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Abstract

The information characterizing key events in an Adverse Outcome Pathway (AOP) can be 

generated from in silico, in chemico, in vitro and in vivo approaches. Integration of this 

information and interpretation for decision making are known as integrated approaches to testing 

and assessment (IATA). One such IATA was published by Jaworska et al (2013) which describes a 

Bayesian network model known as ITS-2. The current work evaluated the performance of ITS-2 

using a stratified cross validation approach. We also characterized the impact of replacing the most 

significant component of the network, output from the expert system TIMES-SS with structural 

alert information from the OECD Toolbox and Toxtree. Lack of structural alerts or TIMES-SS 

predictions, yielded a sensitization potential prediction of 79%. If the TIMES-SS prediction was 

replaced by a structural alert indicator, the network predictivity increased up to 87%. The original 

network’s predictivity was 89%. The local applicability domain of the original ITS-2 network was 

also evaluated using reaction mechanistic domains to understand what types of chemicals ITS-2 

was able to make the best predictions for. We found that the original network was successful at 

predicting which chemicals would be sensitizers, but not at predicting their potency.
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Introduction

The last decade has seen a major surge in global chemical regulation. Notable has been the 

Registration Evaluation Authorization restriction of CHemicals (REACH) regulation within 

Europe (EC 2006), similar programmes within China and Korea [1–4], and Toxic 

Substances Control Act (TSCA) reform within the US [5]. These regulations require large 
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numbers of chemicals to be assessed for their potential human health and environmental 

impacts. Some regulations, such as REACH [1–2], stipulate that animal testing should be 

used only as a last resort and call for greater use of non-animal approaches such as (Q)SARs 

or in vitro methods.

The development of the Adverse Outcome Pathway (AOP) framework, which provides 

information on the causal links between a molecular initiating event (MIE), key events 

(KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to 

generate and interpret mechanistically relevant information from in vitro and QSAR studies 

[6,7]. The first AOP developed and endorsed by OECD was that for skin sensitization [8]. It 

was chosen since skin sensitization is an important endpoint in chemical legislation, has 

been well studied over several decades and the mechanistic understanding could be readily 

structured in the AOP framework. The skin sensitization AOP also served as the pilot case 

study to inform the development and application of integrated approaches to testing and 

assessment (IATA), new and revised test methods and chemical categories [9].

In brief, for skin sensitization to be induced, a chemical needs to gain access to the viable 

epidermis, be electrophilic either directly or upon transformation in order to bind covalently 

with skin proteins, and the ensuing hapten complex formed needs to mature and migrate to 

the draining lymph nodes activating keratinocytes and dendritic cells in the process [8]. At 

the draining lymph node, the complex is presented to the naïve T cells to cause the immune 

response thus resulting in the proliferation of memory T cells. Test methods notably the 

Direct Reactivity Peptide Assay (DRPA) (OECD TG 442c) exist to measure the covalent 

binding (the MIE), the KeratinoSens™ (OECD TG 442d) to measure the keratinocyte 

activation (KE2) and the dendritic activation by the human cell line activation test (h-CLAT) 

(KE3) [10–12]. The current animal test method typically conducted, the local lymph node 

assay (LLNA) (OECD TG 429) measures the T-cell proliferation as a cumulative impact of 

the preceding events [13].

The availability of data from these non-animal test methods has prompted much study in 

exploring ways and means of efficiently integrating these different information sources 

together for regulatory decision making. To address this need, a number of IATAs have been 

developed and published in the literature for skin sensitization. Examples include the ‘2 out 

of 3’ prediction model by researchers at BASF (this relies on a majority vote based on the 

outcomes from the KeratinoSens™ (or LuSens), Myeloid U937 skin sensitization test 

(MUSST) or h-CLAT and DRPA) (Urbisch et al.), artificial neural network approaches by 

researchers in Japan [14–15], and a Bayesian prediction model by researchers at RIVM [16]. 

One of the IATA developed was a Bayesian network known as ITS-2 that was developed by 

researchers at P&G [17]. This ITS-2 network was also implemented into an open source tool 

[18] accessible on the NICEATM website [see http://ntp.niehs.nih.gov/pubhealth/evalatm/

test-method-evaluations/immunotoxicity/nonanimal/index.html#NICEATM-Collaboration-

With-P-G-to-Develop-an-Open-source-Integrated-Testing-Strategy].

In this current study, we evaluated the performance of ITS-2 globally (using cross 

validation) and locally (using reaction mechanistic domains). ITS-2 [17] was selected as a 

case study since the network is freely available in an open source format. An update to this 
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network, ITS-3 has since been published by Jaworska et al. [19], but a non-proprietary 

version is not currently available.

The ITS-2 network predicts the sensitizing potency category as would be derived from the 

LLNA using a number of inputs which can be mapped to the corresponding AOP. The 

LLNA provides a quantitative measure of sensitizing potency, known as the EC3. This is the 

test concentration causing a threefold increase of lymph node cell proliferation compared to 

the vehicle control. Determinations of potency based on EC3 values have been shown to 

correlate closely with what is known of the relative ability of contact allergens to cause skin 

sensitization among humans. As such proposals have been made to categorize contact 

allergens according to their skin sensitizing potency [25,26]. Kimber et al., (2003) identified 

four sub-categories: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’ based on thresholds defined 

by specific, derived EC3 values [25]. In the ITS-2 network, strong and extreme potency 

categories were collapsed into one category. The four potency categories chosen in the ITS-2 

network: non-sensitizing, weak, moderate and strong/extreme, are labelled as numbers from 

1 to 4. Non-sensitizers with no EC3 value calculated are denoted category 1. Weak 

sensitizers (category 2) correspond to an EC3 value greater than 10%. Moderate sensitizers 

(category 3) have an EC3 value between 1 and 10% and strong/extreme sensitizers (category 

4) correspond to an EC3 value less than 1%.

ITS-2 aims to predict the sensitization potency as measured in the LLNA [17]. The network 

inputs cover each of the events described in the AOP. Skin bioavailability is addressed by 

parameters used to model skin penetration although it should be noted that current evidence 

suggests that skin penetration is not a determining factor for inducing skin sensitization [27–

29]. The DRPA is used to characterize the MIE, the covalent binding to skin proteins. The 

KeratinoSens™ and MUSST are used to characterise KEs 2 and 3, the activation of 

keratinocytes and dendritic cells respectively. A prediction from the commercial expert 

system TIMES-SS is also considered, to account for the inherent reactivity of a chemical in 

terms of whether it can react directly or requires activation either enzymatic or chemical in 

nature. TIMES-SS is a module within the TIssue MEtabolism Simulator platform which 

relies on structure-metabolism and structure-activity rules for the prediction of skin 

sensitization potency. The development and performance of the TIMES-SS expert system 

has been discussed in much more detail elsewhere [20,21].

Our study sought to evaluate the global performance of the ITS-2 model using cross 

validation, explore freely available alternatives to TIMES-SS and assess their impact on 

predictive performance. The way in which TIMES-SS works is as follows: a chemical is 

introduced into TIMES-SS and matched against a list of all its hierarchical transformations 

(these comprise both structure-activity and structure-metabolism relationships). For all the 

matches identified, the reactive species or metabolic species and their respective protein 

adducts are then generated. Some pathways are underpinned by 3D-QSAR models which 

assign potency. These same structure-activity relationships (or structural alerts) are also 

implemented in the OECD QSAR Toolbox (version 3.3), a freely available tool, as a protein 

binding for skin sensitization profiler. A second freely available tool, Toxtree (Ideaconsult 

Ltd) includes a module to assign reaction mechanistic domains as described by Roberts and 

Aptula [22] using SMiles ARbitrary Target Specification (SMARTS) derived by Enoch et al. 
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[30]. It should be noted that the Toxtree module does not incorporate any autoxidation or 

metabolism simulators. These profilers were used as surrogates for TIMES-SS. Alerts 

identified by these profilers were categorized into one of the 5 reaction mechanistic domains 

described by Roberts and Aptula [22]. These organic chemistry principles have been used to 

evaluate many other compilations of skin sensitization data to rationalize their skin 

sensitizing behaviour (see references [23,24]). The five domains are Schiff base formers, 

Acylating agents, Michael acceptors, SN2 and SNAr. Chemicals which do not fit into these 

domains are either non-reactive or have special considerations such as acting via a free 

radical route or by a SN1 reaction scheme. The reaction domains, as identified using the 

OECD QSAR Toolbox, were then used to evaluate the practical utility of the ITS-2 model in 

terms of its local chemistry domain – i.e. whether specific reaction domains were better 

represented, rendering the model more predictive for one or other reaction domain. This 

evaluation was termed a ‘local validity analysis’.

Materials and Methods

Although our study intended to evaluate the predictive performance of ITS-2 as published, 

the open source version of this network as coded in the R programming language made 

available by Pirone et al. was used in practice [18]. This was a re-derivation of the same 

network, and used the same training and test sets as referenced in Jaworska et al. [17]. There 

were some minor differences in the initial settings that could not be recreated in the open 

source version of the network which are discussed in more detail in Pirone et al., [18] but the 

R version still yielded similar results to the original ITS-2 network on both the test and 

training sets.

The ITS-2 network predicts the probability of a LLNA potency category from conditional 

probability tables (CPTs) generated using discretized values of the input variables (Table 1). 

The conditional probability tables are based on the location of the nodes in a network. Table 

2 provides an example of a conditional probability table for two of the input parameters in 

the network; bioavailability and LogKow. The conditional probability tables for the entire 

network calculated based on the entire data set are given in the supplemental information. 

The conditional probability tables were generated with the R package gRain, which uses a 

variant of the junction tree algorithm to estimate the parameters for the conditional 

probability tables based on the training data [31]. To determine the CPTs for the latent 

variables of cysteine and bioavailability, the R package poLCA was used [32].

Global Performance Assessment of the ITS-2 network

The test set used for external validation purposes in Jaworska et al. comprised 21 chemicals 

[17]. This limited a robust assessment of true predictivity. Here, we sought to evaluate the 

performance of the ITS-2 using a stratified 10-fold cross-validation. Stratified cross-

validation is a process where a single dataset is broken up into different groups of the same 

size, in this case 10. The stratification refers to the fact that the data is distributed so that 

each group has the same number of items with a given proportion of properties. The 

procedure allowed for a more robust evaluation of the ITS-2 network to be performed. The 

training and test sets reported in Jaworska et al. [17] were combined together to form a 
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dataset of 145 chemicals. Four chemicals namely 5910–85-0, 3326–32-7, 2785–87-7, 

26172–55-4 were removed from further consideration as they did not contain a complete 

dataset of information. Groups were stratified based on their LLNA classification, so that a 

typical group had 4 non-sensitizers, 3 weak sensitizers, 4 moderate sensitizers, and 3 strong/

extreme sensitizers.

The cross validation was performed using modifications to the R scripts from Pirone, et al. 

[18] and the instructions for their use are provided in the supplementary information. Figure 

1 outlines the procedure followed for performing the cross validation.

The first step of our code allows each individual subset of 10 runs to occur on multiple 

processors using the DoMC package for R [33]. The second step splits the dataset into the 

10 separate folds for each run. The third step uses the original R code from Pirone, et al. 

[18]. All but one of the sets were combined into the training set. The remaining set was used 

as the test set looping through so that each of the 10 sets becomes the test set once, while the 

remainder comprise the training set. The results were stored for each run and the test 

completed 10 times before moving on to complete another set. Lastly, the results were 

combined using Python scripts and output into a csv file for subsequent evaluation. An 

example is presented in the supplemental information.

The convergence in distance weighted error was used to judge whether an optimal number of 

cross validation runs had been performed [34]. The distance weighted error was calculated 

using equation 1 [34].

∑
i = (Non, Weak, Mod, Str /Ext)

pi * d(class, i) (1)

Where pi is the probability that a given compound will be in a particular class and d(class,i) 

is the absolute distance the prediction is from the correct class when the classes are 

numbered sequentially 1 through 4. To determine the uncertainty of each run, an interval 

was computed using the quantiles function in R to simply select the 5% and 95% percentile 

cut-offs and subtract those from the mean to determine the uncertainty. For all values the 

upper and lower bounds are given as a super and subscript respectively example, valuelower
upper.

Evaluation of global network performance using two freely available alternatives to TIMES-
SS

The most significant input to the ITS-2 network was the information arising from TIMES-

SS. Jaworska, et al. [17] reported a relative mutual information between the LLNA result 

and the TIMES-SS prediction of 36%, significantly higher than any other node. Given 

TIMES-SS is a commercial expert system, we sought to identify a surrogate for the sort of 

information TIMES-SS provided and evaluate the effect this had on the performance 

characteristics. Of the 145 chemicals used in the ITS-2 dataset, 95 were part of the training 

set underpinning TIMES-SS. This could mean that the ITS-2 model is over-fitted due to its 

high reliance on the TIMES-SS prediction. TIMES-SS identifies electrophilic features 
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within chemical structures either directly or upon activation based on a set of structure-

activity and structure-metabolism rules.

Alerts were identified using the protein binding profiler by OASIS version 1.3, which is 

freely available in the OECD QSAR Toolbox v3.3 and the SMARTS module within Toxtree 

v2.6.13. Alert predictions were then made using both tools on all of the autoxidation 

products and metabolites generated in the OECD QSAR Toolbox using the OASIS 

autoxidation simulator v3.3 and the OASIS skin metabolism simulator v3.2. The profiling 

outcomes were summarized and converted into a binary score, 1 to signify presence of an 

alert and 0 to signify absence of an alert(s). The node was renamed “reaction (rxn) alert” for 

all four sets of alert outcomes, i.e. OECD QSAR Toolbox alerts with and without 

metabolism and autoxidation as well as the Toxtree alerts with and without metabolism and 

autoxidation. A control network was also constructed to provide a measure of the baseline 

performance relative to the original ITS-2 with TIMES-SS and the modified network which 

included the profiling alert as its alternative. Both networks were tested using the same 

stratified cross-validation procedure and the distance weighted error values checked for 

convergence.

Local Validity Analysis using the OECD QSAR Toolbox protein binding alerts

An analysis of the local performance of the ITS-2 network on the basis of the reaction 

mechanistic domains as described by Roberts and Aptula [22] was also undertaken. The 

results for each chemical in the cross validation procedure had to be separated out on the 

basis of its presumed reaction mechanistic domain to enable the analysis. The OASIS v1.3 

protein binding alerts, previously used to replace the TIMES-SS node (see above), were also 

used to determine one of the 5 main reaction mechanistic domains as previously discussed. 

A sdf (structure data file) file was generated by matching CAS numbers listed in the original 

dataset against the DSStox inventory [35]. The addition of the reaction domain enabled the 

mean and standard deviation of each result to be determined. All code/scripts are available in 

supplemental file 1.

Results

Evaluation of global network performance

The modified network where TIMES-SS is replaced with the reaction alert node is presented 

in figure 2. The performance of the network was assessed with each of the 4 different 

reaction alerts i.e. the OECD QSAR Toolbox and Toxtree with and without activation. 

Figure 3 shows the baseline performance network with the TIMES-SS node removed.

Plotting the distance weighted error over 100 runs showed that convergence had been 

reached - a negligible change in slope of the cumulative average distance weighted error was 

found when 100 runs of 10X stratified cross validation was selected for the original ITS-2 

network and the 2 modified networks (see Figure 1 in the supplemental information).

Table 3 provides the overall average results of all three networks for both their ability to 

distinguish sensitizers from non-sensitizers and their prediction of the correct LLNA potency 

class from the 10-fold cross validation. This comparison revealed that the original ITS-2 
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network gave the most accurate results, distinguishing sensitizers from non-sensitizers 8987
91%

of the time and LLNA potency class 6561
69%. If the OECD QSAR Toolbox predictions for 

reaction alerts with metabolism and autoxidation was used, the network’s ability to 

distinguish sensitizers from non-sensitizers was 8784
89%, almost the same as the original 

network with TIMES-SS itself. The prediction of the LLNA potency class was examined in 

more detail in table 4 to determine if an over or under prediction was more likely. This 

analysis revealed that the original ITS-2 network provides the best accuracy for both under 

and over prediction (table 4). The modified network never performed as well as the original 

network for the prediction of the LLNA potency, regardless of the approach used to derive 

the reaction alerts.

Twelve chemicals out of a total of 141 from the dataset were found to have their 

sensitization potential predicted correctly by all three networks over the 100 runs (regardless 

of the approach used to derive the reaction alerts). Two chemicals were predicted incorrectly 

on every run by the three networks. (Interestingly all of the chemicals predicted correctly 

and incorrectly every time were part of the TIMES training set.) The chemicals and their 

structures are shown in figure 4. (Note: Oxalic acid [144–62-7] is a known false positive in 

the LLNA and should be disregarded [36,37]). A list of all chemicals with their prediction 

percentages in the original network is provided in the supplementary information.

All three networks were better at predicting non-sensitizers. These represent 10 of the 12 

(83%) chemicals predicted correctly every time despite representing only 42 out of 141 

(30%) all chemicals in the dataset. This could be because if a chemical does not show any 

positive results in any test, it can be readily rationalized to be a non-sensitizer, whereas a 

chemical with several positive results is likely to be a sensitizer even if its specific potency 

class may be more difficult to predict.

Local validity analysis

We compared the results of the original network to the reaction domain of each chemical 

provided by the OECD QSAR Toolbox. We chose to make our analysis without the use of 

metabolism and autoxidation given we found no significant difference in the global 

performance of the network. Chemicals with a Michael addition alert were the most likely to 

have their LLNA potency class predicted correctly, even without applying the Michael 

addition correction which the original authors suggested. The correction accounts for the 

fact that when predicted incorrectly, chemicals with a Michael addition alert tend to be over 

predicted. The results of all chemicals run in the original ITS-2 network grouped by reaction 

alert are given in table 5. A complete list of the reaction alerts reported for each chemical 

can be found in the supplemental information.

Discussion

Our work suggest that the ITS-2 network is well suited to the prediction of skin sensitization 

potential. However, it is unlikely to give correct results for LLNA potency with the 

exception of select local cases based on reaction domain analysis. Currently the largest 

Fitzpatrick and Patlewicz Page 7

SAR QSAR Environ Res. Author manuscript; available in PMC 2018 December 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



problem with the network is overfitting, due to its heavy reliance on the results of 

predictions made using TIMES-SS. We have however shown that even when this node is 

removed the network can still predict sensitization potential correctly and that the TIMES-

SS node may be replaced with predictions from the associated profiler in the OECD QSAR 

Toolbox.

Global Network Performance

The original test of the ITS-2 network by Jaworska et al. [17] reported a 95% correct 

sensitization potential and a 86% LLNA class prediction. Our cross validation analysis 

showed a 8987
91% sensitization potential and a 6561

69% LLNA potency class prediction. The 

original evaluation used a training set of 124 and a test set of only 21 chemicals. Using the 

technique of cross-validation, we were able to apply a much more rigorous evaluation of the 

network, using the same limited amount of data. The results showed that LLNA potency was 

much more difficult to predict, which we would expect given the wide variability within the 

LLNA [26].

The results of the original network may also be overstated due to the fact that the TIMES-SS 

training set contains 89 of the 124 chemicals in the data set. Eight of the 21 chemicals used 

in the evaluation of the network by Jaworska, et al. [17] also were part of the TIMES-SS 

training set. When the network was run without TIMES-SS, i.e. the baseline network, the 

performance for predicting sensitization potential was still reasonable at 7975
82% of the time. 

The performance of predicting LLNA potency class fared less favourably showing a drop in 

accuracy to only 4945
52%, thus while the ITS-2 network may be unable to predict the LLNA 

potency class without information from TIMES-SS, it is still performs well in predicting 

sensitization potential.

The performance of the network improved when the reaction alert node in lieu of TIMES-SS 

were included, 8784
89%for sensitization potential, when using the reaction alerts from the 

OECD QSAR Toolbox with metabolism and autoxidation. A 5450
57% for LLNA potential 

class, when the alerts from the OECD QSAR Toolbox without autoxidation were used. 

Using any other prediction of reaction alerts from the OECD QSAR Toolbox or Toxtree, 

with or without metabolism yielded better results than the network with no reaction node. 

This improvement is not surprising given that the reaction alerts and the simulators for 

autoxidation and metabolism contained within the OECD QSAR Toolbox arise from the 

TIMES-SS model itself. Given the marginal difference in performance across the different 

reaction alerts when metabolism/autoxidation was considered, reaction alerts alone as 

derived from the OECD QSAR Toolbox could be practically used in place of TIMES-SS, for 

predicting sensitization potential.

Local validity analysis—The local domain analysis identifies chemicals where the 

network would be most effective at predicting LLNA potency. Although the number of 

chemicals with a particular reaction domain is small and the confidence intervals for their 

predictions are high when compared to the overall performance of the network, the results 

Fitzpatrick and Patlewicz Page 8

SAR QSAR Environ Res. Author manuscript; available in PMC 2018 December 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



are still clearly significant as can be seen in figure 5. Chemicals identified as Michael 

acceptors or SN2 electrophiles have an excellent probability of having their sensitization 

potential predicted correctly. This fits with what is currently known about the ability of the 

non-animal assays leading into the network mainly that the DPRACys and KeratinoSens™ 

assays tend to work best with soft electrophiles [38]. While LLNA class prediction was poor 

for those with an SN2 domain, it was excellent for Michael acceptors at 7666
86%, i.e. 

significantly above the overall class prediction of 6561
69% . (This could be a reflection on the 

assays however, which may be good for assessing whether or not a chemical may be a 

sensitizer, but not its potency.) It also follows that hard electrophiles like acylating agents 

would have the most difficult time being predicted correctly. We see that this is true, with 

acylating agents not only having the worst results of all reaction types for predicting 

sensitization potential but also for LLNA potency class prediction.

Conclusions

The cross validation analysis performed herein confirms the previous finding [17] that the 

ITS-2 model predicts skin sensitization potential with reasonable accuracy. This validation 

also demonstrated that the ITS-2 network was generally unsuitable for correctly predicting 

LLNA potency. The strong performance found compared with the original network when 

using alerts identified by the OECD QSAR Toolbox demonstrated that these can be used in 

place of TIMES-SS to predict skin sensitization potential.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of the different steps in running the stratified cross-validation.
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Figure 2. 
The original ITS-2 network modified to contain a reaction alert (Rxn Alert) node in place of 

the TIMES-SS node. The reaction alert node is based upon the outcome of the OASIS 

version 1.3 protein binding for skin sensitization tool in the OECD Toolbox.
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Figure 3. 
The original ITS-2 network with the TIMES-SS node removed, used to establish a baseline 

for prediction without input from TIMES-SS or the reaction alerts.
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Figure 4. 
The 14 chemicals that were predicted correctly during all runs in all three networks as well 

as the five that were predicted incorrectly every time in all three models. The results of the 

actual LLNA tests are given below the chemical figure; those predicted incorrectly also 

include the most common prediction in parentheses.
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Figure 5. 
Violin plots showing the probability density for a given prediction. (a) Hazard confidence 

intervals based on reaction domains; (b) LLNA confidence intervals based on reaction 

domains.
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Table 1.

Input variables used in the ITS-2 network.

Input Nodes Description

LogKow, Cfree, and 
AUC120

LogKow is the log of the octanol-water partition coefficient, AUC120 the area under the flux curve at 120 hrs 
as a percentage of the applied dose and Cfree the free test chemical concentration in the mid epidermis 
multiplied by the thickness of viable epidermis expressed as a percentage of applied dose.

DPRACys, DPRALys Percentage of peptide remaining after reaction in the DPRA cysteine and lysine assay respectively

KEC1.5, KEC3, IC50 KEC1.5 and KEC3 are the amounts needed to see a 1.5 and 3 fold increase of luciferase activity in the 
KeratinoSens™ assay. IC50 is used to control for cell viability in the assay

CD86 EC150 (uM) Amount needed for 150% cell surface activation in the U937 assay

TIMES-SS Skin sensitization potency as predicted by the TIMES-SS module – non-sensitizer, weak and moderate/strong/
extreme
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Table 2:

Example of a conditional probability table.

Conditional Probability Table for LogKo/w and Bioavailability

Bioavailability

LogKow Cluster 1 Cluster 2 Cluster 3

[-Inf, 0.094] 22.6 % 16.0 % 0.4 %

[0.094, 1.92] 39.5 % 31.9 % 47.0 %

[1.92, 3.83] 30.2 % 31.9 % 52.2 %

[3.83, Inf] 7.7 % 20.3 % 0.4 %
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Table 3:

Overall averages of the results of 100 runs of stratified 10-fold cross validation on all six networks based on 

the 141 compound dataset.

Stratified 10-fold Cross Validation

Test Set Correct for Sensitization Correct LLNA Potency Class

Original Network 8987
91% 6561

69%

No TIMES-SS 7982
75% 4952

45%

Toolbox Alerts 8486
80% 5457

50%

Toolbox Alerts with Metabolism and Autoxidation 87  89
84 % 5257

49%

Toxtree Alerts 8583
87% 5155

46%

Toxtree Alerts with Metabolism and Autoxidation 8583
87% 5155

46%

Where Toolbox denotes the OECD QSAR Toolbox
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Table 4:

How often a network predicted the LLNA potency class correctly, for 141 compounds as well as how often it 

over or under predicted the LLNA potency class.

Over and Under Prediction of LLNA Potency class

Test Set Correct LLNA Potency Class Over predicted Under predicted

Original Network 6569
61% 1821

15% 1720
15%

No TIMES-SS 4952
45% 2327

20% 2830
25%

Toolbox Alerts 5457
50% 2226

19% 2427
21%

Toolbox Alerts with Metabolism and Autoxidation 5257
49% 2427

21% 2326
21%

Toxtree Alerts 5155
46% 2429

21% 2428
21%

Toxtree Alerts with Metabolism and Autoxidation 5155
46% 2429

21% 2528
21%

Where Toolbox denotes the OECD QSAR Toolbox
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Table 5:

Results for sensitizing and non-sensitizing predictions for 141 chemicals as well as the LLNA potency class 

accuracy for all chemicals predicted in the original network, grouped by reaction domain. (Four chemicals are 

missing from this table, 2 had alerts for nucleophilic addition and the other 2 had alerts for SNAr.)

Alert
Number of

Compounds
Sensitization

Accuracy
LLNA Potency
Class Accuracy

Over Prediction of
Class

Under
Prediction

of Class

Acylation 15 8487
80%  4560

33% 3447
20% 2127

13%

Michael Acceptor 21 100100
100% 7686

66% 2129
14% 30

10%

No Alert Found 64 8588
83% 6873

63% 106
14% 2225

19%

Schiff Base Former 23 8996
83% 6674

61% 159
22% 1926

13%

SN2 14 100100
100% 5764

43% 2836
21% 157

21%
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