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Progressions
Adult Hippocampal Neurogenesis: A Coming-of-Age Story

H. Georg Kuhn,">* Tomohisa Toda,>** and Fred H. Gage®

'University of Gothenburg, Institute for Neuroscience and Physiology, Section for Clinical Neuroscience, 40530 Gothenburg, Sweden, >Center for Stroke
Research Berlin and Neurocure Cluster of Excellence, Charité-Universititsmedizin Berlin, 10117 Berlin, Germany, *Laboratory of Genetics, Salk Institute for
Biological Studies, La Jolla, California 92037, and “Paul F. Glenn Center for Biology of Aging Research at the Salk Institute, La Jolla, California 92037

What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new
neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to
criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly
generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in
1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper
coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult
mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial
setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that
remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis
in the adult human brain.
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Introduction

Over the last two decades, numerous studies have demonstrated
that a large majority of mammalian species retain the capacity for
neurogenesis in the hippocampus into adult life. Our paper pub-
lished in March 1996 (Kuhn et al., 1996), together with other
concurrent studies, indicated the establishment of adult neuro-
genesis as a new research area, even though these studies were
rediscoveries of a phenomenon described >30 years earlier by
Altman, Bayer, Kaplan, and others (Altman and Das, 1965; Ka-
plan and Hinds, 1977; Bayer, 1983). Significant skepticism about
the observation made in the early studies that new neurons are
generated in the adult brain prevailed for decades. The main
conceptual argument against the finding was that established
neuronal networks would require stable neuronal elements and
the addition of new elements would disturb network stability and
thus cognition, a criticism that was later defused by computa-
tional network modeling (for review, see Deng et al., 2010) and
behavioral studies (Dupret et al., 2008; Imayoshi et al., 2008;
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Deng et al., 2009; Arruda-Carvalho et al., 2011). Methodologi-
cally, the earliest studies were hampered by the limitations of
*H-thymidine labeling and a scarcity of specific neuronal mark-
ers because immunohistochemistry was still under development.
Conceptual and technological advances were thus key factors that
ultimately established adult mammalian neurogenesis as a bio-
logical concept and generated several thousand publications in
the years that followed.

In the early 1990s, we and others discovered that neural stem/
progenitor cells (NSPCs) could be isolated from embryonic brain
tissue and propagated in vitro using defined cell culture media
containing FGF-2 (Ray et al., 1993; Ray and Gage, 1994) or EGF
(Reynolds et al., 1992). This was soon followed by in vitro prop-
agation of neural stem cells from adult brain tissue (Reynolds and
Weiss, 1992; Palmer et al., 1995) and provided a tangible foun-
dation for the idea that new neurons are continually generated in
the adult brain from endogenous NSPCs. High-efficiency isola-
tion of neural stem cells from brain regions such as the dentate
gyrus (DG) (Palmer et al.,, 1997) and the subventricular zone
(Morshead et al., 1994) indicated to us that NSPCs had to exist in
the adult rodent brain. Our group was also able to demonstrate
that most brain areas seem to harbor progenitor cells that are
capable of generating neurons and glial cells in vitro (Palmer et
al,, 1995, 1999), suggesting that brain regions with ongoing neu-
rogenesis might retain not only NSPCs but also the proper mo-
lecular environment for neurogenesis, also referred to as the stem
cell niche (Lim et al., 2000; Palmer et al., 2000).

The early in vitro studies were paralleled by investigations that
not only replicated the observations by Altman and colleagues,
but were first indications that adult neurogenesis was regulated in
vivo by molecular cues. In a series of studies using *H-thymidine
labeling, Gould and Cameron studied the role of glucocorticoids
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and excitatory input to the dentate gyrus and gave first indica-
tions of the importance of stress and the hypothalamic-pituitary-
adrenal-axis for hippocampal neurogenesis (Gould et al., 1992,
1994; Cameron et al., 1993, 1995). The study of adult neurogen-
esis intensified even more when novel histological labeling
techniques, such as immunofluorescence against halogenated
thymidine analogs in combination with cell-type specific mark-
ers, confocal microscopy and stereology, became available (for
review, see Kuhn et al., 2016). Bromodeoxyuridine (BrdU) inte-
grates into the DNA during the S-phase of the cell cycle, thereby
permanently labeling cells that have undergone cell division dur-
ing BrdU administration. The immunofluorescence detection of
BrdU in conjunction with neuron-specific markers, such as
NeuN, allowed high-resolution colocalization within individual
cells with confocal microscopy and quickly became the gold stan-
dard for birthdating newly generated neurons in adult brain tis-
sue (Kuhn and Cooper-Kuhn, 2007). Critique of this prevailing
technique, which allows labeling of large cohorts of cells by sys-
temic injection of BrdU, came from studies focusing on the pos-
sibility of false-positive labeling of cells undergoing DNA repair
or aberrant cell division attempts under high stress load (Herrup
and Yang, 2007). However, although it is conceivable that BrdU
incorporation could lead to false-positive labeling, by taking ap-
propriate precautions during BrdU labeling (Kuhn et al., 2016)
and by applying additional detection methods, such as retroviral
labeling, the generation of new neurons in the adult brain was
unequivocally established.

Neurogenesis, whether observed in the embryonic or adult
brain, comprises a cascade of cellular events leading to the gen-
eration of mature neurons. Lineage tracing to follow and dissect
the individual steps has therefore been a crucial component of
adult neurogenesis research. In vivo retroviral labeling is partic-
ularly informative because it requires nuclear membrane break-
down for stable integration of a reporter gene, which only occurs
during cell division (Morshead et al., 1998; van Praag et al., 2002).
It revealed cellular details, such as dendritic arborization and
synaptic elements, that were previously largely missing from con-
ventional immunohistochemical labeling of new neurons. But
even more importantly, retrovirally labeled cells could be visual-
ized in live brain slices and studied using electrophysiological
methods (van Praag et al., 2002). Furthermore, the use of consti-
tutive transgenic mouse lines with genetically encoded markers,
such as Nestin promoter-based GFP-expressing mice, accurately
represented NSPCs in the developing and adult nervous system
and labeled a large majority of such cells (Yamaguchi et al., 20005
Kempermann et al., 2003; Encinas and Enikolopov, 2008). Fi-
nally, the development of inducible cre-lox systems permitted
lineage tracing as well as lineage manipulations of developing
cells in the adult brain (for review, see Enikolopov et al., 2015).
Together, these tools have been extremely helpful in establishing
the presence of neurogenesis in the adult brain of the numerous
mammalian species studied so far, even though its existence had
been heavily debated at the time (Gage, 1994, 2002).

Neurogenesis in the aging brain

Our initial paper from 1996 focused on the regulation of adult
neurogenesis by age and found neurogenesis to be fully present in
the 6-month-old rat (Kuhn et al., 1996). A drastic decrease in
neurogenesis from adult stages toward later time points was ob-
served; however, hippocampal neurogenesis was still detectable
in the older rats (up to 27 months of age). The duration of adult
neurogenesis was, at the time, acutely debated. Adult neurogen-
esis was seen by some as a remnant of embryonic development,
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declining to undetectable levels once development ended; others
proposed it might provide a mechanism by which new neurons
are continually added to the DG, regardless of age, to facilitate
learning and memory processes. From this perspective, the hip-
pocampus can also be seen as a brain region that never completes
development. Although many changes occur in the local mi-
croenvironment of the brain during aging, newborn neurons ap-
pear to retain the potential to become fully mature and functional
granule cells.

We observed a progressive decline of precursor cell prolifera-
tion during aging, with a decrease of >80% occurring between 6
and 12 months of age and stabilizing at a low level thereafter. This
finding raised competing hypotheses: (1) the hippocampal stem
cell pool exhaust with age; (2) the aging microenvironment does
not provide the molecular cues for further proliferation; or (3)
the aging stem/progenitor cells become unresponsive to environ-
mental cues. The first hypothesis would imply that the hip-
pocampal stem cells are depleted with time, a model that was put
forward by Encinas et al. (2011), who showed that increasing
numbers of astrocytes are generated from activation of quiescent
neural stem cells with age. However, Song and colleagues showed
that individual neural stem cells are able to undergo activation,
return to quiescence and reactivation with limited depletion via
astrocytic transformation (Bonaguidi et al., 2011). An increasing
number of studies has focused on the second hypothesis and
revealed changes in the local microenvironment as well as the
systemic milieu with age involving increasing levels of inhibitory
molecules or decreasing levels of neurogenesis-promoting factors
(Smith et al., 2018; for recent reviews, see Mosher and Schaffer,
2018). But importantly, even at late stages of aging, hippocampal
neurogenesis can be stimulated by exposing animals to both
physically and mentally stimulating environments (Kemper-
mann et al., 1998, 2002; van Praag et al., 2005; Kronenberg et al.,
2006). Last, the intrinsic responsiveness of neural stem cells may
also be altered due to epigenetic changes. Epigenetic mechanisms
are crucial components of adult neurogenesis (Jobe et al., 2012)
and changes have been observed with age (Kuzumaki et al.,
2010a,b; Horvath et al., 2012). All together, what began with the
observation of neurogenesis decline has led to intensive and still
ongoing research of the molecular mechanisms leading to the
age-related changes in hippocampal neurogenesis; and while dif-
ferent hypotheses are on the table, it appears highly likely that
several signaling pathways are involved.

New technologies to address the aging of adult

hippocampal neurogenesis

As mentioned earlier, transgenic approaches have been among
the most powerful tools to visualize the process of adult neuro-
genesis and to dissect out the genetic and environmental factors
that influence adult hippocampal neurogenesis in rodents. A
number of transgenic mouse lines with fluorescent proteins or a
Cre recombinase enzyme under the control of cell-type-specific
promoters, such as the Nestin, Hes5, hGFAP, and Sox2 promot-
ers, have been used to selectively label NSPCs and their progeny
or to delete target genes in those populations in vivo (Yamaguchi
et al., 2000; Lagace et al., 2007; Suh et al., 2007; Imayoshi et al.,
2008). Many studies have provided significant insights into the
maintenance and aging of adult hippocampal neurogenesis (Suh
et al., 2007; Lugert et al., 2010; Bonaguidi et al., 2011, 2012; En-
cinas et al., 2011; Kempermann, 2015; Toda et al., 2018). How-
ever, observations using fixed tissues constrain our view of the
dynamic processes of adult neurogenesis to fragmented time-
series sampling. To overcome this technical hurdle, recently, we
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and others developed a novel methodology to image the DG in
awake, behaving mice using multiphoton microscopy (Danielson
et al.,, 2016, 2017; Gongalves et al., 2016b; Pilz et al., 2016;
Kirschen et al., 2017). These live-imaging systems enable us to
continuously visualize the dynamics of adult neurogenesis, neu-
ronal maturation, and neural activity in the DG with less frag-
mentation. Most recently, Jessberger’s group successfully traced
the process of adult neurogenesis from a subpopulation of adult
NSPCs to neurons over 2 months in the live adult mouse hip-
pocampus using multiphoton imaging (Pilz et al., 2018). Live-
imaging of adult hippocampal neurogenesis uncovered a variable
neurogenic competency, survival rate, and fate commitment
among cell clones, which have been difficult to estimate with
fixed tissue. Similarly, live-imaging developing dendrites of
adult-born dentate granule cells revealed an unexpected homeo-
static dendritic pruning process in which facilitation of dendritic
branching by an exposure to enriched environmental is counter-
acted by earlier and more intensive pruning (Gongalves et al.,
2016b). Future experiments using long-term live imaging will
reveal more precise dynamics of the aging process in adult neu-
rogenesis, including when the development of DG stops and
when the aging of adult neurogenesis starts, as well as the heter-
ogeneous nature of adult NSPCS, the effects of environment and
genetic factors.

In parallel with live imaging, recent progress in single-cell
RNA sequencing with optimized next generation sequencing
technology provides a higher-resolution view of cellular hetero-
geneity and better insight into the function of an individual cell
(Shin etal., 2015; Habib et al., 2016; Lacar et al., 2016; Artegiani et
al., 2017; Yuzwa et al., 2017; Hochgerner et al., 2018; Jaeger et al.,
2018). This technology allows us not only to resolve the hetero-
geneous nature of the transcriptome but also to capture develop-
mental dynamics, the effects of environmental changes on a
specific population, and the differences in cellular state within the
same population. The evolution of single-cell technology is now
pushing forward our understanding of the complex nature of
adult neurogenesis.

In addition to live-imaging and sequencing technology, mo-
lecular tools to manipulate the process of adult neurogenesis have
been evolving. Viral tools, including retroviral, lentiviral and
adeno-associated viral tools, have been widely used to label adult-
born cells and manipulate genes of interest in these populations
(Lie et al., 2005; Tashiro et al., 2006; Zhao et al., 2006; Kirschen et
al., 2017). These viral tools can also express optogenetic (e.g.,
channelrhodopsins, halorhodopsins) (Gu et al., 2012; Danielson
et al., 2016; Zhuo et al., 2016) and chemogenetic proteins (e.g.,
the synthetic receptor hMd3 and synthetic ligand clozapine-N-
oxide) (Alvarez et al., 2016; Anacker et al., 2018) to selectively
manipulate neural activity in a specific population at a specific
time. In combination with a retrograde rabies-viral tracing meth-
odology (Wickersham et al., 2007), this research has revealed the
dynamic reorganization of circuitry of adult-born neurons dur-
ing maturation (Vivar et al., 2012; Deshpande et al., 2013; Ber-
gami et al., 2015; Alvarez et al., 2016; McAvoy et al., 2016; Sah et
al., 2017). For example, local and long-distance afferents from
local interneurons and cortical neurons onto newborn DG neu-
rons were significantly increased with environmental enrichment
(Bergami et al., 2015), and optogenetic and chemogenetic tools
helped to reveal that disynaptic circuits via local interneurons
mediated the effect of environmental enrichment (Temprana et
al., 2015; Alvarez et al., 2016). In addition to manipulating neural
activity, the evolution of optogenetic tools has enabled us to
manipulate several biological processes, including protein local-
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ization, protein degradation, organelle transport, signaling path-
ways, and gene regulation (Imayoshi et al., 2013; Rost et al.,
2017), any of which could be manipulated for the direct regula-
tion of adult neurogenesis.

New technology always brings us novel insights. There are
more ongoing technological developments in areas, such as
single-cell proteomics/genomics and computational modeling.
Implementation of new technologies will surely uncover hereto-
fore unrecognized aspects of adult hippocampal neurogenesis
and reveal how aging of the whole organism affects the neurogen-
esis process (Fig. 1).

Roles of environment in the aging of adult neurogenesis

One prominent feature of adult hippocampal neurogenesis is
that an animal’s experiences impact the neurogenesis process.
Positive experiences, such as learning, exposure to enriched en-
vironment, and physical activity, can partially reverse the age-
related decline of neurogenesis (Kempermann et al., 1997; Gould
etal., 1999a; van Praag et al., 1999, 2005; Kempermann, 2015). In
addition, other environmental components, such as stress, diet,
sleep, and life events, have significant impacts on adult hip-
pocampal neurogenesis as reported and reviewed by others
(Gould et al., 1998; Mirescu et al., 2004; Stangl and Thuret, 2009;
Leuner and Gould, 2010; Snyder et al., 2011; Anacker and Hen,
2017). In this review, we focus on aging, which is an unavoidable
biological process that gradually compromises brain function
and plasticity, including adult neurogenesis-dependent structur-
al/functional plasticity and mood regulation in the hippocampus.
Therefore, understanding how environmental factors can poten-
tiate brain plasticity through the activation of adult neurogenesis
has been a fundamental challenge. The proliferation rate of
NSPCs, the fraction of adult-born cells that differentiate into
neurons, and the survival rate of adult-born neurons are all sig-
nificantly decreased with age, presumably due to both cell-
intrinsic and cell-extrinsic changes (Renault et al., 2009; Lugert et
al., 2010; Encinas et al., 2011; Yousef et al., 2015; Leeman et al.,
2018). These include changes in metabolic status, transcriptional
and epigenetic programs, hormonal regulation, systemic milieu,
and neurotrophic signaling (Kuhn et al., 1996; Cameron and
McKay, 1999; Villeda et al., 2011, 2014; Kuipers et al., 2015;
Moore et al., 2015; Yousef et al., 2015; Corenblum et al., 2016;
Beckervordersandforth et al., 2017; Castellano et al., 2017). The
reduction of neurogenic capability can be partially reversed by
environmental enrichment and physical activity, reducing corti-
costeroid levels as well as systemic factors transferred from young
to old animals (Falkenberg et al., 1992; Kempermann et al., 1998,
2002; Cameron and McKay, 1999; Imayoshi et al., 2008; Villeda et
al,, 2011, 2014; Speisman et al., 2013; Yousef et al., 2015; Cas-
tellano et al., 2017). The exact mechanisms by which environ-
mental enrichment, physical exercise, and systemic milieu from
young animals potentiate neurogenesis are not clear yet, but pre-
sumably they include neurotrophic, Wnt/FGF, neurotransmit-
ters, and MHC signaling (Oliff et al., 1998; Imayoshi et al., 2008;
Kobilo et al., 2011; Okamoto et al., 2011; Vivar et al., 2013; Kang
and Hébert, 2015; Smith et al., 2015; Fan et al., 2017). A recent
report demonstrated that aging also delays the maturation and
integration of adult-born neurons (Trinchero et al., 2017), even
though the morphological features of new neurons in the aged
brain are similar to those generated in the young brain (van Praag
et al., 2005). It is not clear whether this age-dependent delay is
beneficial for the aging brain, but the delayed morphological
maturation and synaptic integration can be reversed by enhanc-
ing neurotrophic signaling or physical activity (Trinchero et al.,
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A schematic view of implementation of emerging technology to study adult hippocampal neurogenesis throughout the life span. Technology that will be implemented to study adult

hippocampal neurogenesis is next generation sequencing/single-cell sequencing (top left), live imaging (top right), noninvasive imaging (e.g., NMR, nuclear magnetic resonance spectroscopy or
PET, positron emission tomography) (bottom left), and stem cell technology/organoids (bottom right), but not limited to these technologies.

2017). It is likely that other, yet unknown factors involved in
aging contribute to this delay. These factors would include not
only local environmental changes in the brain, such as decreased
synaptic activity, reduced neurotrophic factors, reduced mito-
chondrial activity, and age-dependent inflammation, but also
systemic changes induced by a lack of mobility and altered me-
tabolism in aged animals themselves. Further work will uncover
which age-dependent changes compromise which steps of adult
neurogenesis.

Interestingly, the mechanisms underlying the maintenance of
adult NSPCs and the effect of aging on that process seem to be
different across neurogenic niches (Molofsky et al., 2006; Lim et
al., 2009). An increased expression of p16INK4a in neural pro-

genitors of subventricular zone significantly affected neurogenic
capability but did not affect neurogenic functions in the DG
(Molofsky et al., 2006). This could be due to an intrinsic differ-
ence in adult NSPC populations, distinct environmental changes,
or both. It would be interesting to examine whether differences
between neurogenic regions are evolutionally conserved or, even
conversely, vary depending on species.

Adult hippocampal neurogenesis in the human brain

The first evidence of adult hippocampal neurogenesis in the hu-
man brain was demonstrated by using the gold-standard BrdU
labeling of dividing cells with cell-type-specific markers, such as
NeuN and GFAP, to identify BrdU-positive adult-born neurons
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by confocal microscopy (Eriksson et al., 1998). Since then, using
immunohistochemical, carbon '* birth dating and tissue culture
techniques, several independent laboratories have found evi-
dence of adult hippocampal neurogenesis in the DG of the hu-
man hippocampus (Roy et al., 2000; Palmer et al., 2001; Knoth et
al., 2010; Spalding et al., 2013; Dennis et al., 2016; Mathews et al.,
2017; Boldrini et al., 2018), as well as in nonhuman primates
(Gould et al., 1999b; Kornack and Rakic, 1999; Leuner et al.,
2007). In addition, adult hippocampal neurogenesis in the DG is
highly conserved across mammalian species with few exceptions
(Patzke et al., 2015), implying significant roles for adult hip-
pocampal neurogenesis in brain function. Many studies have
shown an exponential reduction of hippocampal neurogenesis
along with aging despite the fact that molecular signatures of
continuous adult neurogenesis and proliferation have been
found (Knoth et al., 2010; Spalding et al., 2013; Dennis et al.,
2016; Mathews etal., 2017). Given the size of the adult human DG
(500—150 mm?) and the number of newborn neurons identified
per day by a carbon dating method (~700 cells) (Spalding et al.,
2013; Dillon et al., 2017), one can assume that adult neurogenesis
in the human DG is sparse. The decline of adult hippocampal
neurogenesis with age could attenuate forms of structural and
functional plasticity, and the level of adult hippocampal neuro-
genesis has been linked to cognitive abilities both in rodents
and nonhuman primates (Aizawa et al., 2009). Hippocampus-
dependent cognitive abilities also decline with age in humans
(Yassa et al., 2011), but it is not clear yet whether the levels of
adult neurogenesis correlate with cognitive abilities in humans.

Recently, using an unbiased stereology method with several
common markers of neurogenesis, Boldrini et al. (2018) showed
that healthy human brains maintained similar levels of neurogen-
esis from 14 to 79 years of age, raising the possibility of higher
neural plasticity in the human DG than was expected from pre-
vious studies. However, in contrast, Sorrells et al. (2018) used the
same markers (DCX, PSA-NCAM) but reached a different con-
clusion, suggesting that neurogenesis in the human DG quickly
decreased after birth and became undetectable before adulthood.
Where does this contradiction come from?

One possible explanation is technical differences between the
studies, including the duration of postmortem delay, fixation and
sample preservation methods, and staining protocols. These fac-
tors are critical to reliably detect markers of adult-born neurons.
The duration of postmortem delay in particular is crucial not
only for the detection of DCX, but also the morphology of DCX
signals (Boekhoorn et al., 2006). Sorrells et al. (2018) used brains
with longer postmortem delays (up to 48 h) compared with other
studies (Eriksson et al., 1998; Boldrini et al., 2018), which could
be a critical factor in underestimating the number of adult-born
neurons. Another major difference was the use of stereology
(Boldrini et al., 2018), a method for unbiased quantification in
3D tissues from serial sections. The method provides accurate
estimation in terms of the number of adult-born neurons com-
pared with counting cells from a few sections of tissues, and it has
been adapted to study adult neurogenesis in rodents (Kuhn et al.,
1996; Kempermann et al., 1997). Usage of stereology should be
encouraged to obtain an accurate picture of adult neurogenesis in
the human brain.

In addition, the criteria used for defining adult-born neurons
in the human brain were different in the two studies. Sorrells et al.
(2018) defined only DCX "PSA-NCAM * cells as adult-born
neurons; they did not count DCX "PSA-NCAM ™ cells, claiming
that the latter exhibited more mature morphological features
based on their criteria. However, the developmental time course
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of adult-born neurons in the human DG has not been clearly
characterized, and neurons in higher mammals take at least 6
months to fully mature (Kohler et al., 2011). Furthermore, our
knowledge of the markers of adult-born neurons has been de-
rived from studies using rodent models; therefore, we do not
know the exact expression time course of neuronal markers in
adult-born neurons in the human DG. In addition, adult-born
DG neurons show slower kinetics of maturation/survival and
different patterns of genetic programs/marker expression com-
pared with perinatally born DG neurons in rodents (Dayer et al.,
2003; Shi et al., 2004; Overstreet-Wadiche et al., 2006; Jessberger
et al., 2008; Andersen et al., 2014; Urban and Guillemot, 2014;
Cabhill et al., 2017). Based on these technical limitations, many
researchers in the field, including us, questioned the strong con-
clusion from Sorrells et al. (2018; see also Kempermann et al.,
2018). The discrepancies between these studies underscore that
we need to clearly determine the expression time course of neu-
rogenesis markers in the human DG. Importantly, there are still
many open questions as discussed below. We believe that this
debate stimulates and facilitates the field to develop advanced
means as well as a technical standard to move the research of
human adult hippocampal neurogenesis forward.

The future comes with more questions

Since the discovery of adult hippocampal neurogenesis, remark-
able progress has been made in understanding the molecular
mechanisms and functional contributions of adult neurogenesis.
However, we still have fundamental questions that need to be re-
solved. Here we summarize and discuss some of these questions.

First, although adult neurogenesis declines with age, it is still
not clear how the dynamics of adult neurogenesis are affected by
aging. Such dynamics include the activation of quiescent adult
NSPCs as well as the differentiation, maturation, and integration
of adult-born cells. Because adult NSPCs seem to be a heteroge-
neous population (Jhaveri et al., 2015; Pilz et al., 2018), a distinct
subpopulation may be differently affected by aging. Using mul-
tiphoton imaging, long-term live imaging of adult hippocampal
neurogenesis throughout the entire life of animals (both in ro-
dents and nonhuman primates) would reveal the nature of adult
hippocampal neurogenesis in aging. Along the same line, we need
to understand the heterogeneous nature of adult NSPCs and their
progeny. It would be intriguing to examine whether distinct pop-
ulations of adult NSPCs generate different subtypes of dentate
granule cells, whether they differentially respond to environmen-
tal stimuli, how genetic and epigenetic regulations differ between
subtypes, and whether the heterogeneity of adult hippocampal
neurogenesis is preserved during evolution. Single-cell technol-
ogies, including single-cell RNA-seq, single-cell epigenetic meth-
ods, and single-cell proteomics, will be promising approaches to
address these questions. The same approaches can be applied to
pathological conditions as well to reveal the effect of pathology
for each individual cell type.

Second, the developmental time course of adult-born neurons
in the human brain needs to be determined. In the case of non-
human primates, it takes at least several months to express ma-
ture neuron markers (Kohler et al., 2011), which means that it
could take longer than several months for them to be fully ma-
ture. Given that humans have longer developmental time courses
and lifetimes, it is reasonable to speculate that the maturation
process of adult-born neurons in the human hippocampus
should take longer. Characterizing the maturation process along
with the expression of molecular markers is critical because most
studies in the human brain rely on using the postmortem brain.
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However, as we discussed above, we do not know exactly which
markers correspond to which developmental time points in hu-
man adult-born neurons. Furthermore, because the duration of
the highly plastic maturation period in adult-born neurons could
impact the entire neural network of the hippocampus through
feedforward and feedback mechanisms (Toda et al., 2018), it is
critical to determine the duration of the maturation period to
estimate the role of adult-born neurons in the human hippocam-
pus. Although it is difficult to conduct these experiments using
human brains, combining recently developed hippocampal or-
ganoids with a transplant strategy may allow us to address this
issue (Sakaguchi et al., 2015; Mansour et al., 2018). An alternative
approach will be noninvasive in vivo imaging of neurogenesis
using nuclear magnetic resonance spectroscopy or positron
emission tomography (Manganas et al., 2007; Rueger et al., 2010;
Tamura et al., 2016). These technologies are still under develop-
ment, and the methodology needs to be refined to increase the
spatial resolution and specificity of detection. Stem cell technol-
ogy can help to identify specific markers of adult neural stem cells
and adult-born neurons that could be used for noninvasive in
vivo imaging. Advances in these technologies will also allow us to
identify cognitive metrics relating to adult hippocampal neuro-
genesis in humans. In addition, this line of study has the potential
to identify biomarkers for the reduction of adult neurogenesis,
which could be beneficial for clinical screening.

Third, we need to identify the roles of adult hippocampal
neurogenesis in humans in both physiological and pathological
conditions. Accumulating evidence using animal models has un-
covered significant roles for adult-born neurons in cognitive
function and mood regulation (Shors et al., 2001; Kropff et al.,
2015; Aimone, 2016; Anacker and Hen, 2017; Toda and Gage,
2018). In contrast, evidence linking adult hippocampal neuro-
genesis to cognitive function in humans is still limited and indi-
rect (Toda et al., 2018). Although it is hard to manipulate the
levels of adult neurogenesis in the human brain, the development
of noninvasive in vivo functional imaging at cellular resolution
would help to monitor neural activity of adult-born neurons and
their contribution in cognitive function and mood regulation.
Further technical development is desperately needed to advance
our understanding.

Fourth, the mechanisms underlying the development and
maintenance of the neurogenic niche in the subgranular zone of
the DG are still unclear. Although past achievements in the field
have revealed a number of essential factors in the maintenance of
neurogenic capability, it is still totally unclear why specific re-
gions of the brain, such as the subgranular zone, can possess and
maintain neurogenic properties. What are the cellular and mo-
lecular components necessary for the development and mainte-
nance of neurogenic regions in the adult brain? Since recent
evidence suggests that systemic factors in serum contribute to the
regulation of adult neurogenesis, the neurogenic niche may be
involved not only in local cellular/tissue components within the
DG, but also in other organs; even the microbiota of the gut may
contribute as remote components of the neurogenic niche (Og-
bonnaya et al., 2015). It would be intriguing to examine how
other organs contribute to the maintenance of the neurogenic
niche in the DG and how aging affects these communications.

Fifth, the cell-autonomous mechanisms underlying the long-
term maintenance of multipotency/quiescence of adult neural
stem cells need to be determined. The importance of cell cycle
regulators as well as transcriptional/epigenetic factors has been
investigated (Gongalves et al., 2016a; Toda et al., 2018). However,
most adult neural stem cells maintain a quiescent state despite the
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fact that a variety of stimuli in the niche can activate them; there-
fore, one can assume that there are very robust cell-autonomous
mechanisms underlying the maintenance of the quiescent state.
Intriguingly, some nuclear proteins were identified as long-lived
proteins, including histones, nuclear lamins, and nucleoporins
(Savas et al., 2012; Toyama et al., 2013). These proteins interact
with chromatins and work as a structural foundation for cell-
type-specific gene regulation (Ibarra and Hetzer, 2015; Jacinto et
al., 2015; Ibarra et al., 2016; Toda et al., 2017). Because these
proteins accumulate damage with age presumably due to their
low turnover rates (D’Angelo et al., 2009), they may lead to age-
dependent deterioration of gene regulation. These mechanisms
could be fundamental in maintaining not only adult NSPCs but
also the plasticity that is observed to some extent in any somatic
stem cells throughout our lifetime.

In conclusion, what started in the early 1990s as an expedition
to probe the possible existence of somatic stem cells within the
adult brain led to the establishment of a new area of neuroscience
research. For adult neurogenesis to receive significant (even
though not always undisputed) recognition, the development of
novel tools was essential, and they made possible the firm estab-
lishment of the phenomenon already described by Altman and
colleagues in the 1960s. We were immediately aware that a central
dogma of neurobiology, declared by Ramén y Cajal in 1928, “Ev-
erything may die, nothing may be regenerated ...” (Ramén y
Cajal, 1991) had been repudiated. But even >20 years later, the
role that adult neurogenesis plays within the context of hip-
pocampal function, neuroplasticity, and brain repair brings up
many unsolved questions. We therefore call upon the next gen-
eration of scientists to embrace the rest of Ramon y Cajal’s fa-
mous declaration: “. . . It is for the science of the future to change,
if possible, this harsh decree” (Ramoén y Cajal, 1991).
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