Skip to main content
. 2018 Dec 7;18(Suppl 5):115. doi: 10.1186/s12911-018-0685-8

Table 1.

Performance of SAMGSR extension and other relevant algorithms on the injury data

Method # of genes Using 5-fold CVs On the test set
Error GBS BCM AUPR Error GBS BCM AUPR
L-SAMGSR1 97 0.442 0.268 0.515 0.576 0.356 0.230 0.535 0.622
EDGE1 1083 0.442 0.281 0.511 0.526 0.407 0.234 0.514 0.594
SAMGSR separatelya > 400 0.419 0.246 0.510 0.559 0.428 0.243 0.511 0.553
P-SVM separately > 1000 0.488 0.281 0.477 0.454 0.441 0.244 0.511 0.560
LASSO separately 147 0.465 0.261 0.497 0.498 0.407 0.237 0.509 0.580

Note: a the posterior probabilities were calculated using an SVM classifier. Here, the cutoff for q-value in SAM-GS part is set at 0.05. # of genes represents the number of the union of individual genes selected at each time point. CV: cross-validation