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The extracellular matrix (ECM) is a salient feature of all solid tissues within the body. This complex, acellular entity is composed
of hundreds of individual molecules whose assembly, architecture and biomechanical properties are critical to controlling the
behaviour and phenotype of the different cell types residing within tissues. Cells are the basic unit of life and the core building
block of tissues and organs. At their simplest, they follow a set of rules, governed by their genetic code and effected through
the complex protein signalling networks that these genes encode. These signalling networks assimilate and process the
information received by the cell to control cellular decisions that govern cell fate. The ECM is the biggest provider of external
stimuli to cells and as such is responsible for influencing intracellular signalling dynamics. In this review, we discuss the
inclusion of ECM as a central regulatory signalling sub-network in computational models of cellular decision making, with a
focus on its role in diseases such as cancer.
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Dynamics of extracellular matrix
homeostasis
The extracellular matrix (ECM) makes up the complex
network of macromolecules that surrounds cells and tissues
and not only provides structural and mechanical support
but is also fundamentally important in modulating cellular
activity via the activation or suppression of intracellular sig-
nalling pathways (Lu et al., 2012; Skhinas and Cox, 2017).
Regulatory cues from the external environment can signifi-
cantly influence intracellular signalling and cell behaviour
in response to a cell’s surroundings. Conversely, alterations
in signalling programmes can result in changes in the ECM
and the downstream ECM-mediated signalling networks.
Importantly, the timescales over which ECM remodelling
and rewiring of intracellular signalling networks occur, the
former being long term with the latter being almost immedi-
ate, allow both short- and long-term regulation of cellular
behaviour in tissues and organs. The caveat to this is that
dysregulation of ECM homeostasis either resulting in or due
to altered signalling programmes creates a positive feed-
forward loop which can drive disease progression in a range
of disorders such as chronic degenerative and autoimmune
diseases, fibrosis and malignancies (Bonnans et al., 2014).

Throughout life, the ECM in most tissues is continually
remodelled, undergoing degradation, balanced by synthesis
and deposition. However, this process is dysregulated in a
range of diseases. Alterations of the ECM can arise from
aberrant expression or turnover of matrix components, such
as collagen, fibronectin and hyaluronan, or altered post-
translational modifications, such as collagen crosslinking by
lysyl oxidase (Cox et al., 2015; Chang et al., 2017), lysyl
hydroxylase and transglutaminase activity (Wells, 2008), or
proteolytic matrix degradation. These ECM changes occur
in both normal and diseased tissue, and their effect on intra-
cellular signalling pathways is critical in the regulation of
function and phenotype of cells residing within these tissues.
Moreover, due to the relative longevity of ECM molecules,
extracellular cues from the ECM may have a chronic impact
on the activation or suppression of intracellular signalling
programmes. As such, we propose that the ECM should be
considered as a key regulatory sub-network in signalling
networks that modulate both short- and long-term cell
response, behaviour, phenotype and drug response.

The ECM as a modulator of intracellular
signalling
ECM components serve as ligands for cell surface receptors
that activate a range of signalling pathways in healthy and
diseased tissues. In fact, the complete removal of all
extracellular ligands leads to anoikis, defined as apoptosis
induced by inadequate or inappropriate cell–matrix interac-
tions. Therefore, the ECM can be seen a key regulator of
almost all intracellular signalling within living cells. Of the
ECM engaging receptors, mechano-sensing integrins are
one of the most extensively studied families due to their
involvement in cell–matrix interactions and wound repair,
as well as their role in degenerative cartilage based diseases,

fibrosis and cancer (Humphries et al., 2006; Desgrosellier
and Cheresh, 2010). During wound healing, integrin
heterodimers on the surface of cells are activated by ECM
components such as laminin, collagen, fibronectin and
tenascin (fully reviewed by Humphries et al., 2006) to induce
multiple signalling pathways. It should be noted that in addi-
tion to the absolute amount of ECM components affecting
how signalling pathways are activated, the ratios of different
ECM components to one another will also modulate global
cellular response as a result of the complex reciprocal feed-
back and feed-forward loops present within most signalling
networks. Thus, cells need to integrate multiple non-binary
signals in a decision-making process in order to effect a
response. This is important, not only because of the differen-
tial activation of receptors as ECM component ratios change
but also because, as the ECM components change, the global
3D ECM organization is also affected and the spatial topology
surrounding cells and tissues thus changes (Mayorca-Guiliani
et al., 2017). The ensuing alterations in ECM assembly will
therefore alter the distribution of solid-state ECM ligands
and can result in the localization and compartmentalization
of intracellular signalling.

The process of ECM-mediated extracellular–intracellular
signalling regulation typically occurs through transmem-
brane gatekeeper proteins such as the integrins. For example,
integrin engagement with specific ECM molecules leads to
integrin activation and the subsequent recruitment, assem-
bly and phosphorylation of intracellular signalling com-
plexes, including protein tyrosine kinase (TK) 2 [focal
adhesion kinase (FAK)] and its associated TK, SRC proto-
oncogene, non-receptor tyrosine kinase (Src). Both
FAK and Src are heavily involved in adhesion dynamics and
mediating cell motility in response to the ECM (Figure 1A)
(for full review, see Mitra et al., 2005). FAK/Src activation
can then go on to modulate activity of the MAPK (Figure 1
B) and PI3K/Akt (PKB) pathways (Figure 1C), both of
which mediate cell proliferation, differentiation and
migration through transcriptional regulation. The down-
stream cellular response is typically the expansion and
remodelling of the micro-environment. For example, during
wound repair, MAPK activation and signalling through
downstream effector proteins – MAPK3 (ERK1) and MAPK1
(ERK2) – induces stromal cell proliferation and cell motility
which are required for the wounding response (Matsubayashi
et al., 2004). Similarly, PI3K/Akt activation has also been
linked with platelet signalling, an important initiator of the
repair process (Guidetti et al., 2015) along with cell adhesion
(Luo et al., 2014). Collectively, ECM-mediated integrin activa-
tion and its downstream signalling pathways increase cell
proliferation, survival and migration of cells (Bonnans et al.,
2014) and thus work to establish and maintain a micro-
environment conducive to tissue repair.

Dysregulation of ECM-mediated
signalling networks in disease
The signalling networks activated during developmental
processes are typically tightly regulated, switching on and
off as required. However, they are also dysregulated in various
disease states, either through genetic mutation or aberrant
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activation via extracellular cues. For example, excessive depo-
sition and remodelling of ECM components in response to
injury or damage can result in fibrosis (Cox et al., 2013; Cox
and Erler, 2016). Chronic fibrosis in the liver leads to
cirrhosis, characterized by a significant loss of liver function
due to the presence of excessive scar tissue (Schuppan and
Afdhal, 2008). It is typically driven by the deregulation of
NF-κB and TGFβ signalling in hepatic stellate cells (HSCs).
These HSC-derived myofibroblasts are responsible for the
increased secretion and deposition of matrix components
such as collagen and basement membrane proteins
(Friedman et al., 1985), which then act tomodulate signalling
networks in all of the other cell types resident within the
fibrosing liver. Similarly, idiopathic pulmonary fibrosis is
characterized by dysregulation of, among others, the TGF-β,
MAPK and PI3K/Akt signalling pathways (Makarev et al.,
2016), leading to aberrant tissue repair and extensive ECM
remodelling which leads to the clinical loss of lung function.
The activation of these pathways, which occurs in both
forms of fibrosis, will enhance cell survival and proliferation
(Wells, 2008) and acts to hyper-activate a pro-fibrotic cellular
phenotype thus perpetuating further ECM remodelling and
changes in signalling networks.

Of note, fibrosis is a characteristic of almost all solid
tumours (Cox and Erler, 2016), with the establishment of a
fibrotic micro-environment considered to be essential in
tumour cell survival and cancer progression at the primary
tumour and secondary sites of many cancer types. In particu-
lar, activation of the integrin-mediated FAK/Src pathway by a

stiffer tumour micro-environment promotes signalling net-
work rewiring to drive cancer cell proliferation in primary co-
lorectal and breast tumours (Baker et al., 2013; Cox et al.,
2013) and is also involved in cell migration via changes in
cell-to-cell contact and impaired vasculature (Potter et al.,
2005). In parallel, related signalling networks including the
small GTPase Rho and its associated kinase,Rho-associated
coiled-coil containing protein kinase 1 (Rho kinase),
are both involved in cytoskeletal organization and cell migra-
tion. Rho kinase activation increases myosin light chain
(MLC) phosphorylation by supressing MLC phosphatase,
which is necessary for the establishment and maintenance
of stress fibres and focal adhesions. Additionally, Rho kinase
also phosphorylates another kinase, LIMK, which inacti-
vates the actin depolymerizing factor cofilin, and, together
with Rac1 and downstream effector protein mDia1, is in-
volved in actin polymerization, stress fibre formation and cell
migration (Amano et al., 2010). This signalling network is
typically under tight regulation but can also be hyper-
activated by ECM remodelling. Aberrant activation of this
signalling network leads to increased tumour invasiveness
in pancreatic ductal adenocarcinoma (Rath et al., 2017) and
squamous cell carcinoma (Figure 1D) (Samuel et al., 2011).

In contrast to excessive ECM deposition, excessive ECM
turnover is caused by aberrant expression or activity of
matrix-degrading enzymes. MMPs, ADAMs, hyaluroni-
dases, plasminogen and cathepsins have been observed in
cancer and forms of chronic tissue degradation. A range of
MMPs including MMP1, MMP2 and MMP9 have been

Figure 1
The effect of changes in ECM-mediated signalling pathways. (A) Integrin activation by ECM components such as collagen, fibronectin,
tenascin and laminin can phosphorylate the FAK/Src pathway and lead to downstream changes in cell adhesion andmigration. Integrin-mediated
FAK/Src activation is also central to the activation of (B) MAPK signalling via ERK1/2 and JNK phosphorylation as well as (C) PI3K/Akt activation,
leading to increased proliferation and cell survival through changes in transcriptional gene regulation. (D) FAK/Src activation can also mediate
Rho/Rho-associated kinase (ROCK) signalling, which affects cytoskeletal organization and cell motility in normal and diseased tissue states. (E) Fi-
brillar collagen in the ECM activates DDR2, which can mediate the MAPK and PI3K/Akt signalling pathways to influence gene expression and
subsequently cellular behaviour. (F) Elastin binding to its receptor elastin binding protein receptor can influence PI3K/Akt signalling and MAPK
signalling via ERK1/2. (G) Hyaluronan, another component of ECM remodelling, activates CD44 receptor, which can also affect Rho-ROCK
signalling.
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shown to be involved in both the promotion and inhibition
of cancer progression in breast and lung cancer, through their
effect on ECM remodelling and downstream effects on intra-
cellular signalling networks (Egeblad and Werb, 2002). For
example, in osteoarthritis, aberrant production of fibronec-
tin, versican and laminin induces altered integrin-mediated
FAK/Src signalling and subsequent increase in MMP2 and
MMP9 expression, therefore resulting in loss of matrix integ-
rity and increased ECM degradation (Prasadam et al., 2013).
In a similar manner, up-regulated cytokine production
associated with rheumatoid arthritis causes increased
expression and clustering of integrin receptors, followed by
activation of their signalling pathways, including ERK,
JNK subfamily, FAK/Src and PI3K pathways. This leads to
the increased production of matrix-degrading enzymes such
as MMP1 andMMP3 (Lowin and Straub, 2011). In particular,
the phosphorylation of JNK subfamily in synovial fibroblasts
has been linked with increased expression of collagenases
consistent with the chronic ECM degradation seen in rheu-
matoid arthritis (Han et al., 1999). In addition to integrin-
mediated signalling programmes, the activation of a range of
other ECM receptors can facilitate the transduction of extracel-
lular cues in healthy and diseased tissue states. An in-depth
discussion of all of these ECM components and receptors is be-
yond the scope of this review; however, we have included some
of these in Figure 1 such as the collagen binding receptor,
DDR2, (Figure 1E), the elastin binding protein receptors
(Figure 1F) and the hyaluronan receptor CD44 (Figure 1G).

Mapping signalling networks using
computational models
As mentioned above, these signalling transduction networks
are the means by which a cell conveys external stimuli from
the cell membrane to the nucleus or processes internal signals
pertaining to cell stress and metabolic status (Kolch et al.,
2015). These networks are analogous to complex logic cir-
cuits built from simple modular components that allow the

accurate and reliable transduction of signalling through a cell
(Kholodenko, 2006; Murray and Miller, 2015). Gaining an
understanding of the structure of signalling transduction
networks represents the coming era of precision medicine
strategies, as improvements in computing resources allow
the efficient analysis of large datasets involving complex
dynamic processes within a timeframe that allows for clinical
benefit (Kolch et al., 2015; Barbolosi et al., 2016). Mathemat-
ical modelling is invaluable in this regard, as it is impossible
to intuitively grasp the dynamics of signalling transduction
networks because of their complex structures and nonlinear
dynamics, which include extensive built-in redundancies,
feedback loops and crosstalk. To aid the reader in the follow-
ing section, a number of the specific terms used to describe
thesemathematical modelling concepts are further expanded
upon in Table 1.

Current strategies in network biology encompass many
different modelling approaches ranging from simple statistics
to complex in-depth descriptions of dynamic behaviour.
These modelling approaches differ in their level of abstrac-
tion, data requirements and predictive power but can be
broadly separated into two categories: descriptive statistical
models and predictive mechanistic models (Halasz et al.,
2016). Statistical models are derived to create relationships
between signalling nodes that best describe the available
experimental data (Terfve et al., 2015; Chitforoushzadeh
et al., 2016; Hill et al., 2016). Conceptually, these models are
essentially maps of signalling transduction networks that
allow direct comparison between healthy cells and those
with aberrant signalling (Krogan et al., 2015). It has been
proposed that these models could be employed to interpret
high-volume genomic datasets, identifying the network
structures responsible for driving a diseased phenotype,
rather than individual genes (Krogan et al., 2015). This
approach would encourage the development of therapeutic
agents to consider their effects on broader network structures,
rather than individual targets. This concept has demon-
strated its effectiveness, particularly within the field of cancer
medicine, but it is not without its drawbacks. Although

Table 1
Definitions of relevant mathematical modelling concepts

Term Definition

Bi-stability
The property of a system having two stable equilibrium states that it is
capable of rapidly switching between

Feedback loop
A signalling component wherein system outputs are routed back to previous
elements of the system as inputs, thereby altering behaviour of the entire network

Mechanistic model
A mathematical model that uses comprehensive information about network
components, wiring structure, and kinetics to simulate the behaviour of a
signalling network as a whole

Network node A point of signal redistribution or termination

Ordinary differential equation
A differential equation that contains one or more functions of a single independent
variables. In the context of a protein signalling network, this variable might be the
expression level or activity of a specific protein

Redundancy Replication of critical functions of a system, increasing its robustness

Statistical model A mathematical model that uses available experimental data to visualize network topologies

Ultrasensitivity An output response that is more sensitive to stimulus than the Michaelis-Menten response
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statistical models are useful tools for visualizing network
topologies, they are limited in their ability to predict
functional properties of these networks (Klinger et al., 2013;
Halasz et al., 2016).

Understanding the consequences of changes in these
networks is fundamental to effective treatment, and as such
systems biologists have developed mechanistic models that
use comprehensive information about the network’s compo-
nents, wiring structure and kinetics in order to predict
functional properties and perturbation outcomes (Kolch
et al., 2015; Halasz et al., 2016). Such dynamic modelling
has revealed that emerging systems-level properties, such as
activity pulses, ultrasensitivity and bistability are critical
mechanisms by which cells can robustly control their
behaviour in uncertain environments (Fey et al., 2016). These
predictive dynamic models are the next stage in tracking the
progression of complex diseases that are generally nonlinear,
time-dependent processes that cannot be adequately assessed
using traditional static biomarkers (Kolch and Fey, 2017).

By considering the spatiotemporal aspects of subcellular
signalling and the effects of noise on signal transduction that
traditional biomarkers typically fail to account for, mechanis-
tic models provide a deeper understanding of the cellular
processes involved in disease progression or drug response
(Fey et al., 2015; Halasz et al., 2016). Numerous existing
studies have demonstrated the efficacy of these models as
prognostic tools and highlighted several key advantages that
they provide. By capitalizing on a computational model’s
ability to rapidly iterate different conditions, it is possible to
consider the effects of various combinations of therapeutic
agents on disease progression and determine which combina-
tion of drugs will have the most beneficial effect on an
individual patient’s treatment (Zhao et al., 2014). Mechanis-
tic models are also an effective method of removing bias from
the development of treatment strategies, as they can be used
to contextualize biological data that initially appears to be
counter-intuitive, and are capable of analysing systems
whose complexity precludes the use of smaller-scale studies
(Lindner et al., 2017). Critically, these models can also make
use of information that is not prognostically significant until
placed within the context of its cognate network and use this
additional information to more effectively assess the status of
the disease. This approach has already been used to under-
stand the time and dose dependencies of drug-induced
cancer cell death and to predict clinical outcomes of cancer
patients (Fey et al., 2015; Lindner et al., 2017).

As these models evolve to become more sophisticated,
their clinical viability becomes increasingly apparent. The
field of cancer medicine in particular has proven to be fertile
ground for this approach, where using network models as
biomarkers could potentially broaden the range of effective
prognostic markers available to clinicians. A significant
example of this is kinase signalling in cancer medicine. The
protein kinase domain is the most frequently mutated in
cancer cells, making it an attractive therapeutic target
(Fleuren et al., 2016). However, owing to the complex, plastic
and adaptable nature of phosphorylation networks, targeting
an individual node typically results in the rapid development
of acquired resistance in the tumour, as built-in redundancies
and crosstalk compensate for the signal perturbation.
Considering these networks in a more holistic manner and

developing mathematical models to describe the signalling
events that cannot be intuitively understood can facilitate
the rational design of kinase-targeting therapies. A particu-
larly exciting application for these models is to anticipate
and pre-empt resistance.

MAPK signalling is an important focal point in cancer
medicine. While there have been many attempts to target
these pathways, their inherent plasticity affords cancer cells
an avenue to acquire resistance to targeted therapies.
Computational modelling offers the ability to mitigate the
effects of this plasticity by prescribing more nuanced thera-
peutic options. An existing model of the ERK subfamily
pathway demonstrates the ability of a computational model
to iteratively simulate different network conditions, such as
RAS, B-Raf and EGF receptor (EGFR) mutations, which are
commonly observed to drive a cancer phenotype (Orton
et al., 2009). This particular model identified the Rap1
pathway as a potential therapeutic target. A similar approach
involved testing B-Raf andKRASmutations in amodel of the
RAS–ERK and PI3K/mechanistic target of rapamycin
pathways informed by FRET image analysis identified
effective combinations of MEK and PI3K inhibitors (Fujita
et al., 2014). More recently, we have devised an ordinary
differential equation (ODE)-based mathematical model of
the reaction kinetics of JNK subfamily activity to predict
clinical outcomes in individual neuroblastoma patients that
can be adapted to compare and predict the efficacy of
different therapeutic agents (Fey et al., 2015).

Computational models of the EGFR family have also
demonstrated the ability of mathematical analyses to
identify novel therapeutic strategies. The inceptive models
of these pathways were developed by constructing the topo-
logical structure of the signalling cascade and quantifying
the relationships between all the molecular species therein
(Kholodenko et al., 1999). Developing amodel in thismanner
allows for the assessment of how cells process information,
such as cues from the ECM, and the prediction of response
outputs. Cancer is a dynamic disease, however, and ignoring
the cellular context such as the ECM in these models ulti-
mately limits their effectiveness. Existing mathematical
models can be adapted to improve their usefulness. For exam-
ple, by incorporating data on phosphatase dynamics into an
EGFR pathway computational model, novel therapeutic tar-
gets and combination therapies have been designed, in an ef-
fort to overcome resistance to receptor TK (RTK) inhibitors
(Nguyen et al., 2013). In this same vein, a model can be
adapted to incorporate crosstalk with, for instance, EGFR
and the insulin receptor (InsR) signalling. The crosstalk be-
tween EGFR and InsR signalling is exceedingly complex, with
multiple points of interaction. By adapting an existing EGFR
model to include InsR signalling, we are able to simulate the
dynamics of these two pathways in concert and identify
critical nodes to prescribe combinations of therapeutic
targets and predict their effects (Borisov et al., 2009). As
research in this field continues, network modelling strategies
and concepts evolve. At present, there are not only models
that incorporate crosstalk with other signalling cascades
(Borisov et al., 2009; Frohlich et al., 2015) but also physiolog-
ical conditions, such as temperature (Moehren et al., 2002).
In the future, these models could be used clinically to assess
an individual patient’s condition and predict combinations

J F Hastings et al.

86 British Journal of Pharmacology (2019) 176 82–92

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=514
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=897
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1943
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1797
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2824
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2109
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304&familyType=ENZYME
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1800


of therapeutic targets that would provide the best treatment
options, a concept that is already being verified in vitro
(Borisov et al., 2009; Nguyen et al., 2013). It is apparent that
the predictive power of these networks improves as they in-
corporate different sets of data. As they become increasingly
comprehensive, their clinical potential increases accordingly.
We argue that the inclusion of ECM interactions within these
models will further significantly improve their accuracy and
therefore greatly improve their clinical potential.

Potential applications for modelling of
matrix signalling
As these computational models of signalling pathways are
increasingly applied to precision medicine and rationalized
drug re-purposing (Kolch et al., 2015), the gulf in our under-
standing of how signalling pathways behave in vitro and
in vivo is becoming more apparent. A major difference
between the in vitro analysis of signalling pathways and the
in vivo reality is the manner in which cultured cells attach to
their synthetic micro-environment and the fundamental
influence this has on pathway activation, cell behaviour
and drug response.

Physiologically, the ECM not only provides structural
support and a cellular attachment point, but these interac-
tions with specific ECM components also direct discrete
cellular responses through activation of integrin-mediated
signalling pathways. Within the cancer micro-environment,
these interactions and cellular responses are perturbed not
only by compositional alterations in the ECM but also by
physical alterations that influence the density, and stiffness,
of the ECM. Increased ECM stiffness is known to be a funda-
mental property in malignant transformation (Levental
et al., 2009). Accordingly, a number of experimental models
have demonstrated that cancer cells are more proliferative,
invasive and drug-resistant when grown on, or within, in-
creasingly rigid matrices (Baker et al., 2013; Cox et al., 2013).
The signalling pathways involved in sensing and responding
to this increased ECM stiffness are now beginning to be
characterized, and here, we argue that the inclusion of this
ECM-induced signalling within pharmacologically relevant
models of pathway activation will be a key advance necessary
for their successful use as a tool for precision medicine.

As described above, the emergent properties of network
simulations are determined by the structure of the network
in question. That is, the experimentally determined wiring
between components that takes into account known
mechanisms of activation, inactivation and regulatory
crosstalk. Below, we will describe three separate, although in
no way exhaustive, examples of how ECM interactions are
partly responsible for re-programming and re-wiring the
drug-induced signalling response, and how the inclusion of
these aspects of ECM signalling could improve current
modelling approaches.

Receptor tyrosine kinase (RTK) clustering
induced by matrix interactions
Aberrant RTK activity is known to drive tumour progression
in a number of tumour types (Lemmon and Schlessinger,

2010). Accordingly, a number of therapeutic approaches have
been devised to target RTK activity, either through neutraliz-
ing antibodies or small molecule kinase inhibitors. As a
general therapeutic mechanism, targeting RTK activity will
usually elicit a strong initial response, but relapse invariably
occurs due to a number of avenues of therapeutic resistance
(Kennedy et al., 2016).

Several computational models have been developed that
can predict the behaviour of RTKs and their downstream
signalling pathways (Ryu et al., 2015; Adlung et al., 2017),
including those that have been adapted to predict optimal
combination therapies in an attempt to overcome resistance
to RTK inhibitors. Invariably, these models are developed
and calibrated under standard conditions using data derived
from cancer cell lines grown on tissue culture plastic.
However, it is becoming clear that both the activity and sub-
strate specificity of RTKs can be strongly influenced by ECM
interactions, controlled by ECM biochemistry and stiffness,
suggesting that these considerations should be included in
future modelling approaches.

Under tissue culture conditions with specifically
tuneable ECM stiffness, many growth factor receptors,
including EGFR, cluster within focal adhesions on stiff sub-
strates but remain diffusely distributed on soft substrates
(Wang et al., 1998; Sieg et al., 2000; Umesh et al., 2014).
ECM stiffness is known to promote tumour progression by
causing integrins to cluster within focal adhesions (Paszek
et al., 2005; Levental et al., 2009), and direct interactions
between these RTKs and integrins are thought to facilitate
this localized enrichment (Wang et al., 1998; Sieg et al.,
2000; Cabodi et al., 2004). This spatial clustering of RTK
activity on stiff substrates alters the balance between ligand
concentration and receptor auto-phosphorylation, which
ultimately amplifies ligand-induced RTK signalling
(Ichinose et al., 2004; Levental et al., 2009; Stabley et al.,
2013). Additionally, the localization of RTKs within focal
adhesions on stiff substrates promotes signalling through
FAK, which increases cell migration (Sieg et al., 2000), while
FAK is also required for RTK-mediated oncogenic transfor-
mation (Benlimame et al., 2005). Taken together, this
suggests that extracellular cues from the surrounding ECM
may not only amplify the signalling response from these
receptors but also qualitatively change the functional
outcome of RTK activation by altering substrate
phosphorylation.

A recent study demonstrated a similar concept by model-
ling the effect of ECM concentration and composition upon
the kinetics of integrin binding and clustering (Hudson
et al., 2017). In the same way, the concentration-dependent
dynamics and substrate specificity of RTK signalling in re-
sponse to changing ECM conditions are key computational
parameters required for future model development. These
model characteristics will strongly influence network dynam-
ics by modulating the strength and direction of feedback and
thereby alter both the functional outcome of RTK signalling
and the sensitivity of individual network nodes to therapeu-
tic inhibition. Therefore, modelling studies that include
ECM stiffness and composition asmodel parameters are likely
to yield more accurate predictions about how these potent
oncogenes can be efficiently targeted. Future studies are likely
to benefit from an understanding of the differing activation
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kinetics and substrate specificity of RTKs on soft versus
stiff matrices, including a detailed model of the altered feed-
back structures and fragile nodes under these contrasting
conditions.

Spatial aspects of small GTPase signalling
While ECM stiffness can specifically promote the clustering
of RTKs within focal adhesions, the clustering of signalling
proteins at the plasma membrane is a general mechanism
necessary for fine-tuning the response of a number of
signalling pathways (Garcia-Parajo et al., 2014). The spatial
co-localization of many individual molecules is thought to
reduce the inherent noise within signalling pathways by
overcoming the thresholds required for analogue to digital
conversions (Harding and Hancock, 2008). This phenome-
non has been empirically demonstrated for the small GTPase
Ras, which can form nanoclusters of approximately seven
molecules (Hancock and Parton, 2005). In this spatial
arrangement, each nanocluster functions as an individual
switch and allows the generation of a graded output of ERK
signalling by activating nanoclusters proportionally to the
concentration of EGF (Tian et al., 2007).

A similar mechanism has also been proposed for the
formation of Rac1 nanoclusters, where the spatial regulation
of Rac1 at the edges of lamellipodia is controlled by gradients
of nanoclusters containing 50–100 molecules (Remorino
et al., 2017). No such observation has yet been made for the
related GTPase, RhoA, although both FRET-biosensor imag-
ing and computational studies have been employed to
describe the complex spatial regulation of Rac1 and RhoA
(Timpson et al., 2011; Johnsson et al., 2014). The complex
spatial interplay between these two mutually antagonistic
small GTPases is crucial for a number of processes associated
with the migration of epithelial cells (Ridley et al., 2003),
and they therefore play a key role in tumour invasion.
Despite their prominent role in a number of tumour types, a
strategy for the effective pharmacological inhibition of these
small GTPases remains elusive. Therefore extensive efforts
have been undertaken to identify potential therapeutic
strategies that exploit the complex networks that regulate
the oncogenic function of GTPases (Hetmanski et al., 2016a).

The tightly localized switching between Rac1 and RhoA
signalling, which is necessary for the coordinate cycles of
actin polymerization and depolymerization that promote
efficient cell migration, is regulated by a complex network
of guanine nucleotide exchange factors, GTPase activating
proteins and kinases. Therefore a number of modelling
approaches have been adopted in order to investigate the
interplay between Rac1 and RhoA signalling (Hetmanski
et al., 2016a). This has included Boolean models that have
defined the network logic associated with mutually antago-
nistic Rac1 and RhoA signalling (Hetmanski et al., 2016b)
and dynamic ODE-based models that describe the spatio-
temporal dynamics and bistability of Rac1 and RhoA sig-
nalling (Tsyganov et al., 2012; Nikonova et al., 2013;
Byrne et al., 2016).

Interestingly, another consequence of the integrin
clustering associated with increasing ECM stiffness is the
promotion of RhoA signalling to its downstream effector
Rho-associated kinase, and a subsequent increase in
cytoskeletal contractility, a loss of cell polarity, increased cell

growth and migration (Paszek et al., 2005; Keely, 2011). The
malignant phenotype associated with increased ECM stiff-
ness and altered ECM composition has also been associated
with Rac1-driven PI3K signalling (Chaudhuri et al., 2014).
Clearly, the spatiotemporal regulation of RhoA and Rac1 will
be heavily influenced by the specific interactions occurring
between epithelial cells and the ECM. An increased under-
standing of how ECM interactions alter both the network
logic and switch-like nature of RhoA and Rac1 activation is
likely to yield more accurate predictions of cell behaviour
across a variety of substrates and potentially highlight
specific avenues of therapeutic intervention for these elusive
drug targets.

Altered MAPK equilibrium states
A number of elegant models have been developed to describe
the dynamics of MAPK signalling, in which a key regulatory
mechanism is the negative feedback and crosstalk that occurs
through both rapid, phosphorylation-based inhibition of
upstream signalling components, and slower transcriptional
induction of negative regulators (Kholodenko et al., 2010;
Bluthgen, 2015; Ryu et al., 2015). This dynamic network
rewiring strongly regulates the temporal kinetics of each
discrete MAPK but also generates feedback-based network
structures that can influence the sensitivity and dynamic
behaviour of all MAPK pathways (Fey et al., 2012).

Experimentally, MAPK pathways are usually modelled
under serum-starved conditions, followed by rapid pathway
activation through the addition of growth factors or cell
attachment/spreading. In these cases, a spike of activity is
observed which initiates a number of negative feedback
processes, and the signal decays over time. However, in
contrast to these experimental conditions, cells normally
exist within a native micro-environment of constant stimula-
tion by growth factors, cytokines, ECM interactions and
mechano-sensory input. Therefore, while many models can
accurately predict the acute dynamics of MAPK activation,
in reality, most cells will maintain an equilibrium state of
MAPK activity that represents a delicate balance between
ERK, JNK and p38 activation.

Where these models of acute activation can be of particu-
lar use is in the prediction of drug-induced signalling in
cancer cells (Fey et al., 2015). However, to fully understand
the response of cells within a complex physiological setting,
we need to progress to a point where these models can accu-
rately represent the baseline network state of cells in a native
3D environment before a reliable prediction can be made
about drug-induced signalling. As ECM-mediated integrin
signalling is known to activate each MAPK pathway within
different contexts (see above), the exposure of cells to a
specific set of ECM components is likely to generate a distinct
state of MAPK equilibrium that would heavily influence any
acute, drug-induced signalling. For example, integrin
engagement with the ECM is known to activate both ERK
and PI3K/Akt, both of which can inhibit drug-induced
activation of apoptotic JNK signalling (Fey et al., 2015). For
ERK signalling, this can occur through ERK-dependent up-
regulation of the JNK-specific phosphatases (Katagiri et al.,
2005; Cagnol and Rivard, 2013), whereas Akt can inhibit
the kinases directly upstream of JNK, namely,MAPK kinase
(MKK) 4 and MKK7 (Fey et al., 2015) (Figure 2A). Therefore,
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an increase in the baseline ERK and Akt activation (driven
through altered ECM inputs) would repress the drug-
induced, switch-like activation of JNK (Figure 2B). In this
way, a fibrotic tumour micro-environment rich in stiff
ECM components could reduce drug sensitivity by
repressing apoptotic signalling through this stress-activated
MAPK pathway (Figure 2C).

As we have previously modelled the theoretical conse-
quences of this MAPK pathway crosstalk (Fey et al., 2012), it
is possible that, in the future, tumour-specific models could
be adapted to take into account the ECM composition and
stiffness of each tumour. This would generate an established,
baseline, equilibrium state from which personalized predic-
tions could be reliably made.

Conclusions
At their simplest, cells follow a set of rules governed by their
genetic code. These rules, which are executed by the
protein-based signalling networks that the genes encode,
control the assimilation of information and decision-making
processes that shape a cell’s response to their surroundings.
Under normal situations, each independent cellular decision
results in the emergent phenomena of correct organ or tissue
function. Homeostasis of the ECM is a fundamental regulator
of cell and tissue behaviour, providing the majority of
extracellular signalling cues that feed into these cellular
decision-making processes. In many tissue diseases, aberrant
ECM provides signalling cues that significantly alter cellular
decision-making processes, typically to the detriment of the
organ or individual. As yet, we still do not fully understand
the importance and role of the ECM as a key signalling sub-
network in these processes, and only through a bottom-up
modelling approach to dissecting intracellular signalling,
which includes the ever-present ECM, will we begin to
deepen our understanding of how to tackle these complex
tissue diseases from a therapeutic perspective.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharmaco-
logy.org, the common portal for data from the IUPHAR/BPS
Guide to PHARMACOLOGY (Harding et al., 2018), and are
permanently archived in the Concise Guide to PHARMA-
COLOGY 2017/18 (Alexander et al., 2017a,b).
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