletal model to track a simulated experiment

that recreated the dynamics of a typical isometric ramped plantar-

flexion experiment. In the simulated experiment, all the joint

angles and angular velocities including the ankle and knee

joints were held constant at the anatomical neutral standing pos-

ition (i.e. knee and ankle angles were set at 1808 and 908,
respectively). A simulated ramped increase and decrease in
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external force was then applied to the foot segment of the model

over 1.5 s, which provided sufficient time for all the muscle

fibres to fully activate and deactivate. Peak external force was

equivalent to 80% of the combined F0 of both muscle fibres.
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2.6. Problem formulation
To solve the optimal control problem, we interfaced the appli-

cation programming interface (API) of an open-source

musculoskeletal modelling software, OpenSim (v. 3.3) [25,47],

an open-source interior point optimizer (IPOPT) (v. 3.11.0) [48]

and MATLAB (The MathWorks Inc., USA). Similar approaches

have been used in previous studies to generate predictive simu-

lations of a leg extension [49], jumping [50] and locomotion [51].

OpenSim was used to harness its robust multibody dynamics

engine and other numerical operations, IPOPT, a software pack-

age of interior-point optimization methods to solve large-scale,

gradient-based nonlinear optimization problems, was used to

solve the parameter optimization problem using a direct colloca-

tion approach, and MATLAB was used to interface the two

software packages.

Firstly, the adapted generic musculoskeletal model was

scaled to the anthropometric measurements of each cyclist. The

subject-specific models were used to compute hip, knee and

ankle angles and net joint torques using the inverse kinematics

and dynamic tools in OpenSim, respectively. In addition, time-

varying moment arms of the muscles were obtained as a function

of the joint angles. The time-varying hip translations and

rotations for each trial were then prescribed to the subject-specific

model thus constraining the forces and torques at each of the

degrees of freedom. The experimental, time-varying pedal reaction

forces were also applied to the pedal segment for each trial.

An optimal control problem was formulated to solve for a set

of controls (excitations) and state variables that minimized a cost

function (J ) while satisfying a set of equality path constraints that

represented the system dynamic equations of motion:

_xðtÞ ¼ f ðxðtÞ, uðtÞÞ, ð2:1Þ

where u are the controls including the neural excitations and

ideal torque actuators and x are the state variables including

the generalized coordinates, generalized angular velocities and

muscle activations. In addition, bound inequality constraints were

applied on the states and controls where the controls and muscle

activations were bounded between 0 (no excitation/activation)

and 1 (maximally excited/activated).

Two weighted cost functions were used in this study. Both

cost functions consisted of a physiological term (Jphy) and a

data-tracking term (Jtrack),

J¼ sphyJphy|fflfflfflffl{zfflfflfflffl}
physiological term

þ strackJtrack|fflfflfflfflfflffl{zfflfflfflfflfflffl}
tracking term

, ð2:2Þ

where sphy and strack are the scaling factors for the physiological

and tracking terms, respectively. These scaling factors were

determined such that physiological term contributed the

majority of the total cost (greater than 90% for all simulations).

Two separate weighted physiological terms were used in this

study. The first criterion, termed min-activation, was the com-

monly used physiological criterion to minimize the sum of the

muscle activations squared [31,32],

Jact
phy ¼

1

T

Xmus

i¼1

ðT

0

âiðtÞ2dt, ð2:3Þ

where T is the cycle duration, mus is the number of muscles and

â is muscle activation.

The second physiological criterion, termed min-metabolic-

activation function, was a novel, mixed function to minimize

the weighted sum of the total metabolic cost of transport and
the sum of the muscle activations squared,

Jmeta
phy ¼

1

T
wmetasmeta

Ð T
0

Pmus

i¼1

_EiðtÞdt

mDxdis
þ wactsact

Xmus

i¼1

ðT

0

âiðtÞ2dt

0
BB@

1
CCA,

ð2:4Þ

where smeta and sact are scaling factors of the metabolic and

activation terms, respectively, wmeta and wact are weighting

factors of the metabolic and activation terms, respectively, _Ei is

the metabolic rate, m is the total mass of the subject-specific mus-

culoskeletal model and Dxdis is the rotational distance travelled

by the pedal around the crank centre over one crank cycle The

scaling factors were adjusted such that the two cost functions

had the same order of magnitude and weighting factors were

weighted such that their sum was equal to one. The scaling

and weighting factors were kept constant for all simulations.

The rotational distance represented the distance travelled by

the lower limb rather than the distance travelled by the wheel

during cycling or the distance travelled by centre of mass of

the body during walking; both are typically used to normalize

the cost of transport. However, because the pedalling exper-

iments were performed on an ergometer and the gear ratio

between the crank and the wheel was unknown, we were

unable to obtain the distance travelled by the wheel during a

crank cycle. Nevertheless, this difference only influences the scal-

ing factors for the two cost functions and, thus, will have a

negligible influence on the optimal solution and the predicted

muscle activation patterns. Minimizing the sum of muscle acti-

vations squared was included to avoid excessively activating

any one single MTU actuator [52], which occurred in our prelimi-

nary simulations and generated unphysiological co-activation

between synergistic muscles. However, it was weighted such

that the metabolic term contributed the majority of the total

physiological cost (greater than 70% for all simulations).

The data-tracking term was included to minimize the sum of

the errors squared between the experimental and simulated state

variables,

Jtrack ¼
1

N

X4

i¼1

XN

j¼1

ðxsim
ij ðtÞ � xexp

ij ðtÞÞ
2
, ð2:5Þ

where xsim
ij and xexp

ij are the simulated and experimental state vari-

able i at time interval j over the total number of intervals N. The

four tracked state variables were the ankle and knee angles and

angular velocities. Similar approaches have been employed in

optimal control problems of pedalling [53] and running [38].

2.7. Data-driven dynamic optimization simulations
To solve the dynamic optimization simulations, the optimal con-

trol problem was converted to a parameter optimization problem

using direct collocation methods. The state and controls were dis-

cretised in time into 50 evenly spaced nodes and the system

dynamics were converted into algebraic equality constraints via

forward finite difference approximation [54,55].

The simulations began from a random initial guess for the

controls and state variables. Each problem had a total of 550

unknowns and 847 equality and inequality constraints. The con-

straint tolerance was set at 1026. All optimizations were run on a

desktop computer with a 3.50 GHz, Intel i5-4690 K processor and

16 GB of RAM. On average, it took about 15 min for each optim-

ization to converge to the optimal solution and satisfy the

constraint tolerance.

2.8. Data analysis
Net ankle torques from the simulations were calculated as the

summation of the product of the predicted muscle force and
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time-varying moment arms of the muscles spanning the ankle.

Simulation ankle angles and net ankle torques were compared

with equivalent experimental values. For the simulations that

tracked the experimental data of pedalling, all predicted

muscle activations of the muscle fibre types per pedalling con-

dition per cyclist were time-normalized and group mean+ s.d.

values were calculated. Mean activation of two muscle fibre

types of the plantarflexor for the crank cycle and for the duration

of the simulated ramped plantarflexion were calculated. Total

metabolic cost due to the muscle fibres of the plantarflexor was

also calculated.

A total of 64 simulations were performed; 60 that tracked the

experimental pedalling data (three cyclists, five pedalling con-

ditions, two muscle fibre combinations, two cost functions) and

four that tracked the simulated ramped isometric plantarflexion

experiment (one cyclist, one condition, two fibre combinations,

two cost functions).

For statistical analysis, we calculated the ratio of the slow and

fast fibre mean activations in simulations of pedalling where the

muscle fibre combination in the plantarflexor was assigned

purely slow and fast contractile properties. A two-way

repeated-measures ANOVA was performed using R (v. 3.5) [56]

to test whether the cost criteria (two levels: min-activation and

min-metabolic-activation) and pedalling conditions (six levels)

had a significant effect on the ratio. If a significant main effect

was obtained, post hoc paired t-tests were conducted to determine

whether significant differences existed between each comparison.

The p-value for level of significance was set at 0.05.
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Figure 2. Mean experimental and simulation ankle angles (top) and net joint
torques (bottom) for three cyclists across the six pedalling conditions. (Online
version in colour.)
3. Results
The predicted ankle angles and net ankle torques compared

well with the experimental data of pedalling (figure 2). Aver-

age r2 and root mean square errors (RMSE) between the

predicted and experimental ankle angles across pedalling

conditions were 0.99+0.01 and 0.79+0.228, respectively. Aver-

age r2 and RMSE between net ankle torques across pedalling

conditions were 0.97+0.01 and 2.22+0.68 N m, respectively.

Muscle fibre velocity in the plantarflexor increased with

faster pedalling cadences (figure 3). Specifically, at an aver-

age crank torque of 13–14 N m, peak absolute fibre

contraction velocity in the muscle fibres of the plantarflexor

increased from 20.11 m s21 at 60 RPM to 20.23 m s21 at

140 RPM (figure 3a). This increase in contraction velocity

was equivalent to an increase in normalized fibre velocity

in the fast fibres from 20.17 l0 s21 to 20.38 l0 s21 and in the

slow fibres from 20.35 l0 s21 to 20.77 l0 s21 (figure 3b).

Time-varying normalized muscle fibre lengths underwent

similar trajectories across the six pedalling conditions.

Predicted muscle activation patterns of the slow and

fast muscle fibres in the plantarflexor during the simulated

isometric plantarflexion were consistent with orderly recruit-

ment only when the min-metabolic-activation criterion was

used (figure 4a). Specifically, using the min-metabolic-

activation criterion, the slower fibres were activated first

when the external force was ramped up and the faster

muscle fibres were activated only when the slower fibres

were not capable of activating to generate sufficient force to

resist the external load. The opposite occurred when the

external force was ramped down, the faster fibres were de-

activated first and the slower fibres were deactivated only

when the faster fibres were fully deactivated. In contrast,

using the min-activation criterion, the predicted muscle acti-

vation patterns were consistent with the profile of the ramped

up and down external force and were unchanged irrespective
of the combination of muscle fibres chosen (figure 4b). As

expected, the activation patterns in the simulations with two

mixed fibres (dotted lines) were consistent irrespective of cost

criterion. The time-varying activation patterns using the min-

metabolic-activation criterion resulted in a higher mean

activation in the slower fibres compared with the faster fibres

during the isometric contraction (figure 6a). This discrepancy

in mean activation during the isometric contraction was not

present when using the min-activation criterion (figure 6b).

Predicted activation patterns of slow and fast fibres of the

plantarflexor were consistent with orderly recruitment

during pedalling at slower cadences and only when the

min-metabolic-activation criterion was used; yet, simulations

using both cost criteria led to a shift that favoured activating

the faster fibres at faster cadences (figures 5 and 6). At the

slower cadences of 60–80 RPM, when the min-metabolic-

activation criterion was used, predicted activation patterns
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and mean activations of the slower fibres were consistently

greater than the faster fibres even with an increase in crank

torque from 13 N m to 44 N m (figures 5 and 6a). This prefer-

ence of activating the slow fibres compared with the fast

fibres was further shown in the ratio of slow-to-fast fibre

mean activations (table 1). Yet, as cadence increased to

faster cadences of 100–140 RPM, simulations using the

min-metabolic-activation criterion predicted increasingly

greater mean activation in the faster fibres compared with

increasingly lower mean activation in the slower fibres

(figure 6a; table 1; p ¼ 0.011). In contrast, when the min-

activation criterion was used, the time-varying activation

patterns and mean activation of the faster fibres were consist-

ently greater than the slower fibres irrespective of crank

torque or cadence across pedalling conditions (figure 6b;

table 1). Similar to the simulations using the min-metabolic-

activation criterion, at faster cadences, mean activation in

the faster fibres increased while it decreased in the slower

fibres ( p ¼ 0.011); though, the ratio of slow-to-fast fibre

mean activations using the min-activation criterion was
always significantly lower than the ratio using the

min-metabolic-activation criterion ( p ¼ 0.022). The predicted

mean activation of the mixed muscle fibres increased with

both greater crank torque and crank cadence irrespective of

the physiological criterion used.

Total normalized metabolic cost in the muscle fibres of

the plantarflexor were on average 0.04 J kg21 m21 lower in

simulations using the min-metabolic-activation criterion com-

pared with the min-activation criterion (figure 7). In addition,

in simulations using the min-metabolic-activation criterion

and when slow and fast muscle fibres were assigned to the

plantarflexor compared with having mixed fibres, total meta-

bolic cost of the plantarflexor was decreased by 0.25 J kg21

during the isometric plantarflexion. Last, as cadence

increased during pedalling, a higher total metabolic cost

occurred when the plantarflexor fibres were assigned slow

and fast properties compared with mixed fibres, predomi-

nantly driven by an increased contribution of fast fibres

to the total metabolic cost irrespective of the physiological

criterion used.
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4. Discussion
Orderly motor recruitment based on the size principle is gen-

erally well accepted and has been determined experimentally

during isometric and slow contractions (e.g. [4,57]). During

slow contractions, the relatively simple control pattern and

preferred recruitment of smaller motor units consisting of

slower, more fatigue-resistant muscle fibres makes mechanical

and energetic sense because at these contraction speeds, slow

motor units have higher normalized power output and mech-

anical efficiency compared with larger motor units consisting

of faster muscle fibres [11]. Our musculoskeletal simulations
that used a metabolically informed cost function were consist-

ent with the size principle during isometric and slow

contractions, for which it predicted preferred recruitment

of the slower muscle fibres compared with faster muscle

fibres. Hence, minimizing the metabolic cost of a muscle

contraction may be a strategy used for the recruitment of

slower muscle fibres at slower contraction speeds with

the goal of satisfying the mechanical demands of the task

in the most efficient or economic way possible [16].

However, the size principle poses a mechanical paradox at

faster contraction speeds and high cycle frequencies. At low

muscle activity, the size principle would predict that the
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Table 1. The ratio of slow and fast fibre mean activations in simulations of pedalling for which the muscle fibre combination in the plantarflexor was assigned
purely slow and fast contractile properties and the two weighted cost functions were used. A ratio greater than one represented a preference of activating the
slow fibres over the fast fibres.

cadence (RPM) 60 60 80 100 120 140
torque (N m) 44 13 14 13 13 13
cost criteria

min-activation 0.84 ± 0.09 0.69 ± 0.11 0.66 ± 0.08 0.49 ± 0.13 0.47 ± 0.16 0.3 ± 0.26

min-metabolic-activation 1.4 ± 0.4 2.17 ± 1.09 1.14 ± 0.27 0.75 ± 0.37 0.6 ± 0.38 0.33 ± 0.33
p = 0.022

p = 0.011

act
phyJ( )

meta
phyJ( )
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slower fibres are recruited, however the faster fibres produce

greater power and are more mechanically efficient at fast

speeds and can activate and deactivate more rapidly, and

thus would be mechanically more effective at the faster

speeds. Altered recruitment strategies that favour the faster

fibres have been shown to occur for high speed and high fre-

quency contractions [22]. Previous cycling studies have

suggested that the recruitment of faster fibres is favoured

over the slower fibres at higher cadence cycling [21,22]. This

premise has been evaluated through the relative changes in

the EMG frequency spectra and activation levels when cycling

against a range of powers and cadences. Similar shifts to faster

fibre recruitment have been found using EMG-based analyses

in rats [15] and goats [23] running on treadmills where faster

fibres were favoured for fast running on the flat as opposed to

slow walking up an incline. Shifts to faster fibre recruitment

have been observed in glycogen depletion studies in bushba-

bies [58] when comparing steady running with explosive
jumping. Thus, it is not surprising that our mechanically

and energetically consistent musculoskeletal simulations pre-

dicted preferred recruitment of the faster muscle fibres when

pedalling at the faster cadences of 100–140 RPM (figures 5

and 6). For example, when pedalling at 100 RPM where

recruitment strategies first shifted to preferential activation of

faster muscle fibres using the min-metabolic-activation cost

function, the faster fibres operated at normalized fibre vel-

ocities that were approximately 10% more efficient compared

with the slower muscle fibres at the time of peak activation

(approx. 2208 crank cycle; figure 1). This discrepancy in mech-

anical efficiency increased to approximately 20% at 140 RPM.

Interestingly, the mechanical efficiency at the time of peak acti-

vation could be used to distinguish the recruitment between

the faster and slower muscle fibres when assessed across the

whole range of mechanical conditions tested here; this further

indicates that recruitment strategies may be driven by the

mechanical demands of the task.
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We recently speculated that the commonly used cost func-

tion for musculoskeletal simulations, of minimizing the sum of

muscle activations, was inadequate for investigating motor unit

recruitment between muscle fibre types with varying mechan-

ical demands and that alternative cost functions may be

necessary [30]. Minimizing the sum of muscle activations

was initially proposed as a cost function that incorporated a

physiological basis to solving the muscle redundancy problem

similar to previous criteria such as minimizing muscle fatigue

[32,59]. It has since been shown to predict muscle activation

patterns that were temporally consistent with EMG activity

during walking [60] and running [61]. However, our current

study provides evidence that a cost function that only mini-

mizes muscle activation cannot predict known recruitment

strategies, such as the size principle, during isometric and

slow contraction because it consistently favours the recruitment

of faster fibres over the slower fibres due to differences in their

F–V relationship. In contrast, the mixed, weighted cost

function (min-metabolic-activation, equation (2.4)) that mini-

mizes the metabolic cost of muscle force generation and

muscle activations that we have tested here was capable of

predicting muscle activation patterns that were consistent

with known and observed recruitment strategies, based on

the size principle, during isometric and slow contractions

as well as preferential recruitment of faster muscle fibres at

faster contraction speeds (figures 4–6).

The recruitment strategy among motor units within a

muscle is analogous to the coordination strategies between

synergistic muscles with different fibre type proportions. It has

also been shown that the coordination patterns between muscles

of different fibre-type composition vary in response to the

mechanical demands of the task at this higher architectural
level. In particular, there are examples of muscles with higher

proportions of faster fibres being favoured for faster contraction

speeds (in man: [21,62,63]; in animals: [19,20]) and higher

contraction frequencies [17]. Hence, we suggest that the

coordination patterns between muscles could be better pre-

dicted in musculoskeletal simulations (when assessed across a

range of mechanical demands) if the mechanical and energetic

consequences of the different fibre-type proportions are con-

sidered, and the simulations include the minimization of

metabolic cost. Hence, we argue that a metabolically informed

cost function should be used in conjunction with physiological

muscle fibre type properties to investigate motor recruitment

both within a muscle and coordination between synergistic

muscles with different fibre type proportions.

When evaluating the results from this study, it is impor-

tant to consider the methodological approaches used. First,

we changed multiple muscle fibre properties to simulate

different muscle fibre types; each is likely to have an influence

on the predicted recruitment patterns of the muscle fibres and

thus each is needed to test the sensitivity of the choices of

parameter used in the simulations. The modifications that

represented the properties of different muscle fibre types:

maximum contraction velocity (V0), the curvature of the

concentric portion of the F–V relationship and the activation–

deactivation time constants, were implemented in the model

separately. Then both cost functions were simulated for one

cyclist at a crank cadence of 60 RPM and a constant torque

of 13 N m, and predicted muscle activation patterns and

mean activation levels were compared. Twelve additional

simulations were performed. We found that all properties

positively correlated with greater muscle activation levels

across the crank cycle and higher mean activations in the
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slower muscle fibres compared with faster fibres only

when the min-metabolic-activation criterion was used; con-

sistent with our main findings. Second, unlike our previous

implementation of different muscle fibre types, we did not

include a tendon element in series with the muscle fibres

[30], potentially influencing the length, velocities and the

power output of the muscle fibres in the ankle plantarflexor

muscle. Tendon compliance, particularly in the ankle plan-

tarflexors, has been shown to decouple muscle fibre

behaviour from the measured joint dynamics during move-

ment, allowing the muscle fibres to operate at reduced

contraction speeds; more favourable for force generation on

their F–V relationship (e.g. [64–66]). Hence, the high con-

traction speeds of the plantarflexor fibres found in our

simulations, in particular at faster cadences, may not be

representative of the physiological contraction speed of the

plantarflexors during these pedalling conditions. Further-

more, the possible metabolic savings due to a shared

compliant tendon were not included and hence, may influ-

ence the metabolic cost predicted by the model. Akin to

our previous study [30] we used the standard components

available in OpenSim to avoid altering the source code and

impairing computational performance. In addition, the

force production in the ankle plantarflexors during the simu-

lated movement tasks was relatively low compared with

other movements such as running [67], thus the absence of

a compliant tendon will likely to have minimal influence on

the overall metabolic cost, particularly between different cost

functions and muscle fibre type combinations. Despite this,

our representation of different muscle fibre types as two paral-

lel MTUs with rigid tendons to represent slower and faster

muscle fibres within a single muscle was sufficient to test our

hypothesis and investigate how recruitment strategies vary

with changes in the mechanical demands of a movement task.

Third, unlike previous motor unit pool models used to

simulate motor recruitment (e.g. [68,69]), we did not include

any predefined excitatory drive or relative excitability of pool

of motor units that would have prescribed recruitment pat-

terns on the model. Specifically, in previous models, motor

recruitment patterns were based on predefined recruitment

threshold excitations and firing rate linearly increased with

excitatory drive irrespective of the muscle fibre length,

muscle fibre velocity and the mechanical demands of the

movement task. In contrast, we represented different motor

units as distinct muscle fibre types in a mechanically and

energetically consistent musculoskeletal environment and

allowed the simulation to predict recruitment patterns that

optimized a given cost function. This difference allowed us

to test whether different recruitment patterns emerged for

different mechanical tasks in response to the different cost

functions. Indeed, our results show that if the minimization
of metabolic cost is included in the cost function and used

to control motor unit recruitment, the recruitment patterns

change according to mechanical task in a mechanically sensi-

ble fashion. Last, model-predicted muscle activation patterns

are often compared with EMG activity of the muscles to

evaluate the model outputs. Akin to our previous study

[30], the abstract nature of the musculoskeletal model used

in this study and the lack of other synergistic and antagonistic

muscles at the ankle and knee joints restricted direct compari-

sons with EMG signals. In spite of this, the properties,

attachment points and moment arms assigned to the ankle

plantarflexor used in this study were taken from the medial

gastrocnemius, which has been shown in previous exper-

imental studies to exhibit the greatest shift in recruitment

strategies of all the major lower limb muscles with varying

mechanical demands [21], and indeed shows recruitment pat-

terns that vary from isometric [70] to high speed shortening

[22]. Thus, the findings that predicted recruitment patterns

in slower and faster muscle fibres with respect to variation

in pedalling cadence (and thus, muscle contraction speed)

are consistent with these experimental measurements.

In summary, our study shows that a mechanically and

energetically sensible musculoskeletal modelling environment,

in conjunction with an appropriate cost function, is capable of

predicting muscle activation patterns that are consistent with

known motor recruitment strategies when the mechanical

demands of the task are varied. This simulation framework

provides a means in which to further investigate motor recruit-

ment across different architectural levels, such as a wider

continuum of motor units within a muscle and coordination

patterns between synergistic muscles with different fibre

type proportions, in relation to varying movement tasks.
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