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Abstract
Lipid traits (total, low-density and high-density lipoprotein cholesterol, and triglycerides) are risk factors for cardiovascular
disease. DNA methylation is not only an inherited but also modifiable epigenetic mark that has been related to cardiovascular
risk factors. Our aim was to identify loci showing differential DNA methylation related to serum lipid levels. Blood DNA meth-
ylation was assessed using the Illumina Human Methylation 450 BeadChip. A two-stage epigenome-wide association study
was performed, with a discovery sample in the REGICOR study (n¼645) and validation in the Framingham Offspring Study
(n¼2,542). Fourteen CpG sites located in nine genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP and
SLC7A11) and 2 intergenic regions showed differential methylation in association with lipid traits. Six of these genes and 1
intergenic region were new discoveries showing differential methylation related to total cholesterol (SREBF2), HDL-
cholesterol (PHOSPHO1, SYNGAP1 and an intergenic region in chromosome 2) and triglycerides (MYLIP, TXNIP and SLC7A11).
These CpGs explained 0.7%, 9.5% and 18.9% of the variability of total cholesterol, HDL cholesterol and triglycerides in the
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Framingham Offspring Study, respectively. The expression of the genes SREBF2 and SREBF1 was inversely associated with
methylation of their corresponding CpGs (P-value¼0.0042 and 0.0045, respectively) in participants of the GOLDN study
(n¼98). In turn, SREBF1 expression was directly associated with HDL cholesterol (P-value¼0.0429). Genetic variants in
SREBF1, PHOSPHO1, ABCG1 and CPT1A were also associated with lipid profile. Further research is warranted to functionally
validate these new loci and assess the causality of new and established associations between these differentially methylated
loci and lipid metabolism.

Introduction
Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c),
high-density lipoprotein cholesterol (HDL-c), and triglycerides
(TG) are among the most important risk factors for cardiovascular
disease, the leading cause of death worldwide (1,2). Serum lipid
levels are determined by a complex interplay between environ-
mental, lifestyle and genetic factors (3).

In recent years, new technological advances have allowed the
study of epigenetic mechanisms that affect chromatin structure
and influence transcription levels. In the field of cardiovascular
diseases, several studies have analysed the association between
DNA methylation and lipid traits (4–7). DNA methylation is a heri-
table but reversible addition of a methyl group to a nucleotide.
This process usually occurs in cytosine nucleotides in the pres-
ence of cytosine-phosphate-guanine (CpG), and can now be
analysed by epigenome-wide association studies (EWAS) using
arrays that cover thousands of CpGs across the genome.

The aim of the present study was to identify and validate
new individual CpGs showing differential methylation related
to serum lipid traits (TC, LDL-c, HDL-c and TG) in a population-
based survey using an EWAS design. Additionally, we used
shotgun transcriptomics (RNASeq) data to assess the associa-
tions between methylation at each validated CpG site and gene
transcript level, as well as between gene transcript level and
lipid phenotypes.

Results
Discovery stage of the EWAS analysis

After quality control steps, the discovery analysis included 645
individuals (99.5%; three individuals were excluded) and 427,948
probes (88.7%; 57,629 probes were excluded). A descriptive anal-
ysis of the main sociodemographic and clinical characteristics
of the included individuals is shown in Table 1.

The relationship between observed and predicted P-values
for all the associated tests between methylation levels and each
lipid trait is shown in QQ and Manhattan plots (Supplementary
Material, Fig. S1). In the discovery sample, we identified 113
CpGs (27 using model 1 –adjusted for covariates but not for sur-
rogates variables– and 105 using model 2–adjusted for covariates
and surrogates variables–) showing a suggestive association be-
tween methylation levels and lipid traits with an arbitrary P-
value threshold<1x10� 5 (Supplementary Material, Table S1 and
Fig. 1A). These CpG sites were located in 88 genes, 3 lncRNA and
17 intergenic regions. In model 1 (Fig. 1B), 4 CpG sites were asso-
ciated with TC, 4 with HDL-c, 18 with TG and 1 with both TG and
HDL-c; in model 2 (Fig. 1C), 16 CpGs were associated with TC, 7
with LDL-c, 39 with HDL-c, 35 with TG, 5 with both TC and LDL-c
and 3 with HDL-c and TG.

We also performed sensitivity analyses excluding those par-
ticipants taking cholesterol-lowering drugs and adjusting for di-
abetes and body mass index (BMI). The results remained
consistent (Supplementary Material, Table S2).

Validation stage of the EWAS analysis

After applying the same quality control steps as in the discovery
analysis, the validation study included 2,542 individuals (99.0%;
26 individuals excluded) and all the CpG sites identified in the
discovery stage. The characteristics of the population included
in the validation stage are shown in Table 1. The associations
observed between the 113 CpGs selected and the lipid traits in
the Framingham Offspring study are shown in Supplementary
Material, Table S1.

Meta-analyses

After meta-analysis of the results obtained in the REGICOR and
Framingham Offspring studies, we validated 12 CpG sites using
model 1, and 2 additional CpGs using model 2 (Table 2). Of
the 14 hits, one CpG was associated with TC, 3 CpGs with HDL-c,
7 with TG and 3 CpGs with both TG and HDL-c (Table 2 and Fig.
1D). Validated CpG sites were located in 9 genes and 2 intergenic
regions. One gene (SREBF2) was associated with TC, 4 (SYNGAP1,
SREBF1, PHOSPHO1 and ABCG1) with HDL-c and 6 (TXNIP,
SLC7A11, MYLIP, CPT1A, SREBF1 and ABCG1) with TG.

These 14 CpGs explained 3.84%, 10.33% and 16.07% of the var-
iability of TC, HDL-c and TG, in REGICOR, and 0.74%, 9.51% and
18.89% in Framingham, respectively (Table 3, Supplementary
Material, Fig. S2).

Gene expression analyses

The results of the Genetics of Lipid-lowering Drugs and Diet
Network (GOLDN) study showed that the methylation of
cg16000331 and cg11024682 was inversely associated with the
expression of the genes SREBF2 and SREBF1, respectively (Table 4).
In turn, SREBF1 expression was directly associated with higher
levels of HDL cholesterol (Table 4).

Genetic variation and lipid profile

The aggregated results of the Global Lipids Genetics Consortium
showed some genetic variants in SREBF1, PHOSPHO1, ABCG1 and
CPT1A associated with the lipid trait of interest (Table 5,
Supplementary Material, Table S4).

Discussion
In this EWAS we have identified and validated 14 CpG sites lo-
cated in 9 genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1,
CPT1A, MYLIP, TXNIP and SLC7A11) and 2 intergenic regions that
showed differential methylation in association with 3 lipid
traits: TC, HDL-c and TG. This differential methylation in the
validated CpGs explained around 10% of the variability of HDL-c
and around 16-18% of the variability of TG. These results repli-
cated previous findings showing an association between lipid
traits and DNA methylation in three genes (ABCG1, SREBF1 and
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CPT1A) and 1 intergenic region (5,6,8,9). In addition, we identi-
fied 6 new genes and 1 intergenic region showing differential
methylation in relation to TC (SREBF2), HDL-c (PHOSPHO1,
SYNGAP1 and an intergenic region located in chromosome 2)
and TG (MYLIP, TXNIP and SLC7A11). The expression of the
genes SREBF2 and SREBF1 was inversely associated with methyl-
ation of their corresponding CpGs. In turn, the expression of
SREBF1 was associated with higher levels of HDL cholesterol.
Finally, genetic variants in SREBF1, PHOSPHO1, ABCG1 and
CPT1A were also associated with the lipid profile.

Previous findings associated ABCG1 methylation with TG
and HDL-c levels (6,8,9). A direct relationship of ABCG1 methyl-
ation with coronary artery disease and aging has also been re-
ported (6,9,10). Reduced levels of DNA methylation in the
ABCG1 promoter region have also been observed in patients
under aspirin therapy (11). Our results on SREBF1 methylation
and TG are also consistent with previous findings, validating
the direction and the magnitude of the association (5,6).
Furthermore, we observed a statistically significant association
between methylation levels of SREBF1 and HDL-c in the oppo-
site direction to that observed with TG. Previous studies also
found an association between BMI and methylation of CpG
sites located in CPT1A and SREBF1 (12,13). In a sensitivity anal-
ysis, we further adjusted our models including BMI as a poten-
tial intermediate variable; the magnitude of the association
between methylation in these CpGs and TG or HDL-c was
slightly reduced (16–28%; Supplementary Material, Table S3),
suggesting that this association is only partially BMI-
dependent. In this study, we also provide data supporting that
SREBF1 methylation is related to SREBF1 expression, which in
turn is associated with HDL cholesterol. Moreover, genetic var-
iants in this gene are also associated with HDL cholesterol.
Globally, these results support the causal association between

SREBF1 and HDL cholesterol and suggest a potential functional
mechanism.

Novel findings in the present study include an association be-
tween lipid traits and different CpG methylation levels in
SREBF2, PHOSPHO1, SYNGAP1, TXNIP, MYLIP and SLC7A11. Four of
these genes, SREBF2, PHOSPHO1, TXNIP and MYLIP, merit detailed
comment (See Supplementary Material for further discussion).

Sterol regulatory element binding factor 2 (SREBF2) is similar
to SREBF1 and encodes membrane-bound transcription factors
that control the metabolism of cholesterol and fatty acids. A
common genetic variant of SREBF2 has been associated with
intima-media thickness (14). In the present study, we report a
positive association between SREBF2 methylation and TC, in the
same direction as the association between SREBF1 and TG. We
also report an inverse association between SREBF2 methylation
and expression. These results suggest a potential role of in-
creased SRBEF2 methylation in atherosclerosis progression
through lipid metabolism regulation.

Phosphatase orphan 1 (PHOSPHO1) plays an important role at
early steps of inorganic phosphate-induced and matrix vesicle-
mediated calcification. Published studies show an up-regulation
of PHOSPHO1 in vascular smooth muscle cells; administration of
PHOSPHO1 inhibitors reduced vascular smooth calcification by
2.5-fold. Therefore, a procalcific role of PHOSPHO1 in pathologic
vascular ossification is plausible (15,16). The present study found
a direct association between the CpG methylation at this locus
and HDL-cholesterol levels; other recent studies found an associ-
ation with diabetes (17,18). The complex interrelations between
lipids, diabetes and arterial calcifications merit additional stud-
ies (19–22), our data suggest that the low methylation level at
this locus could be associated with higher PHOSPHO1 levels.
This could induce calcification due to low HDL cholesterol levels
and altered glucose homeostasis or other potential mechanisms.

Table 1. Descriptive characteristics of the participants in the discovery (REGICOR study) and validation (Framingham Offspring Study) stage.

REGICOR Framingham Offspring Study P-value
n¼ 645 n¼ 2,542

Age 63.2 (11.7) 66.3 (8.9) <0.001
Sex, female, n (%) 329 (51.0) 1,378 (54.2) 0.158
Total cholesterol, mg/dl* 208.0 (36.5) 186.0 (37.2) <0.001
LDL cholesterol, mg/dl*‡ 135 (32.3) 105 (31.3) <0.001
HDL cholesterol, mg/dl*‡ 53.0 (12.3) 57.3 (18.2) <0.001
Triglycerides, mg/dl† 89.0 [67.0; 121.0] 102.0 [73.0; 142.0] <0.001
SBP, mmHg*‡ 131.0 (18.5) 126.0 (17.1) <0.001
DBP, mmHg*‡ 76.0 (9.9) 71.6 (10.2) <0.001
Hypertension, n(%) 302 (47.0) 1442 (57.0) <0.001
Diabetes, n (%) 63 (9.8) – –
Glucose, mg/dl‡ 97.7 (20.4) 107 (23.7) <0.001
BMI, kg/m2‡ 26.9 (4.1) 28.2 (5.4) <0.001
Waist (cm)* 94.2 (11.5) 101 (14.6) <0.001
Obesity, n (%) 128 (19.9) 792 (31.3) <0.001
Smoking status, n (%) <0.001

Current smokers 107 (16.6) 252 (10.0)
Former 1–5 years 31 (4.8) 56 (2.2)
Former >5 years 165 (25.6) 10 (0.4)
Never smokers 342 (53.0) 2212 (87.4)

Cholesterol treatment, n (%) 154 (24.0) 1098 (43.3) <0.001
Diabetes treatment, n (%) 44 (6.9) – –
Blood pressure treatment, n (%) 200 (31.2) 1236 (48.8) <0.001

*Mean (Standard deviation).
†Median (Interquartile range).
‡LDL, Low-density lipoprotein; HDL, High-density lipoprotein; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; Hypertension, defined as previous treatment

or SBP�140 mmHg or DBP�90 mmHg; Diabetes, defined as previous treatment or glycaemia�126 mg/dl; BMI, Body mass index; Obesity, defined as BMI�30 kg/m2.
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Thioredoxin-interacting protein (TXNIP) is involved in redox
homeostasis. It is induced by glucose but suppressed by insulin,
and acts as a regulator of glucose homeostasis in humans.
Recent studies have shown different methylation levels of
TXNIP gene in relation to type 2 diabetes (17,18,23–26). TXNIP
has also been related to regulation of TG levels. It was proposed
as a candidate gene for familial combined hyperlipidemia; how-
ever, other studies have not replicated this finding (27–30). A
TXNIP genetic variant was associated with TG levels in diabetic
participants (31). In addition, the same TXNIP methylation CpG
site was reported to be associated with TG levels, even though
the association did not reach the statistical significance thresh-
old in the meta-analyses (6). Additional adjustment of our mod-
els including diabetes as a potential confounder variable did not
modify the magnitude of the association between methylation
in this CpG and TG levels (Supplementary Material, Table S2),
suggesting that the association is independent of diabetes. In
summary, low TXNIP methylation is associated with high tri-
glycerides and altered glucose homeostasis and could increase
the risk of atherosclerosis-related diseases.

Finally, we report a direct association between methylation in
myosin regulatory light chain interacting protein (MYLIP), a ubiq-
uitin ligase, and TG. MYLIP was recently identified as a novel reg-
ulator of the LDL receptor in a genome-wide association study, so
now it is also called MYLIP/IDOL (inducible degrader of the LDL re-
ceptor) (32,33). The induction of MYLIP in macrophages and liver

leads to the ubiquitination of LDL receptors, whereas MYLIP
downregulation by RNA silencing increases LDL receptor levels
and enhances LDL uptake (34). This mechanism could be similar
to that of PCSK9 inhibitors, making it a new therapeutic target if
causality between MYLIP methylation and increased lipid levels
can be demonstrated (35). Our findings and previously published
results support the hypothesis that high MYLIP methylation could
decrease MYLIP expression and increase triglycerides by decreas-
ing LDL receptor availability, increasing the risk of
atherosclerosis-related diseases.

A major strength of the study was the use of standardized
protocols to remove non-biological sources of variation.
Moreover, we used a powerful statistical method that reduces
outlier effects (robust linear regression) and adjusted for resid-
ual confounding factors (surrogate variables). We replicated and
meta-analysed data in a very large external population in order
to improve the quality of our evidence. We also have analysed
the association between DNA methylation and gene expression,
and between gene expression and lipid traits.

Some limitations of the study should be considered. First,
some heterogeneity exists between the REGICOR and
Framingham Offspring studies. To address the differences, we
carried out a meta-analysis of CpG sites with significant coeffi-
cient differences between studies, using the random effects
method, and the results did not change. Second, the design of the
study was cross-sectional and therefore we cannot infer causality

Figure 1. (A) Venn diagrams of discovery hits in REGICOR study using model 1 and model 2. (B) Venn diagrams of discovery hits in REGICOR study using model 1. (C)

Venn diagrams of discovery hits in REGICOR study using model 2. (D) Venn diagrams of meta-analysis hits in REGICOR study and Framingham Offspring study using

model 2. Model 1 is adjusted for age, sex, smoking exposure, batch effect and estimated cell count, whereas model 2 is adjusted for age, sex, smoking exposure, batch

effect, estimated cell count and surrogate variables. TC¼ total cholesterol, LDL¼ low-density lipoprotein, HDL¼high-density lipoprotein and TG¼ triglycerides.
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in the reported association between lipid traits and DNA methyl-
ation levels. Proper Mendelian randomization studies or prospec-
tive data are warranted to assess this issue (36).

In summary, this study replicated 4 loci (ABCG1, SREBF1,
CPT1A and 1 intergenic region at chromosome 10) and discov-
ered and validated 7 new loci (SREBF2, PHOSPHO1, SYNGAP1,
TXNIP, MYLIP, SLC7A11, and one intergenic region at chromo-
some 2) showing differential methylation related to serum lipid
profile. The findings point out some genes and pathways that
may be related to lipid metabolism regulation and atherosclero-
sis. We also report a potential functional explanation for the as-
sociation between SREBF1 methylation and HDL cholesterol that
could be mediated by gene expression. Further research is
needed to functionally validate the new loci and assess the cau-
sality of these associations.

Materials and Methods
Study design and participants

A cross-sectional two-stage epigenome-wide association study
was designed.

Discovery stage
We used the REGICOR (REgistre GIron�ı del COR) study, a
population-based cohort that includes participants from differ-
ent towns representing the urban and rural diversity of Girona
Province in Catalonia (Spain). For this study, we considered
those individuals initially enrolled in a survey performed during
2003–2005 (n¼ 6,352; response rate 71.5%) who were still resid-
ing in these towns and attended a follow-up visit during
2009–2013 (n¼ 4,980 participants; response rate 78.4%). From
those participants, we randomly selected a subsample of 648
participants, all of whom reported that they were of European
descent. All the participants gave written informed consent be-
fore their participation. This study follows the principles ex-
pressed in the Declaration of Helsinki and the legislation in
Spain, and was approved by the local ethics committee.

Validation stage
We obtained methylation and phenotype data from the
Framingham Offspring Study through the Database of
Genotypes and Phenotypes (dbGAP; http://dbgap.ncbi.nlm.nih.
gov; project number #9047). The Framingham Offspring Study
started in 1971 and included 5,209 offspring from the partici-
pants in the original Framingham Heart Study. Those partici-
pants attending exam 8 and with available DNA methylation
data were included in the present analysis.

Serum lipid profile

In the REGICOR study, a team of trained nurses collected fasting
blood samples, which were centrifuged between 15 and 30 min
after extraction. Both serum and plasma samples were ali-
quoted and frozen at -80�C until analysis. Serum concentrations
of TC and TG were determined enzymatically (Horiba ABX,
Montpellier, France). Serum HDL-c concentrations were mea-
sured as soluble cholesterol determined by an accelerator selec-
tive detergent method (Horiba ABX). Analyses were performed
in an ABX Pentra 400 (Horiba ABX, Montpellier, France). External
quality assessment was performed with External Quality
Control BIORAD (Bio-Rad, Hercules, California, USA) and
Assessment-SEQC (Sociedad Espa~nola Qu�ımica Cl�ınica,
Barcelona, Spain). LDL-c was calculated by the Friedewald equa-
tion when TG levels were lower than 300 mg/dl.

In the Framingham Offspring Study, lipid traits of interest
were obtained from examination 8 data through dbGaP. Fasting
TC, HDL-c and TG were determined directly and LDL-c was esti-
mated by the Friedewald equation.

Other covariates

In the REGICOR study, the same group of trained nurses exam-
ined and administered all validated and standardized question-
naires and methods used to collect sociodemographic, lifestyle
and cardiovascular risk factors information. In the Framingham
Offspring study, the covariates of interest were obtained from
examination 8 data through dbGaP.

Smoking status was self-reported and then categorized in
four different groups: current smokers (smoked on average�1
cigarette/day at the time of the visit or gave up smoking<1 year
before the visit); former smokers, between 1 and 5 years (gave
up smoking up to 5 years before the visit); former smokers,
more than 5 years; and never smokers (never smoked regularly,
defined as an average�1 cigarette/day). Other phenotypes of in-
terest are available in Supplementary Material.

Table 3. Variability of total and HDL cholesterol, and triglycerides
explained by differential methylation of the validated CpG

Phenotype CpG Explained variability (%)

REGICOR Framingham
Offspring Study

Total cholesterol cg16000331 3.84 0.74
LDL cholesterol – – –
HDL cholesterol cg06500161 4.05 5.53

cg27243685 2.16 2.98
cg02650017 2.13 0.64
cg11024682 1.56 1.41
ch.2.101965435R 1.16 0.82
cg09572125 0.02 0.00
cg06500161þ

cg27243685þ
cg02650017þ
cg11024682þ
ch.2.101965435R þ
cg09572125

10.33 9.51

Triglycerides cg06500161 5.00 5.76
cg27243685 3.66 3.36
cg19693031 3.18 3.22
cg00574958 2.96 7.49
cg06690548 2.77 3.34
cg11024682 2.44 1.91
cg01881899 2.37 1.49
cg03717755 1.95 1.17
cg07504977 1.71 2.18
cg02370100 0.69 0.92
cg06500161þ

cg27243685þ
cg19693031þ
cg00574958þ
cg06690548þ
cg11024682þ
cg01881899þ
cg03717755þ
cg07504977þ
cg02370100

16.07 18.89
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Infinium methylation 450K technology

In the REGICOR study, DNA was extracted from whole peripheral
blood collected in 10 mL EDTA tubes using a standardized method
(Puregen TM; Gentra Systems). In the Framingham Offspring
Study, DNA was extracted from buffy coat using the same
method. DNA methylation was assessed using the Illumina
HumanMethylation450 BeadChip (Illumina), which interrogates
485,577 CpGs, following the Illumina Infinium HD Methylation
protocol in both studies (37,38). Infinium Methylation 450K is an
array-based technology allowing a maximum of 12 samples for
each Beadchip. Each analysis runs onto a plate where it is possi-
ble to accommodate 8 Beadchips, permitting processing of 96
samples in a batch (39).

The 645 REGICOR samples were analysed in seven batches in
two laboratories of the Spanish National Genotyping Centre: the
Centre for Genomic Regulation in Barcelona (n¼ 187) and
the Centro Nacional de Investigaciones Oncol�ogicas in Madrid
(n¼ 458). Two duplicated samples were included in all the

batches as an internal quality control. In the Framingham
Offspring Study, 2,542 samples were analysed distributed in 30
batches in two different laboratories (n¼ 499 and 2,043) (5,40).
Duplicated samples were also included.

M-values were calculated according to Equation 1 and b-val-
ues were calculated using Equation 2:

Mvalue ¼ log2
Mi þ a
Ui þ a

� �
(1)

bvalue ¼
Mi

Mi þ Ui þ a

� �
(2)

’

Where: Mi is the intensity of methylated probes, Ui is the
intensity of unmethylated probes and a is a constant offset that
takes values of 1 and 100 in the respective equations.

Table 4. Results of the GOLDN study corresponding to the association between methylation at the CpGs of interest and gene expression, and
between gene expression and the corresponding lipid trait

Methylation-Gene Expression Gene Expression-Lipid trait

Lipid trait CpG Gen Read count Beta SE P-value Beta SE P-value

Total cholesterol
cg16000331 SREBF2 ENSG00000198911 �3182 1080 0.0042 �0.397 0.733 0.5897

HDL cholesterol
cg09572125 SYNGAP1 ENSG00000197283 �812 454 0.0775 1.047 1.98 0.5985
cg11024682 SREBF1 ENSG00000072310 �3329 1139 0.0045 6.706 3.261 0.0429
cg02650017 PHOSPHO1 ENSG00000173868 �55600 42230 0.1918 �44.39 33.01 0.1825
cg06500161 ABCG1 ENSG00000160179 364 542 0.5036 1.921 1.966 0.3314
cg27243685 ABCG1 ENSG00000160179 �318 908 0.7274
cg01881899 ABCG1 ENSG00000160179 �391 2017 0.8468
cg02370100 ABCG1 ENSG00000160179 �1891 1058 0.0778

Triglycerides
cg19693031 TXNIP ENSG00000117289 �59270 30320 0.0542 25.34 20.25 0.2142
cg06690548 SLC7A11 ENSG00000151012 �38 36 0.2950 �0.01 0.018 0.5616
cg03717755 MYLIP ENSG00000007944 �318 598 0.5968 �0.726 0.37 0.0533
cg00574958 CPT1A ENSG00000110090 �7725 3048 0.0133 0.1147 0.87 0.8955
cg11024682 SREBF1 ENSG00000072310 �3329 1139 0.0045 �0.541 0.484 0.2670
cg06500161 ABCG1 ENSG00000160179 364 542 0.5036 �0.332 0.286 0.2499

Beta: linear regression coefficient; SE: standard error of the regression coefficient.

Table 5. Aggregated results of the Global Lipids Genetic Consortium: selection of the SNP showing the lowest P-value for the associations be-
tween genetic variants in the loci of interest and the corresponding lipid trait. (Adapted from Reference 33)

Gene rsID chr pos A1 A2 A1 allele frequency Regression coefficient Standard Error P-value

Total cholesterol
SREBF2 rs2267443 22 42287454 G A 0.5989 0.0115 0.0054 0.0828
HDL-Cholesterol
SYNGAP1 rs211456 6 33389381 T G 0.3654 0.0062 0.0036 0.0618
SREBF1 rs11653007 17 17716662 G C 1 0.0388 0.0112 0.0013
PHOSPHO1 rs648980 17 47303456 C T 0.4617 0.0079 0.0050 0.0120
ABCG1 rs482303 21 43691469 C G NA 0.0261 0.0089 0.0051
Triglycerides
TXNIP rs7212 1 145442254 G C 1.0000 0.0281 0.0120 0.0608
SLC7A11 rs13141329 4 139125405 A T NA 0.0058 0.0047 0.3340
MYLIP rs2072781 6 16147349 T C 0.9195 0.0139 0.0075 0.1270
CPT1A rs7938117 11 68598054 A G 0.3259 0.0155 0.0035 0.0004
SREBF1 rs11653007 17 17716662 C G NA 0.0301 0.0108 0.0087
ABCG1 rs450808 21 43706944 T C 0.2098 0.0192 0.0090 0.0836
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An M-value close to 0 means the CpG site is about half-
methylated. Positive M-values mean that there are more meth-
ylated than unmethylated cytosines; negative M-values indicate
the opposite ratio. b-value ranges between 0 (completely unme-
thylated) and 1 (completely methylated). M-value was the main
outcome variable due to its good statistical properties (41,42).

We assessed the quality control of the methylation data us-
ing a well-defined pipeline (see Supplementary Material) and
standardized the M-values for batches following Equation 3:

Z ¼ ðX� �XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðX��XÞ2

ðn�1Þ

r ; (3)

Where: Z¼ standardized M-value (M-stand), X¼M-value for
a specific individual, �X¼mean of M-value for a specific batch
and n¼ sample size.

Statistical analysis

All the analyses were carried out by robust multivariable linear re-
gression. For each association test, methylation was considered as
the independent variable and lipid traits (TC, LDL-c, HDL-c and log-
arithm of TG) were considered as the outcome or dependent vari-
ables. We defined two models for each lipid trait: Model 1, adjusted
for a pre-defined set of variables including sex, age, smoking status,
batch effect and estimated cell count, and Model 2, additionally ad-
justed for surrogate variables to control for unmeasured potential
confounding variables, including technical, environmental or de-
mographic variables (43). Cell count was estimated using
Houseman’s algorithm implemented in R::minfi and surrogate vari-
ables were estimated using the R::sva R package (44–46).

We passed on to the validation stage those CpG sites associ-
ated with lipid traits which exceeded an arbitrary P-value
threshold of 1� 10�05 for either of the two models.

Finally, we performed a fixed-effects meta-analysis using data
from the REGICOR study and Framingham Offspring Study for both
models. We declared as statistically significant any association
that fulfilled the Bonferroni criteria applied according to the num-
ber of probes that passed the quality control (P-value<1.17� 10-07;
0.05/427,948 probes that passed the quality control). We also per-
formed sensitivity analyses to detect for possible confounding
factors, excluding those participants receiving treatment for dysli-
pidemia and adjusting for diabetes and BMI.

We calculated the statistical power of the meta-analysis to
replicate those CpGs identified in the discovery stage: the mag-
nitudes of the associations for the 113 CpGs included in the vali-
dation stage that could be considered as statistically significant,
accepting an alpha risk of 1.17� 10�07, in a two-sided test and
an 80% power are shown in Supplementary Material, Table S3.

Additional functional and genetic validation

Methylation, gene expression and lipid profile analyses: the GOLDN
study
The GOLDN study included the families of self-reported
European descent with at least two siblings, recruited from two
centres in the National Heart, Lung, and Blood Institute Family
Heart Study: Minneapolis, Minnesota, and Salt Lake City, Utah
(47). An extended description of the study is provided in the
Supplementary Material.

Briefly, we used data from the baseline GOLDN visit for the
present analysis. The Infinium HumanMethylation450 BeadChip
(Illumina, San Diego, CA, USA) was used to quantify DNA meth-
ylation in CD4þT-cells (5,48). For transcriptional profiling, we se-
lected 102 unrelated GOLDN participants from the extremes of
the BMI distribution. We extracted RNA from buffy coats using
the TRIzol method (ThermoFisher Scientific, Waltham, MA, USA)
and evaluated the quality of each RNA using Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) to ensure integrity.
We fragmented purified poly AþRNA by controlled hydrolysis
with a weak base, followed by conversion to cDNA with random-
primed reverse transcriptase. We then incorporated the cDNA
into the Illumina libraries and sequenced on the HiSeq2000 plat-
form. We used the STAR-2 pass method (49) to align pair-end
read sequences. We obtained the aligned read count information
for each gene transcript from the STAR output using the HTSeq-
count program (50). Two samples appeared as outliers and an-
other two individuals were missing covariate data; the final sam-
ple in the analysis was 98 GOLDN participants.

We fitted linear mixed models to test for associations be-
tween methylation scores at each CpG site and gene transcript
level, as well as between gene transcript level and lipid pheno-
types. We only used CpG sites that could be mapped to a known
gene in the methylation vs. expression analyses. We set the sta-
tistical significance level according to the Bonferroni principle,
a¼ 0.05/9 genes¼ 0.0056.

Genetic variation and lipid profile: aggregated results of the global
lipid research consortium
We accessed the publicly available and aggregated summary
data of the Global Lipid Genetics Consortium to explore the ad-
ditive association between genetic variants in the loci of interest
and their corresponding lipid trait (33).

Supplementary Material
Supplementary Material is available at HMG online.
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Gesti�o Ajuts Universitaris de Recerca [2014 SGR 240]; the
Spanish Ministry of Economy through the Carlos III Health
Institute [ISCIII-FIS-FEDER-ERDF PI12-00232, PI12-01238, PI11-
01801, PI08-1327, PI05-1251, PI05-1297, PI02-0471, FIS99/0013-01,
FIS96/0026-01, FIS93/0568, FIS92/0009-05], and the Red de
Investigaci�on Cardiovascular [RD12/0042/0013, RD12/0042/0020,
RD12/0042/0055, RD12/0042/0061]. S.S-B. was funded by a con-
tract from Instituto de Salud Carlos III FEDER [IFI14/00007] and
Daniel Bravo Andreu Private Foundation.
GOLDN: The GOLDN study (AND, DA, JO, SA, DKA) was funded
by the US National Institute of Health (NIH)/National Heart,
Lung and Blood Institutes (http://www.nhlbi.nih.gov) grants
R01HL104135 and U01HL72524.

4563Human Molecular Genetics, 2016, Vol. 25, No. 20 |

Deleted Text: to 
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw285/-/DC1
Deleted Text: 4.5. 
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw285/-/DC1
Deleted Text: 4.6. 
Deleted Text: <italic>4.6.1.</italic> 
Deleted Text: e
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw285/-/DC1
Deleted Text: <italic>4.6.2.</italic> 
Deleted Text: G
Deleted Text: L
Deleted Text: R
Deleted Text: C
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw285/-/DC1
Deleted Text: 5. 
Deleted Text: 5. Funding
http://www.nhlbi.nih.gov


References
1. O’Donnell, C.J. and Elosua, R. (2008) Cardiovascular risk fac-

tors. Insights from Framingham Heart Study. Rev. Esp.
Cardiol., 61, 299–310.

2. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha,
M.J., Cushman, M., de Ferranti, S., Despres, J.P., Fullerton,
H.J., Howard, V.J., et al. (2014) Heart Disease and Stroke
Statistics - 2015 Update: A Report From the American Heart
Association. Circulation, 131, e29–e294.

3. Sayols-Baixeras, S., Lluis-Ganella, C., Lucas, G. and Elosua, R.
(2014) Pathogenesis of coronary artery disease: focus on ge-
netic risk factors and identification of genetic variants. Appl.
Clin. Genet., 7, 15–32.

4. Martinez-Jimenez, C.P. and Sandoval, J. (2015) Epigenetic
crosstalk: a molecular language in human metabolic disor-
ders. Front. Biosci. (Schol. Ed.), 7, 46–57.

5. Irvin, M.R., Zhi, D., Joehanes, R., Mendelson, M., Aslibekyan,
S., Claas, S.A., Thibeault, K.S., Patel, N., Day, K., Jones, L.W.,
et al. (2014) Epigenome-wide association study of fasting
blood lipids in the genetics of lipid-lowering drugs and diet
network study. Circulation, 130, 565–572.

6. Pfeiffer, L., Wahl, S., Pilling, L.C., Reischl, E., Sandling, J.K.,
Kunze, S., Holdt, L.M., Kretschmer, A., Schramm, K.,
Adamski, J., et al. (2015) DNA methylation of lipid-related
genes affects blood lipid levels. Circ. Cardiovasc. Genet., 8,
334–342.

7. Guay, S.P., Voisin, G., Brisson, D., Munger, J., Lamarche, B.,
Gaudet, D. and Bouchard, L. (2012) Epigenome-wide analysis
in familial hypercholesterolemia identified new loci associ-
ated with high-density lipoprotein cholesterol concentra-
tion. Epigenomics, 4, 623–639.

8. Guay, S.P., Brisson, D., Lamarche, B., Gaudet, D. and
Bouchard, L. (2014) Epipolymorphisms within lipoprotein
genes contribute independently to plasma lipid levels in fa-
milial hypercholesterolemia. Epigenetics, 9, 718–729.

9. Guay, S.P., Brisson, D., Munger, J., Lamarche, B., Gaudet, D. and
Bouchard, L. (2012) ABCA1 gene promoter DNA methylation is
associated with HDL particle profile and coronary artery dis-
ease in familial hypercholesterolemia. Epigenetics, 7, 464–472.

10. Peng, P., Wang, L., Yang, X., Huang, X., Ba, Y., Chen, X., Guo, J.,
Lian, J. and Zhou, J. (2014) A preliminary study of the relation-
ship between promoter methylation of the ABCG1, GALNT2
and HMGCR genes and coronary heart disease. PLoS One, 9, 1–8.
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