
Potential biomarkers of the mature intervertebral disc
identified at the single cell level
Kangning Li,1 Devin Kapper,2 Brittany Youngs,1 Victoria Kocsis,1 Sumona Mondal,2 Petra Kraus1 and
Thomas Lufkin1

1Department of Biology, Clarkson University, Potsdam, NY, USA
2Department of Mathematics, Clarkson University, Potsdam, NY, USA

Abstract

Intervertebral disc (IVD) degeneration and trauma is a major socio-economic burden and the focus of cell-based

regenerative medicine approaches. Despite numerous ongoing clinical trials attempting to replace ailing IVD

cells with mesenchymal stem cells, a solid understanding of the identity and nature of cells in a healthy mature

IVD is still in need of refinement. Although anatomically simple, the IVD is comprised of heterogeneous cell

populations. Therefore, methods involving cell pooling for RNA profiling could be misleading. Here, by using

RNA in situ hybridization and z proportion test, we have identified potential novel biomarkers through single

cell assessment. We quantified the proportion of RNA transcribing cells for 50 genetic loci in the outer annulus

fibrosus (AF) and nucleus pulposus (NP) in coccygeal bovine discs isolated from tails of four skeletally mature

animals. Our data reconfirm existing data and suggest 10 novel markers such as Lam1 and Thy1 in the outer AF

and Gli1, Gli3, Noto, Scx, Ptprc, Sox2, Zscan10 and LOC101904175 in the NP, including pluripotency markers,

that indicate stemness potential of IVD cells. These markers could be added to existing biomarker panels for

cell type characterization. Furthermore, our data once more demonstrate heterogeneity in cells of the AF and

NP, indicating the need for single cell assessment by methods such as RNA in situ hybridization. Our work

refines the molecular identity of outer AF and NP cells, which can benefit future regenerative medicine and

tissue engineering strategies in humans.

Key words: adult; annulus fibrosus; bovine; heterogeneity; IVD; nucleus pulposus; regenerative medicine; RNA

in situ hybridization.

Introduction

Degeneration of the intervertebral disc (IVD) is frequently

associated with severe and chronic low back pain (LBP), one

of today’s most prevalent musculoskeletal problems (Che-

ung et al. 2009; Waterman et al. 2012). Annual expendi-

tures related to medical healthcare and lost workdays due

to severe and chronic LBP in the US typically exceed the

combined costs of common ailments such as coronary artery

disease or stroke, therefore imposing an enormous socio-

economic burden (Katz, 2002).

The mature healthy IVD is situated between the verte-

brate bodies of the vertebral column and is composed of

anatomically distinct areas of different composition: A

hydrogel-like central nucleus pulposus (NP) is encapsulated

in the outer ligamentous annulus fibrosus (AF) and sand-

wiched between the cartilaginous endplates (Eyre, 1979;

Bayliss et al. 1988; Humzah & Soames, 1988; Oegema, 1993;

Bedore et al. 2014; Erwin & Hood, 2014). In the human and

bovine IVD, cells are of thin and elongated nature in the

outer AF and round in the NP (Errington et al. 1998; Kraus

et al. 2017; Fig. 1). Both longitudinal and round cells were

present in the bovine inner AF (TZ) using Mallory’s tetra-

chrome staining (Kraus et al. 2017; and data not shown)

with round cells being more prevalent (Errington et al.

1998; Kraus et al. 2017). Despite a relatively simple anat-

omy, the IVD is a unique and challenging organ in many

ways: hypoxic, slightly acidic and nutrient-deficient (Urban

et al. 1977, 2004; Antoniou et al. 1996; Wuertz et al. 2008;

Liang et al. 2012), where cells are sparse in a vast amount of

extracellular matrix (ECM) (Errington et al. 1998; Kraus et al.

2017; Lama et al. 2018). Regenerative medicine aims to

restore the function of compromised tissues or entire

organs via cell-based approaches, and clinical trials employ-

ing mesenchymal stem cells (MSC) to treat disc degenera-

tion are on their way (Sivakamasundari & Lufkin, 2013;

Sakai & Andersson, 2015; Pennicooke et al. 2016; Kraus &
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Lufkin, 2017). However, the harsh environment in the avas-

cular mature IVD could limit the density of viable cells and

impact on the ability of NP cells to produce sufficient gly-

cosaminoglycans (GAG) (Urban et al. 1977; Bibby & Urban,

2004; Wuertz et al. 2008; Grunhagen et al. 2011; Liang et al.

2012), so is unclear whether introduced MSC for therapeutic

purposes can initiate sufficient de novo ECM production to

restore proper function of degenerated IVDs (Sakai & Schol,

2017). A gradual change in ECM synthesis and composition

from outer AF to central NP was demonstrated through

immunohistochemistry in human IVDs for abundant struc-

tural macromolecules such as Collagen I, II and GAG (Eyre &

Muir, 1976; Bushell et al. 1977; Antoniou et al. 1996). Type I

collagen is prominent in the AF, whereas type II collagen is

mostly associated with the NP (Antoniou et al. 1996). Pro-

teoglycans, particularly those of the long and modular type,

are important components of the ECM in general, but in

particular the negatively charged, large, aggregating bot-

tlebrush proteoglycan Aggrecan is considered a key player

in providing the swelling capacity that pulls water into the

disc against compressive loads (Bibby et al. 2001; Singh

et al. 2009). Currently, a solid understanding of the molecu-

lar identity of mature IVD cells is lacking and a heteroge-

neous cell population in vivo is suspected (Chelberg et al.

1995; Errington et al. 1998; Alini et al. 2008; Gilson et al.

2010; Pattappa et al. 2012; Lee et al. 2015; Molinos et al.

2015; Risbud et al. 2015; Sakai & Andersson, 2015; Morigu-

chi et al. 2016; Thorpe et al. 2016; Turner et al. 2016; Kraus

et al. 2017). Identifying NP and AF biomarkers is an ongoing

quest in the field and crucial to assure quality control mea-

sures for cultured cells destined for regenerative treatment

(Risbud et al. 2015; Thorpe et al. 2016; van den Akker et al.

2017; Kraus et al. 2017). Active transcription of genes

encoding ECM molecules could point to differences

between AF and NP cells. Other genes encoding structural

molecules investigated in this context are summarized in

Table 1. Of those, three members of the Keratin family:

Krt8, Krt18, and Krt19, although typically associated with

epithelial cells, are frequently discussed as IVD biomarkers

(Minogue et al. 2010b; Rodrigues-Pinto et al. 2016; Richard-

son et al. 2017). We also investigated whether the expres-

sion of crucial signalling and transcription factors during

early patterning of the axial skeleton and IVD persists in the

mature disc for the purpose of tissue maintenance (for

details see Table 1). As a progenitor cell potential of IVD

cells has been suggested previously (Risbud et al. 2007,

2015; Henriksson et al. 2009; Tekari et al. 2016; Thorpe et al.

2016; Kraus et al. 2017; Liu et al. 2017) we included several

pluripotency and stemness markers in our analysis of outer

AF and NP cells (for details see Table 1). Given the hypoxic

environment cells encounter in the avascular mature IVD

and that anaerobic lactic acid formation creates acidic con-

ditions in the IVD niche (Wuertz et al. 2008; Grunhagen

et al. 2011; Liang et al. 2012), in a broader metabolic con-

text we also investigated the expression of genes encoding

catabolic enzymes and those involved in pH balance, along

with the expression of genes encoding proteins otherwise

considered relevant to the IVD or vertebral column develop-

ment. Cell proliferation potential was assessed through

Ki67 transcripts. Also analyzed was the novel lncRNA

LOC101904175, the homologue of murine Klhl14as that

was recently identified in the developing IVD through tran-

scriptome profiling of cells in the axial skeleton of Pax1/

Pax9 mutant mouse embryos (Sivakamasundari et al. 2017;

Kraus et al. 2018a; see Table 1).

We provide quantitative values for the proportion of cells

expressing respective mRNAs in the bovine outer AF and

NP. Our data clearly demonstrate cellular heterogeneity in

the IVD, a finding obscured in quantitative expression pro-

filing such as microarray analysis or qRT-PCR that relies on

cell pooling for mRNA extraction. It is of concern when cell

pooling is applied, that in a heterogeneous cell population,

such as the AF and NP, non-transcribing cells could be

masked by a few individual cells with high expression levels.

This indicates the need for including single cell assessment

by methods such as RISH. As such our work aids in refining

AF and NP biomarkers in the adult bovine IVD with possible

implications for future regenerative medicine and tissue

engineering studies in humans.

Materials and methods

Tissue collection and processing

Four tails from skeletally mature adult cows were collected fresh on

ice from local abattoirs and immediately transported for dissection.

Skin and most skeletal muscle was removed (Fig. 1a). For RISH, typi-

cally coccygeal discs three to seven were isolated leaving the end-

plates behind and immediately fixed in > 59 volume of fresh cold

4% (w/v) paraformaldehyde (PFA) for 24 h. Intervertebral discs were

then slowly dehydrated in graded ethanol (EtOH) baths of 30%,

70%, 90% EtOH in nuclease-free water, followed by 29 100%

EtOH, 19 equal volume EtOH:HistoChoiceTM and 39 100% Histo-

ChoiceTM prior to paraffin embedding (Wang et al. 2000; Kraus et al.

2017). For RISH and histological analysis, 7-lm cross-sections were

cut on a rotary microtome and up to three consecutive sections

were mounted on VistaVision HistoBond (VWR) glass slides (Kraus &

Lufkin, 1999; Kraus et al. 2017). All procedures were performed

according to the ethical standards of Clarkson University. No live

animals or human material was included in this study.

Histological tissue assessment

The 7 lmparaffin sections were de-waxed in 39 100%HistoChoiceTM

and slowly rehydrated in graded EtOH baths, essentially reversing

the steps above (Robledo & Lufkin, 2006). Haematoxylin stain (VWR;

Fig. 1b, top) or Mallory’s Tetrachrome stain (Fig. 1b, bottom) con-

taining Groat’s haematoxylin, Acid Fuchsin, Aniline Blue and

Orange G (Kraus et al. 2017) was adapted from Lufkin et al. (1992)

and used to differentiate outer AF from inner AF [or transition zone

(TZ); Kraus et al. 2017] and NP tissue as indicated (Fig. 1a). In the

IVDs used for RISH, vasculature was only observed in the outer

periphery of the outer AF.

© 2018 Anatomical Society
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RNA in situ hybridization on paraffin sections (RISH)

Fifty RNA probe templates were PCR-amplified from bovine

genomic DNA isolated from the skeletal muscle of the collected

tails. Gene specific primers were designed with NCBI software

(Supporting Information Table S1). As sense and antisense

probes, modified T3 (50- CCGAATTC_T3-30) or T7 (50-
CCAAGCTT_T7 -30) promoter sequences were added to the 50

end of the forward or reverse base primer, respectively (Kraus

et al. 2018b). For cell counts, probes were labelled with digoxy-

genin (DIG)-UTP and detected with Sheep anti-DIG-AP Fab frag-

ments (Roche; Kraus et al. 2018b). Hybridization was carried out

62 °C and washes were performed in slide mailing jars with buf-

fers as described in Kraus et al. (2017). Chromogenic signal

detection was performed with NBT/BCIP (Roche; Kraus et al.

2018b). The colour was developed by adding nitro blue tetra-

zolium (NBT) and 5-bromo-4-chloro-3-indolylphosphate (BCIP)

(Roche) substrate to the sections. Stained (red arrows in Fig. 1C)

and unstained cells (white arrows in Fig. 1C) within each section

as well as adjacent tissues served as positive/negative controls

for each probe. This approach is hereafter referred to as AP-

RISH. To validate our AP-RISH approach of gene expression anal-

ysis through cell count and z proportion test, RNA expression

was further quantified through the acquisition of single-cell flu-

orophore-labelled expression intensities and confocal microscopy

for two genes: Col2a1, a widely accepted NP marker, and

LOC101904175, a novel lnc RNA, both present in the mature

IVD according to our AP-RISH data. Here mouse anti-digoxin

(1 : 100, Jackson IR) followed by Alexa Fluor 488-conjugated

AffiniPure goat anti-mouse (1 : 1000, Jackson IR) antibodies

were used instead of chromogenic signal development, and

To-Pro-3 (1 : 1000, Thermo Fisher) marked the nucleus. This

approach is hereafter referred to as FL-RISH.

Data collection and statistical analysis

We provide AP-RISH in situ transcription data for 50 genomic loci

(Table 1), focusing on cells in the NP and outer AF (Fig. 1a),

omitting the inner AF (or TZ) (Fig. 1a) and see also (Kraus et al.

2017) to allow for a clear distinction between the two tissue

types analyzed. To compare the number of cells transcribing a

gene (thereafter denoted as positive cells) and the number of

cells without noticeable transcription (thereafter denoted as neg-

ative cells), for each of the 50 analyzed genes, 20 non-overlap-

ping frames (n = 20) from three independent IVD sections (n = 3)

were selected for cell counts in the outer AF and NP area post

AP-RISH under 409 magnification using a Motic BA310 com-

pound scope (Fig. 1a). These IVD areas should be similar to the

outer AF and NP tissue subjected to a study by van den Akker

et al. (2017: fig. 1) and close to the study by Minogue et al.

(2010b) where the tissue was described as discs macroscopically

dissected into AF and NP, removing any transition zone. All

counting was performed by the same individual to avoid inter-

rater variability. The percentage of positive cells was calculated

and graphed with GraphPad PRISM 5. To avoid inflating the statis-

tical significance of our results, we used averaging techniques to

aggregate across the three replicates. For each gene and tissue

type, an average proportion value was estimated from the data

collected across the frames analyzed for each gene. This average

was computed as the ratio of average number of positive cells to

the average number of cells counted for each gene and tissue

type (% positive cells). The z proportion test for differences

Fig. 1 Illustration of the principle of data collection (a) indicating the random selection of 20 non-overlapping fields in the outer AF area (oAF) as

indicated by four examples of yellow frames and the NP area as indicated by four examples of red frames on a mature bovine coccygeal IVD. Hae-

matoxylin staining (b, top) and Mallory’s tetrachrome staining (b, bottom) was performed to identify cells and tissue types. (c) AP-RISH identifica-

tion of cells transcribing (red arrow) or not transcribing (white arrow) a particular genetic locus, as shown here for the example of Col1a1

expression, can be observed within the same tissue on a section. Images are shown at 109 and 409 (insert) magnification. Scale bar: 50 lm.
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Table 1 List of genetic loci investigated using AP-RISH for transcription in outer AF and NP cells in skeletally mature bovine IVDs.

Functional

category Genetic locus

Gene

symbol Function References

Structural

proteins

Aggrecan Acan Major component of cartilage and IVD

ECM

Provides shock absorbing function of

the NP

Watanabe et al. (1994), Day et al.

(2004), Le Maitre et al. (2007)

Biglycan Bgn Small leucine-rich proteoglycan (SLRP)

Role in ECM assembly

Schonherr et al. (1995), Fisher

et al.

(1989), Wilda et al. (2000),

Marfia et al. (2014)

Chondromodulin-1 Chm1 Glycoprotein with anti-angiogenesis

properties

Hiraki & Shukunami (2000),

Hiraki et al. (1991)

Collagen Ia1 Col1a1 a1(I) chains of Collagen I heterotrimer Pereira et al. (1993), Khillan et

al. (1994), Aszodi et al. (1998)

Collagen Ia2 Col1a2 a2(I) chain of Collagen I heterotrimer Aszodi et al. (1998), Le

Maitre et al. (2007)

Collagen IIa1 Col2a1 a1(II) chains of Collagen II homotrimer Vandenberg et al. (1991),

Garofalo

et al. (1991), Karsenty &

Park (1995)

Decorin Dcn Small leucine-rich proteoglycan (SLRP)

Role in ECM assembly

Iozzo et al. (1999),

Wilda et al. (2000)

Fibromodulin Fmod Small leucine-rich proteoglycan (SLRP)

Role in ECM assembly

Wilda et al. (2000),

Jan et al. (2016)

Heparan

sulphate

proteoglycan 2

Hspg2 Role in IVD development

Structural similarity to Laminin a

Noonan et al. (1991), Sasaki

et al. (1988), Melrose et al.

(2001)

Keratin 8 Krt8 Intermediate filament proteins Bader et al. (1988),

Moll et al. (2008)Keratin 18 Krt18 Intermediate filament proteins

Keratin 19 Krt19 Intermediate filament proteins

Laminin1 Lam1 Glycoprotein in basal lamina ECM

Interacts with collagens,

integrins and proteoglycans

Ekblom et al. (1998)

Talin1 Tln1 Connects cells to the ECM Critchley & Gingras (2008)

Tenomodulin Tnmd ChM1 related transmembrane

glycoprotein

Tendon and tendon

progenitor cell marker

Shukunami et al. (2001)

Tenascin XB Tnxb Glycoprotein with anti-adhesive

properties

Mutations associated

with Ehlers

Danlos Syndrome

Chiquet-Ehrismann &

Tucker (2011), Burch et al.

(1997),

Mao et al. (2002)

Transcription

factors

Forkhead box F1 Foxf1 Required for the differentiation of the

lateral

plate mesoderm in mouse

Proposed as NP specific in humans

Mahlapuu et al. (2001),

Minogue et al. (2010b),

Thorpe et al. (2016)

Glioma-associated

oncogene 1

Gli1 Downstream mediator of Shh and Ihh

signaling

Ahn & Joyner (2005),

Buttitta et al. (2003)

Glioma-associated

oncogene 3

Gli3 Downstream mediator of Shh and Ihh

signaling

Impact on Pax1, Pax9, and Sox9

expression

Buttitta et al. (2003),

Shin et al. (1999)

Myoblast

determination

protein 1

MyoD Early differentiation marker for

myogenic commitment

Serves as marker of the non-

chondrogenic lineage

Rudnicki et al. (1993)

(continued)
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Table 1. (continued)

Functional

category Genetic locus

Gene

symbol Function References

Notochord Noto Involved in early notochord

development

Acts downstream of brachyury

Abdelkhalek et al. (2004),

McCann et al. (2012)

Paired box

protein 1

Pax1 Synergistically regulate the

development of

the vertebral column in mice

Peters et al. (1999),

Sivakamasundari et al. (2017)

Paired box

protein 9

Pax9

Scleraxis Scx In connective tissues like tendons and

ligaments

Involved in regulating Tnmd expression

Implicated in skeletogenesis during

mouse embryonic development

Cserjesi et al. (1995), Shukunami

et al. (2006, 2018),

Schweitzer et al. (2001)

Sex determining

region Y-box 5

Sox5 Crucial roles in organogenesis

Key regulators of the chondrogenic

pathway

Lefebvre et al. (2001), Lee et al.

(2017), Smits et al. (2004),

Barrionuevo et al. (2006),

Ikeda et al. (2004), Chatterjee

et

al. (2014), Zhang et al. (2006)

Sex determining

region Y-box 6

Sox6

Sex determining

region Y-box 9

Sox9

Brachyury T Conserved function in bilateral animals

Regulates notochord formation

Biomarker for spine tumors (chordomas)

Tang et al. (2012), Nibu et al.

(2013), Herrmann et al. (1990),

Vujovic et al. (2006)

Signalling

factors

Bone morphogenetic

protein 4

Bmp4 Involved in bone and cartilage

development

Belongs to TGF-beta superfamily

Nifuji et al. (1997), Wijgerde et

al. (2005), Zhang et al. (2006)

Growth

differentiation

factor 5

Gdf5 Related to BMP and TGF-beta

superfamily

Storm et al. (1994), Francis-

West et al. (1999)

Indian hedgehog Ihh Involved in axial and appendicular

skeleton development

Vortkamp et al. (1996), St-Jacques

et al. (1999), Ingham &

McMahon

(2001), Maeda et al. (2007)

Sonic hedgehog Shh Linked to Bmp4 signaling

Crucial in axial and appendicular

skeleton development

Absence results in aberrant vertebral

column and NP development

DiPaola et al. (2005), Dahia et al.

(2012), Chiang et al. (1996),

Kraus et al. (2001), Ahn &

Joyner

(2005), Ingham & McMahon

(2001),

Choi et al. (2012)

Pluripotency

and stem cell

markers

Endoglin Eng Cell surface marker

Part of a marker panel defining

multipotent

mesenchymal stromal cells

Dominici et al. (2006)

Estrogen-related

receptor beta

Esrrb Direct Nanog target

Fibroblasts reprogramming factor

Feng et al. (2009), Festuccia et al.

(2012), Doege et al. (2012)

Nanog Nanog Guardian of pluripotency

Levels correlate with the self-

renewal potential of stem cells

Mitsui et al. (2003), Chambers

et al. (2007)

Octamer-binding

transcription factor 4

Oct4 Essential for the pluripotency self-

renewal capacity of stem cells

Fibroblasts reprogramming factor

Nichols et al. (1998), Niwa et al.

(2009)

Tyrosine phosphate

receptor type C

Ptprc Cell surface marker

Part of a marker panel defining

multipotent mesenchymal stromal cells

Dominici et al. (2006)

(continued)
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between two population proportions was applied to determine

significant difference in the proportion of positive cells between

outer AF and NP for each gene when the normality assumption

held. Fisher’s exact test was used otherwise. A confidence level of

a = 0.05 was selected for all test conducted. Differences were con-

sidered significant for P < 0.05. The statistical power indicates the

probability of a statistically significant effect (power of 1 = 100%).

The NP/AF ratio was generated and compared with previously

reported IVD biomarkers (Table 2). For assay validation by FL-RISH,

fluorescent signal intensities representing gene transcription were

captured for cells in the outer AF and NP with a Leica DMi8 confo-

cal microscope. The established NP biomarker Col2a1 and a novel

locus LOC10190417 were chosen as examples. The data were aver-

aged per cell in the respective tissue using IMAGEJ and graphed with

GraphPad PRISM 5. Student’s t-test was applied to assess the signifi-

cant difference of the mean intensities.

Results and Discussion

Evaluation of techniques

Identifying AF- or NP-specific biomarkers has proven chal-

lenging and remains a hot topic in the field (Lv et al. 2014;

Thorpe et al. 2016). On the transcriptional level, this is often

achieved by microarray analysis. Technical challenges

related to microarray transcriptomics with non-standard or

Table 1. (continued)

Functional

category Genetic locus

Gene

symbol Function References

Sex determining

region Y-box 2

Sox2 Essential for the pluripotency and self-

renewal capacity of stem cells

Fibroblasts reprogramming factor

Niwa et al. (2009), Takahashi &

Yamanaka (2006)

Thymocyte differentia

tion antigen 1

Thy1 Cell surface marker

Part of a marker panel defining

multipotent mesenchymal stromal cells

Dominici et al. (2006)

Zinc finger and SCAN

domain containing 10

Zscan10 Associated with progenitor cell

subpopulations or impact on

their fate choice decisions in mouse

Wang et al. (2007), Kraus et al.

(2014)

Metabolic

context

Carbonic anhydrase 12 Ca12 Hypoxia induced enzyme

Involved in pH balance

Suggested as NP specific

Chiche et al. (2009), Power et al.

(2011), Minogue et al. (2010b)

Glyceraldehyde

3-phosphate

dehydrogenase

Gapdh Catabolic enzyme in glycolysis Seidler (2013), Lopa et al. (2016)

Hypoxia-inducible

factor 1-alpha

Hif1a Hypoxia induced transcription factor

Loss of function in mouse

resulted in morphological

abnormalities of the NP

Wuertz et al. (2008), Merceron

et al. (2014)

Lactate

dehydrogenase A

LdhA Catabolic enzyme involved in

anaerobic energy production

Sudo et al. (1992a)

Lactate

dehydrogenase B

LdhB Catabolic enzyme involved in

anaerobic energy production

Sudo et al. (1992b)

Malate

dehydrogenase 2

Mdh2 Catabolic enzyme in the citric acid cycle Bell et al. (2001)

Others Annexin A4 Anxa4 Regulates ion channel activity

Modulates the mobility of

membrane proteins

Piljic & Schultz (2006)

Ki67 Ki67 Proliferation marker found through

out the active cell cycle

Immune positive cell clusters in

degenerated disc

Johnson et al. (2001), Li et al.

(2015)

lnc RNA

LOC101904175

LOC101904175 Long non-coding RNA

Orthologue of murine Klhl14as

Downregulated in axial skeleton of

Pax1/Pax9 mutant mouse embryos

Sivakamasundari et al. (2017),

Kraus et al. (2018a)

Synaptosomal-

associated

protein 25

Snap25 Neuron-specific in mouse hippocampus

Functions in docking and membrane

fusion of synaptic vesicles

Suggested as NP marker

Zhao et al. (1994), Minogue et al.

(2010a)
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outbred organisms could further bias results (Kraus et al.

2012). Validation of microarray expression profiling data

is recommended and is typically achieved by qRT-PCR

(Minogue et al. 2010b); however, both technologies rely

on cell pooling (Minogue et al. 2010b; van den Akker

et al. 2017), which does not take potential cellular hetero-

geneity into account. RISH allows assessment of every cell

within a population for the active transcription of a gene

and highlights cellular heterogeneity. Hybridization of

complementary nucleic acid sequences is highly specific

and allows the study of non-protein coding markers, such

as lncRNAs. Proteome analysis through immunohistochem-

istry can be misleading if the exact epitope for antibody

recognition is unknown and there is cross-reactivity with

closely related proteins (Craig et al. 1998). More impor-

tantly, secreted proteins might not remain cell associated

and those with a long half-life might no longer be

actively transcribed and therefore may not accurately

reflect mature cell identity.

Evaluation of IVD sources

Despite increasing requests for data from human IVD

sources, there are shortfalls in their use, particularly for

transcriptome-based analysis. Surgically removed human

IVDs are typically degenerated and the avascular nature of

the IVDs would preclude sufficient RNA fixation through

perfusion of the body. We and others therefore chose to

use the adult coccygeal bovine IVD as a research model

because it appears anatomically, histologically and bio-

chemically similar to a human lumbar disc of a healthy

young adult between 15 and 40 years of age (Oshima

et al. 1993; Demers et al. 2004; Kraus et al. 2017) and can

be harvested fresh and sufficiently fixed in 4% PFA

through diffusion. Here, we focus on mRNA expression in

cells of mature bovine coccygeal IVDs, representative of a

human IVD from a healthy young adult. However, conclu-

sions made regarding disc degeneration based on results

obtained from non-human sources need to consider that

degenerated human IVDs exhibit reduced cell density,

increased concentration of Collagen I, along with

increased collagen cross-linking, reduced ECM turn-over as

well as reduced proteoglycan and water content; the

result is likely to be cells with reduced replicative potential

(Antoniou et al. 1996; Sakai & Andersson, 2015; Lama

et al. 2018).

Structural proteins

Given the vast amount of ECM and low cell count in the

mature IVD, most studies focus on key components of the

ECM. Microarray data proposed a NP/AF ratio of < 0.1 for

Col1a1 (Minogue et al. 2010b), and qPCR data showed a

56.8-fold higher expression of Col1a1 in the outer AF over

NP tissue (van den Akker et al. 2017). AP-RISH identified

Col1a1-expressing cells in both the outer AF and NP,

although with different prevalence. The AP-RISH NP/AF

ratio of Col1a1-positive cells was 0.5, therefore higher in

the outer AF (P < 0.001). The NP/AF ratio of Col1a2-positive

cells was 13.0 and significantly higher in the NP (P < 0.001;

Table 2; Fig. 2), yet the fold changes were reported as < 0.1

by microarray analysis (Minogue et al. 2010b). Unlike the

common assumption that the NP tissue is rich in Collagen II,

microarray data on bovine IVDs suggested an approxi-

mately three-fold higher Col2a1 expression in the AF than

in the NP (Minogue et al. 2010b; Lv et al. 2014). AP-RISH

indicated 4.19 more Col2a1-positive cells in the NP

(P < 0.001) (Table 2, Fig. 2, Supporting Information Fig. S1),

similar to a 7.19 upregulated expression level in the bovine

NP over the outer AF described by qPCR (van den Akker

et al. 2017). Quantitative validation by FL-RISH of Col2a1

mRNA expression indicated a 2.59 higher expression level

in NP cells over those in the outer AF (P = 0.0073; Fig. 3).

While not exclusive to AF or NP tissue or the IVD in general,

the expression of Col1a1 should serve in a panel of poten-

tial AF markers just as Col2a1 is widely accepted as a NP

marker in the IVD or cells derived thereof.

Laminins as basal membrane proteins are important ECM

components interacting with larger structural ECM mole-

cules such as collagens. Increased Laminin 1 and 3 was

described in the immature rat and pig AF (Chen et al. 2009).

We describe a significantly higher proportion of Lam 1-tran-

scribing cells in the outer AF of bovine IVDs (P < 0.001)

through AP-RISH with a NP/AF ratio of 0.3 (Table 2, Fig. 2,

Supporting Information Fig. S7), suggesting that Lam1

should be added to a panel of AF markers.

An increased Aggrecan/Collagen II ratio was proposed as

NP-specific (Risbud et al. 2015). While a ~159 increase of

Acan in the NP over AF tissue was noted in microarray

expression profiling (Minogue et al. 2010b), no significant

increase in Acan or Col2a1 expression was reported in

bovine NP over AF samples by qRT-PCR in the same study.

AP-RISH indicated Acan as a NP biomarker with a signifi-

cantly higher proportion of Acan-expressing cells in the NP

and an NP/AF ratio of 2.9, comparable to previous qPCR

data with a ratio of 3.2 (van den Akker et al. 2017). None of

the other glycoproteins examined here by AP-RISH showed

a significant difference in the proportion of positive cells

between the outer AF and NP (Table 2, Figs 2 and S1).

Although analyzed by AP-RISH, Dcn was only detected in

NP cells and Fmod was only found in AF cells; however, the

small number of positives cells precluded statistical analysis

(Table 2, Figs 2 and S1),

The presence of the Keratin family, especially Krt8, Krt18

and Krt19, has been described before in different species

including human and bovine IVDs and considered a marker

for remnant notochord cells (Minogue et al. 2010b; Rodri-

gues-Pinto et al. 2016; Richardson et al. 2017). A consis-

tently high NP/AF ratio for Krt19 was described and

microarray analysis identified Krt8, Krt18, and Krt19 as
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Table 2 RISH data of all investigated genetic loci organized by functional categories including mean values (standard errors), statistical power, P-

values and relative gene expression ratios of NP/AF (fold changes).

Functional

Category Genetic locus Symbol

RISH data

Gene expression ratio

(NP/AF)

Total

NP/AF

cell

count

positive

cells in the

NP in %

(Mean SE)

positive cells

in the AF in

% (Mean SE)

P-

value Power

RNA

SISH qPCR

Micro

array

Structural

proteins

Aggrecan Acan 151/143 89.6 (4.3) 31.4 (6.7) 3.8E-09 1.0 2.9 3.2**

n.s.*

>10*

Biglycan Bgn 140/121 32.0 (6.8) 23.2 (6.6) 0.35 0.15 1.4

Chondro

modulin-1

Chm1 136/159 36.1 (7.1) 33.6 (6.5) 0.82 0.042 1.1

Collagen Ia1 Col1a1 150/204 41.6 (7.0) 84.8 (4.4) 3.3E-07 1.0 0.5 <0.1** <0.1*

Collagen Ia2 Col1a2 148/148 66.3 (6.7) 5.1 (3.1) 1.6E-10 1.0 13.0 <0.1*

Collagen IIa1 Col2a1 226/181 88.7 (3.7) 21.8 (5.3) 7.6E-16 1.0 4.1 7.1**

n.s.*

0.3*

Decorin Dcn 223/224 1.9 (2.0) 0 – 0.030 –

Fibromodulin Fmod 125/127 0 11.0 (4.9) – 0.38 0

Heparan sulphate

proteoglycan 2

Hspg2 120/144 38.9 (7.8) 35.1 (6.9) 0.82 0.042 1.1

Keratin 8 Krt8 151/154 30.9 (6.5) 19.1 (5.5) 0.12 0.34 1.6 >100* >100*

Keratin 18 Krt18 175/168 54.2 (6.5) 25.2 (5.8) 0.0011 0.91 2.2 >10* >100*

Keratin 19 Krt19 171/145 87.3 (4.4) 14.4 (5.0) 3.8E-14 1.0 6.1 5.8**

<10*

>50*

Laminin1 Lam1 211/322 10.3 (3.6) 37.8 (4.7) 9.4E-05 1.0 0.3

Talin1 Tln1 118/136 2.4 (2.4) 4.4 (3.1) 1.0 0.010 0.5

Tenomodulin Tnmd 125/143 26.6 (6.8) 23.9 (6.3) 1.0 0.031 1.1

Tenascin XB Tnxb 118/129 5.2 (3.5) 15.6 (5.6) 0.16 0.28 0.3

Transcrip

tion

factors

Forkhead box F1 Foxf1 221/270 48.5 (5.8) 47.3 (5.3) 0.91 0.032 1.0 0.7*

n.s.**

Glioma-associated

oncogene 1

Gli1 300/284 75.3 (4.3) 33.9 (4.9) 9.3E-09 1.0 2.2

Glioma-associated

oncogene 3

Gli3 279/407 83.8 (3.8) 57.0 (4.3) 2.0E-05 1.0 1.5

Myoblast

determination

protein 1

MyoD 144/137 38.7 (7.0) 29.3 (6.7) 0.37 0.15 1.3

Notochord Noto 207/216 64.8 (5.7) 14.9 (4.2) 4.8E-10 1.0 4.3

Paired box protein 1 Pax1 310/298 51.8 (4.9) 47.7 (5.0) 0.53 0.092 1.1 n.s.**

Paired box protein 9 Pax9 177/144 32.8 (6.1) 25.8 (6.3) 0.20 0.25 1.3

Scleraxis Scx 286/298 63.6 (4.9) 28.9 (4.5) 1.2E-07 1.0 2.2

Sex determining

region Y-box 5

Sox5 126/144 22.3 (6.4) 19.2 (5.7) 0.75 0.051 1.2

Sex determining

region Y-box 6

Sox6 130/134 28.9 (6.9) 14.1 (5.2) 0.10 0.37 2.0

Sex determining

region Y-box 9

Sox9 138/144 60.1 (7.2) 41.3 (7.1) 0.068 0.50 1.5 7*

Brachyury T 145/149 46.3 (7.2) 37.1 (6.9) 0.27 0.20 1.2 >100**

Signaling

factors

Bone morpho

genetic

protein 4

Bmp4 135/152 51.2 (7.5) 43.1 (7.0) 0.43 0.12 1.2

Growth differentia

tion factor 5

Gdf5 113/153 12.9 (5.5) 7.2 (3.6) 0.49 0.11 1.8

Indian hedgehog Ihh 148/144 22.2 (5.9) 21.1 (5.9) 0.68 0.061 1.1

Sonic hedgehog Shh 151/149 49.8 (7.0) 25.1 (6.1) 0.013 0.71 2.0

Endoglin Eng 139/138 48.1 (7.3) 30.7 (6.8) 0.094 0.40 1.6

(continued)
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bovine NP markers (Minogue et al. 2010a,b; Rodrigues-

Pinto et al. 2013; Lv et al. 2014). AP-RISH on bovine IVDs

only confirmed Krt18 and Krt19 as NP markers with an NP/

AF ratio of 2.2 (Krt18, P = 0.0011) and 6.1 (Krt19,

P < 0.0001) for the proportion of positive cells, which is

supported by recent qPCR data; however, the qPCR NP/AF

ratio for Krt18 was nearly 59 higher (van den Akker et al.

2017; Table 2, Figs 2 and S1).

Transcription and signaling factors

Many transcription factors act as molecular switches in cel-

lular fate determination early in development and might

have a function later in live for tissue maintenance. We

investigated transcripts of key transcription factors during

axial skeleton development and differentiation of the chon-

drocyte lineage Sox5, Sox6 and Sox9, but did not observe a

Table 2. (continued)

Functional

Category Genetic locus Symbol

RISH data

Gene expression ratio

(NP/AF)

Total

NP/AF

cell

count

positive

cells in the

NP in %

(Mean SE)

positive cells

in the AF in

% (Mean SE)

P-

value Power

RNA

SISH qPCR

Micro

array

Pluripotency

and stem

cell

markers

Estrogen related

receptor beta

Esrrb 202/257 30.2 (5.6) 31.7 (5.0) 0.80 0.044 1.0

Nanog Nanog 135/123 21.9 (6.1) 18.1 (6.0) 0.73 0.047 1.2

Octamer-binding

transcription

factor 4

Oct4 140/147 21.2 (6.0) 24.1 (6.1) 0.71 0.027 0.9

Tyrosine

phosphate

receptor type C

Ptprc 240/294 73.7 (4.9) 32.0 (4.7) 7.6E-08 1.0 2.3

Sex determining

region Y-box 2

Sox2 253/239 79.5 (4.4) 24.6 (4.8) 1.4E-12 1.0 3.2

Thymocyte

differentia

tion antigen 1

Thy1 201/248 6.2 (3.2) 27.2 (4.9) 0.0020 0.88 0.2

Zinc finger

and SCAN domain

containing 10

Zscan10 254/348 82.7 (4.1) 50.2 (4.6) 2.5E-06 1.0 1.6

Metabolic

context

Carbonic

anhydrase 12

Ca12 153/163 64.2 (6.8) 21.3 (5.6) 9.7E-06 1.0 3.0

Glyceraldehyde 3-

phosphate

dehydrogenase

Gapdh 225/246 16.2 (5.5) 12.4 (4.7) 0.46 0.11 1.3

Hypoxia-inducible

factor 1-alpha

Hif1a 206/254 12.5 (5.2) 13.8 (4.8) 0.80 0.044 1.4 0.3*

Lactate dehydro

genase A

LdhA 126/155 5.4 (3.5) 12.3 (4.8) 0.29 0.13 0.4

Lactate dehydro

genase B

LdhB 125/146 4.8 (3.3) 17.4 (5.4) 0.10 0.32 0.3

Malate dehydro

genase 2

Mdh2 140/155 12.3 (7.2) 16.1 (5.1) 0.66 0.064 0.8

Others Annexin A4 Anxa4 106/119 2.8 (2.8) 4.0 (3.7) 1.0 0.010 0.7 0.56*

Ki67 Ki67 141/151 4.0 (2.8) 6.7 (3.5) 1.0 0.020 0.6

lnc RNA

LOC101904175

LOC1019

04175

255/195 77.7 (4.6) 15.3 (4.5) 6.1E-14 1.0 5.1

Synaptosomal-

associated

protein 25

Snap25 132/162 30.0 (7.0) 17.3 (5.1) 0.11 0.36 1.7 >100*

n.s., no significant difference; Stat. power, Statistical power (1 = 100%); TF, Transcription factors.

AP-RISH data was compared with existing data for the bovine IVD acquired through qPCR (Minogue et al. 2010b*; van den Akker

et al. 2017**) and microarray analysis (Minogue et al. 2010b*).
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significant difference in the number of positive cells

between the outer AF and NP. Of the notochord lineage

associated transcription factors Noto and T, only Noto

showed a significant 4.39 increase in the number of posi-

tive cells in the NP (P < 0.001). Brachyury (T), a transcription

factor with conserved function that regulates notochord

formation and a biomarker for chordomas (Vujovic et al.

2006), was not identified as NP-specific by AP-RISH and z

proportion test (Table 2, Figs 2, S2 and S7); however, it has

been reported to be significantly higher by qRT-PCR in the

NP over the outer AF in a bovine study (van den Akker

et al. 2017). Our AP-RISH data support findings that only a

few, if any, bovine notochordal cells remain present at birth

(Demers et al. 2004). As Noto is acting downstream of Bra-

chyury (Abdelkhalek et al. 2004) and AP-RISH identified a

significantly higher proportion of Noto but not

T-transcribing cells in the NP over the outer AF, this could

indicate the notochordal lineage origin of these NP cells;

however, they no longer exhibit a notochordal phenotype.

The transcription factors FOXF1 and PAX1 are considered

NP markers in human (Minogue et al. 2010a; Thorpe et al.

2016; van den Akker et al. 2017). However, a microarray

study with bovine tissue identified an increased Foxf1

expression in the AF (Minogue et al. 2010b). Pax1 and Pax9

have a role in AF patterning in mouse (Sivakamasundari

et al. 2017) yet are absent in the notochord, the origin of

mature murine NP cells (Choi et al. 2012). Our AP-RISH data

did not indicate a significant difference in the proportion

of cells expressing Foxf1 or Pax1 between the outer AF and

NP, similar to data found through qRT-PCR on RNA isolated

from bovine IVDs reported by others (van den Akker et al.

2017). Also, AP-RISH did not indicate any significant differ-

ence in the proportion of Pax9-expressing cells (Table 2,

Figs 2 and S2).

AP-RISH identified a significantly (P < 0.001) higher

number of cells expressing the transcription factors Gli1,

Gli3 and Scx with an NP/AF ratio of 2.2, 1.5 and 2.2,

respectively, suggesting that they are potential NP mark-

ers that have not previously been reported in the bovine

IVD model. Glis are known mediators of hedgehog sig-

nalling (Ingham & McMahon, 2001; Buttitta et al. 2003)

and we confirmed the signalling factor Shh as an NP bio-

marker (P = 0.013) by AP-RISH. However, recognizing Scx

as an NP marker in the bovine IVD by AP-RISH appears

to be contrary to data from murine studies, where Scx is

expressed in AF tissue but not NP (Pryce et al. 2007;

Yoshimoto et al. 2017) and is involved in regulating

Tnmd expression, which itself serves as tendon and ten-

don progenitor cell marker (Shukunami et al. 2006).

Whereas Tnmd was reported as significantly increased in

bovine AF cells using qRT-PCR (Minogue et al. 2010b),

AP-RISH data did not indicate a significant difference in

cell proportions between the outer AF and NP (Table 2,

Figs 2, S2, S3 and S7).The discrepancy might once more

reflect the anatomical difference between a mature

murine NP, which is entirely notochord-derived (Choi &

Harfe, 2011; Choi et al. 2012), and the adult bovine NP,

where only few notochordal cells might remain at birth

(Demers et al. 2004). Also, technical differences in tran-

criptome analyses with qRT-PCR relying on RNA extrac-

tion after cell pooling and AP-RISH analyzing proportions

of cells within a heterogeneous cell population might be

contributory. In this context, it is further noteworthy that

Scx expression was reported at a higher expression level

in passage 2/3 NP cells in monolayer culture compared

with the same passage of AF cells (Schulze-Tanzil et al.

2014), further indicating a difference in cellular composi-

tion of the murine NP from that in bovines and humans.

Pluripotency and stem cell markers

As the IVD is of interest in the field of regenerative medi-

cine, the natural presence of progenitor or stem cells might

be a key to future therapeutic approaches. In the IVD, AP-

RISH identified a significantly higher number of cells

expressing Sox2 (P < 0.001), Ptprc (P < 0.001) and Zscan10

(P < 0.001) in the NP tissue and significantly more Thy1-

expressing cells in the AF (P = 0.002), whereas the propor-

tion of cells expressing Esrrb, Nanog, Oct4 and Eng showed

no significant difference (Table 2, Figs 2, S4 and S7). This

difference between AF and NP cell populations might be

relevant for their therapeutic potential, however, we have

previously demonstrated that cells can be isolated from all

three tissues, outer AF, inner AF (TZ) and NP, and propa-

gated in vitro in 2D monolayer culture under normal oxy-

gen and zero-applied pressure (Kraus & Lufkin, 2016; Kraus

et al. 2017), which are common culture conditions but are

unusual in vivo. This finding further supports the presence

of IVD progenitor cells in vivo, as we and others have

reported previously (Henriksson et al. 2009; Risbud et al.

2015; Kraus & Lufkin, 2016; Tekari et al. 2016; Thorpe et al.

2016; Kraus et al. 2017; Liu et al. 2017), and might have

facilitated the straightforward non-enzymatic derivation of

IVD primary cells (Kraus et al. 2017). Access to oxygen, nutri-

ents and growth factors is limited by diffusion through the

dense ECM for cells in the mature IVD (Grunhagen et al.

2011), and ECM stiffness and other chemico/physical proper-

ties further impact on cell survival and differentiation in the

mature IVD (Guilak et al. 2009; Navaro et al. 2015). Findings

by Lama et al. report that high physical pressure and GAG

concentrations confine blood vessels to the outer AF in a

healthy young human IVD, but vessels reach further into

AFs and even NP tissue in severely degenerated or herni-

ated discs when pressure and GAG concentrations drop

(Binch et al. 2015; Lama et al. 2018). These vessels could the-

oretically supply necessary oxygen, nutrients and growth

factors to progenitor cells to activate cell metabolism and

proliferation; however, no initiation of AF or NP self-heal-

ing in damaged or degenerated discs has been described.

Consequently, even if autologous AF or NP progenitor cells
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are isolated for regenerative purposes from the heteroge-

neous pool of IVD cells present in vivo, they might encoun-

ter similar challenges as MSC upon injection if, in situ

chemical and physical conditions are non-permissive for

cell-mediated damage repair. Ongoing clinical trials need to

overcome this hurdle given that only very few trials

Fig. 2 Identification of AF and NP biomarkers of the mature bovine intervertebral disc through z proportion test analysis. Investigated genes

encoding structural proteins (a), transcription factors (b), signaling factors (c), pluripotency and stem cell marker (d), markers in a broader meta-

bolic context (e), and other proteins related to the IVD (f) are displayed on the x-axis. The percentage of cells transcribing a gene is represented on

the y-axis, Blue bars represent NP and green bars represent AF cells. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 3 Transcription of the established NP marker Col2a1 and the novel marker LOC101904175 was analyzed in cells of the outer AF and NP via

FL-RISH and confocal microscopy to validate our findings from AP-RISH. (a) Gene expression is indicated by Alexa-488 (green) and the nucleus is

visualized through To-Pro3 (magenta). (b) Raw data to determine average fluorescence intensities per cell for Col2a1 and LOC101904175 was gen-

erated in IMAGEJ. (c) Average fluorescence per cell is represented in graph form using GraphPad PRISM 5. Student t-test indicates significantly higher

transcription in the NP over the AF for both Col2a1 and LOC101904175 (*P < 0.05, **P < 0.01).
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employing autologous MSC, articular chondrocytes or IVD

cells have reported improvements in preliminary studies

(Sakai & Andersson, 2015). Clearly, the development of a

permissive carrier matrix is as important as the isolation of

viable stem cells to successful regenerative approaches. Cur-

rently, the NOVOCARTTM Disk autologous IVD chondrocyte

system is likely the most promising ongoing trial with an

estimated Phase I/II completion in August 2021 (Tschugg

et al. 2017). Pluripotency markers as identified in our study

could serve as a diagnostic tool during quality control mea-

sures of such matrices.

Metabolic components and others

Owing to the hypoxic and nutrient-deprived environment

any cell will face in the avascular IVD, cellular adaptation

to this environment could point to biomarkers. Of the

genes we analyzed by AP-RISH in this context, only Ca12

encoding the metabolic enzyme carbonic anhydrase XII

was expressed in a higher proportion of cells in the NP

(P < 0.001) (Table 2, Figs 2 and S5), confirming sugges-

tions of Ca12 as NP marker (Minogue et al. 2010a; Power

et al. 2011). Microarray analysis reported a 0.3-fold

change in the NP/AF ratio for Hif1alpha (Minogue et al.

2010b), whereas AP-RISH indicated no significant differ-

ence in the proportion of positive cells between outer AF

and NP. Snap25 was proposed as a human and bovine

NP marker with significantly higher expression in NP over

AF cells by microarray and qRT-PCR analysis (Minogue

et al. 2010b), but AP-RISH did not identify any significant

difference in cell proportions positive for Snap25 between

NP and outer AF. There was also no significant difference

for any of the genes encoding metabolic enzymes, nor

Anxa4 or the cell proliferation marker Ki67. Although no

significant difference in the number of cells transcribing

the proliferation marker Ki67 was observed, our data

indicate that both outer AF and NP tissue harbour cells

with a potential to proliferate (Table 2, Figs 2 and S6).

Interestingly, the lncRNA LOC101904175 was transcribed

in significantly more NP cells (P < 0.001) with a NP/AF

ratio of 5.1 (Table 2, Figs 2 and S7). This was further vali-

dated through quantification of LOC101904175 transcripts

by FL-RISH, where average fluorescence indicated a 29

increased transcription of LOC101904175 in NP cells than

in cells in the outer AF (P = 0.016) (Fig. 3).

In summary, by analyzing the proportion of cells tran-

scribing a gene of interest in a heterogeneous cell popu-

lation, RISH identified two novel markers in the outer AF,

Lam1 and Thy1, and eight novel NP markers, Gli1, Gli3,

Noto, Scx, Ptprc, Sox2, Zscan10 and LOC101904175 in the

bovine IVD and validated existing biomarkers such as

Acan, Col1a1, Col1a2, Clo2a1, Krt18, Krt19, Shh and Ca12,

previously identified by others using different methods

(Fig. 4). None of these markers is unique to the IVD, but

a combination of actively transcribed genes might make

it possible to distinguish between outer AF and NP phe-

notype in cultured cells intended for cell-based regenera-

tive medicine approaches and provide means of quality

control.

Conclusions

In a heterogeneous cell population, RISH can provide cell

phenotyping with single cell resolution, and distinguish

individual cells that remain synthetically active in mature

IVDs from others. However, cell pooling-based transcription

analysis such as qRT-PCR might mask an entire population

as positive even if only few cells actively transcribe a gene

within a population of negative cells. Identifying syntheti-

cally active cells could identify those capable of responding

Fig. 4 Venn diagram summarizing the genetic loci investigated by AP-RISH for their biomarker potential in NP (blue) and outer AF (green) tissue.

Genes in the centre of the diagram were detected in outer AF and NP tissue without a significant difference in the proportion of positive cells.

Genetic loci highlighted in bold indicate novel genes investigated for each group in our study. Ten novel biomarkers were identified by AP-RISH

and z proportion test: two in the AF and eight in the NP.
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to simulative regenerative treatment, but non-permissive

niche conditions for cell-initiated tissue healing need to be

overcome. Taking the heterogeneous cell population of AF

and NP into account, with RISH we were able to identify

novel AF (Lam1 and Thy1) and NP (Gli1, Gli3, Noto, Scx,

Ptprc, Sox2, Zscan10 and LOC101904175) markers in the

bovine IVD which have not been discussed in this context

before and should be added to a broader panel of AF and

NP biomarkers. Confirmation of several previously identi-

fied biomarkers such as Col1a1 in the AF and Col2a1 in the

NP further validates our approach, and additional valida-

tion is provided through quantification of mRNA expression

for Col2a1 and LOC101904175. Unlike methods involving

cell pooling for mRNA isolation, RISH allows one to assess

the cellular heterogeneity of a tissue on a cell-by-cell basis.

Ultimately however, only single cell transcriptome analysis,

such as single cell RNA sequencing, of cells in their natural

environment will definitively clarify the true identity of the

cells residing in the AF or NP.
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