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Background.  Among the severe malaria syndromes, severe malarial anemia (SMA) is the most common, whereas cerebral 
malaria (CM) is the most lethal. However, the mechanisms that lead to CM and SMA are unclear.

Methods.  We compared transcriptomic profiles of whole blood obtained from Ugandan children with acute CM (n = 17) or 
SMA (n = 17) and community children without Plasmodium falciparum infection (n = 12) and determined the relationships among 
gene expression, hematological indices, and relevant plasma biomarkers.

Results.  Both CM and SMA demonstrated predominantly upregulated enrichment of dendritic cell activation, inflammatory/
Toll-like receptor/chemokines, and monocyte modules, but downregulated enrichment of lymphocyte modules. Nuclear factor, 
erythroid 2 like 2 (Nrf2)-regulated genes were overexpressed in children with SMA relative to CM, with the highest expression 
in children with both SMA and sickle cell disease (HbSS), corresponding with elevated plasma heme oxygenase-1 in this group. 
Erythroid and reticulocyte-specific signatures were markedly decreased in CM relative to SMA despite higher hemoglobin levels and 
appropriate increases in erythropoietin. Viral sensing/interferon-regulatory factor 2 module expression and plasma interferon-in-
ducible protein-10/CXCL10 negatively correlated with reticulocyte-specific signatures.

Conclusions.  Compared with SMA, CM is associated with downregulation of Nrf2-related and erythropoiesis signatures by 
whole-blood transcriptomics. Future studies are needed to confirm these findings and assess pathways that may be amenable to 
interventions to ameliorate CM and SMA.

Keywords.  cerebral malaria; gene expression profiling; Plasmodium falciparum; severe malarial anemia; transcriptomics.
 

In 2016, malaria afflicted ~216 million people globally [1]. 
Approximately 1%–3% of uncomplicated Plasmodium falciparum 
malaria cases progress to severe disease that can lead to death [1].  
Severe malaria most commonly manifests as severe malarial 
anemia (SMA), defined in children as hemoglobin <5 g/dL with 
parasitemia and affects ~30% of children with severe malaria [2]. 
Malaria can also present as a more lethal syndrome of parasite-
mia with acute neurological deficits called cerebral malaria (CM), 
which has an inpatient mortality rate of 15%–20% [3].

The pathologic hallmarks of CM are microvascular obstruc-
tion and adherence of infected erythrocytes to cerebrovascular 
endothelium. Severe malarial anemia is characterized by accel-
erated erythrocyte destruction via hemolysis and enhanced 

erythrophagocytosis combined with ineffective erythropoie-
sis [4]. Both syndromes typically exhibit markedly increased 
inflammatory cytokines during acute disease with more pro-
nounced inflammation in CM [5, 6]. The role of inflammation 
and parasite adhesion to the host endothelium in CM patho-
genesis has been studied in detail [4]. A  recent global analy-
sis of whole-blood gene expression during CM revealed that 
neutrophil activation was positively associated with malarial 
retinopathy, a sign indicative of vasculopathy due to cerebral 
sequestration of infected erythrocytes [7]. However, less is 
known about the processes that contribute to ineffective erythro-
poiesis, erythrocyte destruction, and inflammation in SMA [8].  
To gain insight on the molecular and cellular processes that dif-
ferentiate CM and SMA, we compared genome-wide transcrip-
tional profiles of whole blood obtained from Ugandan children 
with CM or SMA as well as healthy children without P falci-
parum infection and correlated gene expression with hemato-
logical indices and plasma biomarkers.

METHODS

Ethics Statement

The study was reviewed and approved by the Makerere 
University School of Medicine Research and Ethics Committee, 
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the University of Minnesota Institutional Review Board, and 
the Ugandan National Council for Science and Technology. 
Written, informed consent was obtained from parents or guard-
ians of study participants.

Study Site and Participants

From November 2008 through December 2010, 437 children 
between 18 months to 12 years of age with CM (n = 158) or 
SMA (n  =  140) were enrolled as part of a larger study con-
ducted at Mulago Hospital (Kampala, Uganda) (Supplementary 
Figure 1). Severe malarial anemia was defined as the presence 
of P falciparum on blood smear and a hemoglobin level ≤5 g/
dL. Cerebral malaria was defined as (1) coma (Blantyre coma 
score ≤2), (2) P falciparum on blood smear, and (3) no other 
known cause of coma (eg, meningitis, prolonged postictal state, 
or hypoglycemia-associated coma). Community children ([CC] 
n  =  139) were healthy participants recruited from the house-
holds of children with CM or SMA. Children with malaria were 
managed according to the Ugandan Ministry of Health treat-
ment guidelines current at the time of diagnosis. Exclusion 
criteria can be found in the Supplementary Materials. For the 
present study, to provide the most rigorous definition of CM, 
we restricted CM to include only children with retinopathy 
confirmed by ophthalmological evaluation and hemoglobin 
values >5  g/dL, thus excluding CM children with concurrent 
SMA. Children with sickle cell disease (HbSS), sickle cell trait, 
or human immunodeficiency virus (HIV) were not excluded.

Blood Collection and Laboratory Testing

Peripheral blood was collected by venipuncture on hospital 
admission (CM and SMA) or as an outpatient (CC) for thin and 
thick smears, hematological testing, plasma, and filter paper blood 
spots. Whole blood was collected for ribonucleic acid (RNA) using 
the PAXgene Blood RNA System (PreAnalytiX, Hombrechtikon, 
Switzerland). Plasma and PAXgene samples were stored at −80°C 
until further processing. No power outages or other complications 
affected sample stability during the time of storage. Further details 
on blood collection and laboratory testing of hematological indi-
ces and plasma biomarkers, including plasma cytokines/chemok-
ines, can be found in the Supplementary Materials.

Ribonucleic Acid Processing and BeadChip Microarray Procedures

Total RNA was purified from whole blood, depleted of globin 
messenger RNA, and processed for gene expression profiling 
using Illumina HumanHT-12 v4 Expression BeadChips as 
described in the Supplementary Materials.

Differential Gene Expression Analysis

Data processing, quality control, and differential gene expres-
sion analysis were performed in R (version 3.5.1) using the 
lumi and limma packages as described in the Supplementary 
Materials.

Statistical Analyses

Statistical analyses were performed in R  (version 
3.5.1).  Significance testing and linear regression models were 
performed as indicated in figure legends with additional details 
in the Supplementary Materials.

RESULTS

Demographic and Clinical Factors

Among children who met inclusion criteria and had RNA of 
sufficient quality, we randomly sampled 20 from each clini-
cal group for microarray processing. After excluding samples 
with suboptimal expression signal and CC who were siblings 
of CM/SMA children in the current study and/or who were 
found to have asymptomatic parasitemia, we analyzed microar-
ray data from 46 children (Supplementary Figure 1). Age and 
gender distribution were similar between groups (Table  1). 
Parasite density was similarly elevated in CM and SMA relative 
to CC. Plasma P falciparum histidine-rich protein-2 (HRP2), a 
measure of total parasite biomass [9], was increased in severe 
malaria with significantly higher levels in CM versus SMA 
(Table 1). Within SMA, 6 children had HbSS, and 1 child was 
seropositive for HIV (Table 1). Children with HbSS defervesced 
after antimalarial treatment and had a median parasitemia of 
14 300 (interquartile range [IQR], 1910–77 300) parasites/μL, 
which was higher than that of CC with asymptomatic par-
asitemia in the parent study (n  =  32; 1240 parasites/μL; IQR, 
565–7600), suggesting that parasitemia in HbSS children was 
not incidental.

Hematological Indices Differ Between Clinical Groups

Severe malaria groups demonstrated significant neutrophilia 
and anemia and modest monocytosis relative to CC (Figure 1A). 
Children with SMA had modestly increased lymphocyte counts 
versus CM (Figure  1A). Children with CM exhibited signifi-
cant thrombocytopenia relative to CC and SMA (Figure  1A). 
As expected, hemoglobin levels were lowest during SMA 
(Figure 1B). In SMA, we observed increased red cell distribu-
tion width (RDW) and increased red cell mean corpuscular 
volume (MCV), which, taken together, suggests increased retic-
ulocytosis and thus active erythropoiesis [10] (Figure 1B). By 
contrast, in CM, RDW and MCV were not significantly differ-
ent from CC (Figure 1B).

Gene Expression Differences Are Broadly Driven by Clinical Syndrome, 

Parasite Load, and HbSS

We performed gene expression analysis of peripheral whole 
blood by microarray to compare global transcription pro-
files among CM, SMA, and CC. Principal component (PC) 
analysis of expression data revealed clustering by syndrome 
(Supplementary Figure 2A). Severe malarial anemia status best 
explained variation along PC1, with HbSS children appearing as 
a subcluster within the SMA cluster. Similar to previous studies, 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data


156  •  JID  2019:219  (1 January)  •  Nallandhighal et al

children with malaria clustered mainly based on clinical syn-
drome and parasite load (Supplementary Figure 2B and C) [7, 
11, 12]. Unsupervised hierarchical clustering analysis of the 
most variably expressed genes revealed 3 distinct clusters, with 
SMA children clustering either within a CM-dominant Cluster 
2 or within a SMA-dominant Cluster 3 that included all HbSS 
children (Figure  2). Platelet count, hemoglobin, and HRP2, 
but not parasite density, were significantly different between 

Clusters 2 and 3 (Supplementary Table 1). Variable expression 
generated distinct gene clusters that correlated with both neu-
trophil count and parasitemia (Figure 2). Subsequent analyses 
include statistical adjustments for HbSS and HRP2 to minimize 
their confounding influence on gene expression. We did not 
adjust for hemoglobin or platelets given that hemoglobin levels 
define SMA and that thrombocytopenia possibly plays a role in 
CM pathogenesis [5, 13].

Table 1.  Characteristics of Study Participants

Characteristics

Group (n)

P ValueCC (12) CM (17) SMA (17)

Age in years, median (IQR) 4.6 (3.0–4.8) 3.2 (2.2–4.0) 2.3 (2.0–4.4) .19a

Female (% of group) 8 (66.7%) 6 (35.3%) 7 (41.2%) .30b

Median weight in kg (IQR) 14.9 (11.0–16.1) 12.0 (11.5–13.0) 12.2 (10.0–14.0) .28a

Parasite density in parasites/µL, median 
(IQR)

NA 84 000 (17 000–340 000) 69 000 (12 000–200 000) .52c

Plasma HRP2 level in ng/mL, median (IQR) 4.8 (4.8–12.0) 2500 (1700–4500) 430 (22–2000) <.01c

HbS genotype
(% of group)

10 AA (83%), 2 AS (17%),  
0 SS (0%)

17 AA (100%), 0 AS (0%),  
0 SS (0%)

11 AA (65%), 0 AS (0%),  
6 SS (35%)

.00059b

HIV positive
(% of group)

0 (0) 0 (0)d 1 (5.9)e 1.0b

Abbreviations: CC, community children; CM, cerebral malaria; HbS, sickle hemoglobulin; HIV, human immunodeficiency virus; HRP2, histidine-rich protein 2; IQR, interquartile range; NA, not 
applicable; SMA, severe malarial anemia. 
aKruskal-Wallis test.
bFisher’s test.
cWilcoxon test between CM and SMA; data missing from 2d and 1e individual.
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Figure 1.  Hematological parameters by group. (A) Absolute cell counts and (B) red blood cell indices. Samples were obtained at study enrollment (community children 
[CC]) or at the time of hospital admission (cerebral malaria [CM] and severe malarial anemia [SMA]). Box plots show median and interquartile ranges with outliers as points. 
Pairwise significance was determined by Kruskal-Wallis with post hoc Dunn’s test and Bonferroni’s adjustment for multiple comparisons. Significance indicated by *, P < 
.05, **, P < .01, and ***, P < .001; all other comparisons were not statistically significant. Abbreviations: MCV, mean corpuscular volume; RDW, red cell distribution width; 
WBCs, white blood cells.
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Severe Malaria Syndromes Demonstrate Upregulated Enrichment of 

Innate Inflammatory Modules and Differ in Erythroid-Related Modules

To determine broad differences in immunological and disease 
processes between blood transcriptomes, we tested for differ-
ential enrichment of blood transcription modules (BTMs) 
[14] and KEGG biological pathways using the tmod package 
[15] with inclusion of HbSS and HRP2 levels as covariates. We 
compared CM versus CC and SMA versus CC to evaluate tran-
scriptomic changes relative to healthy controls and CM versus 
SMA to evaluate differences between the 2 severe malaria syn-
dromes. Using high-level annotation BTMs [16], both CM and 
SMA demonstrated predominant upregulated enrichment of 
dendritic cell activation, monocyte, and inflammatory/Toll-like 
receptor/chemokines modules, but downregulated enrichment 
of natural killer and T cell modules (Figure 3A). Upregulated 

enrichment of mitochondrial and neutrophil modules appeared 
unique to CM (Figure 3A). Differential enrichment of high-level 
modules did not reach statistical significance in the direct CM 
versus SMA comparison (Figure 3A). Analysis using 346 low-
level BTMs revealed subtle differences in enrichment of specific 
innate and adaptive modules in CM versus CC and SMA ver-
sus CC (Figure 3B). Erythroid-related modules (M171, M173, 
M222) demonstrated significantly downregulated enrichment 
in CM relative to SMA (Figure 3B) despite more profound ane-
mia in SMA (Figure 1B).

Analysis using KEGG pathways demonstrated enrichment 
for a greater number of pathways in CM versus CC than in SMA 
versus CC (Supplementary Figure 3). We observed modest but 
significant enrichment in 3 neurodegenerative disease pathways 
in CM relative to CC (Figure  3C). Of these, Parkinson’s and 
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Huntington’s Disease pathways were differentially expressed 
between CM and SMA.

Cerebral Malaria Induces Greater Transcriptional Activity Than Severe 

Malarial Anemia

Differential gene expression analysis between groups revealed 
603 differentially expressed genes (DEGs) for CM versus CC and 
398 DEGs for SMA versus CC (log2-fold change [LFC] thresh-
old 0.585 and false discovery rate [FDR]  <10%) (Figure  4A, 
Supplementary Tables  2 and 3). Of the 210 genes shared 
between the CM versus CC and SMA versus CC comparisons, 
110 genes were concordantly upregulated in both CM and SMA 
and 99 genes were concordantly downregulated in both CM 
and SMA (Figure  4A). The only discordantly expressed gene, 
TGM2 (encodes for transglutaminase 2), was decreased in CM 
versus CC but increased in SMA versus CC (Figure  4A). Of 
the 253 DEGs in the CM versus SMA comparison (Figure 4A), 
250 were underexpressed in CM, whereas only 3 genes were 

overexpressed in CM (KLRB1, GZMK, and CXCR6) (Figure 4B, 
Supplementary Table 4). None of the DEGs positively correlated 
with leukocytes or parasite density (Figure 4B).

Pathways Analysis Reveals Inhibition of the Erythropoietic Response 

During Cerebral Malaria

We applied Ingenuity pathways analysis using the DEGs 
(|LFC|  >  0.585, FDR  <10%) from each HbSS- and HRP2-
adjusted comparison. Among the top overrepresented immune 
pathways between CM and CC, we observed predicted inhibi-
tion of T-cell-related signaling pathways in CM, including those 
involved with OX40, inducible costimulatory (iCOS)-iCOS 
ligand (iCOSL), and Th1 signaling, and predicted activation 
of complement (Supplementary Figure 4). In SMA versus CC, 
T-cell-related pathways, including predicted inhibition of iCOS-
iCOSL signaling, also featured prominently (Supplementary 
Figure 5). Direct comparison of CM versus SMA revealed iron 
homeostasis signaling and heme biosynthesis II as the only 
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differentially expressed pathways (Figure 4C). Using upstream 
regulator analysis, which predicts activation states of regulators 
based on expression of downstream targets, carbonic anhydrase 
4 (CA4) and the proapoptotic protein BCL2 interacting protein 
3 like (BNIP3L) were predicted to be activated in CM versus 
SMA (Figure 4D). The erythroid transcription factor GATA1, 
the erythropoiesis-stimulating hormone erythropoietin (EPO), 
and nuclear factor, erythroid 2 like 2 ([Nrf2] encoded by 
NFE2L2), a transcription factor that regulates responses against 
oxidative stress [17], were predicted to be strongly inhibited in 
CM versus SMA (Figure 4D).

Nuclear Factor, Erythroid 2 Like 2 Related Gene Signatures in Whole 

Blood Discriminate Severe Malaria Syndromes

The Nrf2 pathway is considered a therapeutic target for mitigat-
ing the oxidative stress and neuroinflammation associated with 
neurodegenerative diseases [17]. In addition, Nrf2 has been 
shown to protect against experimental CM (ECM) by inducing 
heme oxygenase 1 ([HO-1] encoded by HMOX1), an enzyme 
that catabolizes free heme into ferrous iron, carbon monox-
ide, and biliverdin [18]. To determine whether Nrf2-related 

gene signatures in blood could distinguish the severe malarial 
syndromes, we performed unsupervised clustering using Nrf2-
regulated genes from the Ingenuity database. These 23 genes 
separated children into clusters broadly representing the 3 
clinical groups (Supplementary Figure  6). The Nrf2-regulated 
genes, but not NFE2L2 itself, were increased in SMA relative to 
CM, with the highest expression in SMA children with HbSS 
(Supplementary Figure  7A and B). Whole-blood HMOX1 
expression and plasma HO-1 levels were increased in all severe 
malaria groups relative to CC, with variable expression among 
SMA with HbSS ([SMA HbSS] Supplementary Figure 7C and D).  
To better ascertain group differences, we assessed plasma HO-1 
levels in 546 children from the parent cohort. Consistent with 
previous findings [19], plasma HO-1 was increased in severe 
malaria. No difference in HO-1 was observed between CM 
and SMA non-HbSS; however, children with SMA HbSS had 
significantly higher HO-1 levels than CM and SMA non-HbSS 
(Supplementary Figure  7E). We also measured total bilirubin 
(a catabolite of biliverdin, which itself is a product of HO-1 
catalysis) in 645 children. Bilirubin was increased in all severe 
malaria groups, with the highest levels in CM and SMA HbSS, 
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both of which were significantly greater than SMA non-HbSS 
(Supplementary Figure 7F). These findings suggest that activa-
tion of the Nrf2/HO-1 axis might contribute to the relative pro-
tection from CM observed in children with HbSS in the parent 
cohort [20].

Ineffective Erythropoiesis Is More Pronounced During Cerebral Malaria 

Than Severe Malarial Anemia

Given the hematological and transcriptional evidence for sup-
pressed erythropoiesis during CM, we investigated plasma EPO 
levels. The EPO levels increased with decreasing hemoglobin in 

the expected manner, indicative of adequate EPO production 
for all groups (Figure 5A). Using data from the parent cohort 
(n  =  196), we assessed erythropoietic response to EPO using 
RDW as a surrogate for immature erythrocytes and active 
erythropoiesis [10, 21], taking care to exclude children in whom 
increased RDW may have been due to microcytosis (MCV <80 
femtoliters). The RDW was significantly higher in SMA relative 
to CM even after adjustment for EPO levels in both the subset 
of children with microarray data (n = 12; Figure 5B) and in the 
parent cohort (n = 196) [22], with the highest RDW occurring 
in SMA HbSS (Figure 5C). Similarly, expression of a previously 

A B

C

Hemoglobin (g/dL)

P
la

sm
a 

E
P

O
, 

lo
g(

m
U

/
m

L
)

Pearson’s r = –0.88
P = 7.2e–13

D

10

15

20

25

30

5 6 7 8 9 10
Plasma EPO, log(mU/mL)

R
ed

 b
lo

od
 c

el
l 

d
is

tr
ib

u
ti

on
 w

id
th

SMA (all) vs CM
coe�cient = 10
P  = 1.6e-03

Plasma EPO, log(mU/mL)

R
ed

 b
lo

od
 c

el
l 

d
is

tr
ib

u
ti

on
 w

id
th

Plasma EPO, log(mU/mL)

R
et

ic
u

lo
cy

te
-s

p
ec

ifi
c 

si
gn

at
u

re
(n

or
m

al
iz

ed
 e

xp
re

ss
io

n
)

SMA non-HbSS vs CM
coe�cient = 0.79, P = 0.031

2

4

6

8

10

2 4 6 8 10 12

CC

CM

SMA non-HbSS

SMA HbSS

CM

SMA non-HbSS

SMA HbSS

–2

–1

0

1

4 6 8 10

CC
CM
SMA non-HbSS
SMA HbSS

SMA HbSS vs CM
coe�cient = 1.3, P = 0.0012

10

15

20

25

30

2 4 6 8 10

CC

CM

SMA non-HbSS

SMA HbSS

SMA non-HbSS vs CM
coe�cient = 2.7, P = 6.6e-05

SMA HbSS vs CM
coe�cient = 7.5, P = 2.6e-12

SMA HbSS vs SMA non-HbSS
coe�cient = 4.8, P = 6.7e-07 

SMA HbSS vs SMA non-HbSS
coe�cient = 0.54, P = 0.17

Figure 5.  Relationship between erythropoietin and erythropoiesis during severe malaria. (A) Correlation between hemoglobin and log-transformed plasma erythropoietin 
(EPO) levels by group. Dotted line presents linear fit with 95% confidence band. Relationship between log-transformed plasma EPO levels and red blood cell distribution 
width (RDW) by clinical group (B) in subjects with available data for this study (n = 12) and (C) for the entire cohort (n = 196). (D) Relationship between plasma EPO levels 
and expression levels for a reticulocyte-specific gene signature by clinical group (n = 37). Reticulocyte-specific gene signature expression was calculated as the mean of 
z-score-transformed expression values of genes within the reticulocyte gene set from Goh et al [23]. For B–D, shown are actuals (points), fit lines with 95% confidence bands, 
and the significance for the group comparisons using separate parallel slopes linear regression models in which RDW or reticulocyte-specific gene expression was the 
response variable and EPO levels and group were predictor variables. For B–C, children with mean corpuscular volume <80 femtoliters were excluded from the models. For B, 
no CC children had complete data for inclusion in the analysis.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy468#supplementary-data


Blood Transcriptional Signatures in Severe Malaria  •  JID  2019:219  (1 January)  •  161

defined reticulocyte-specific gene signature [23], a more direct 
measure of erythropoiesis than RDW, was also decreased in 
CM versus SMA regardless of HbSS status after adjustment for 
EPO levels (Figure  5D). These data provide in vivo evidence 
suggestive of ineffective erythropoiesis during severe malaria 
with greater erythropoietic inhibition during CM compared 
with SMA.

The Interferon Response Negatively Predicts Reticulocyte-Specific Gene 

Expression in Severe Malaria

To determine molecular signatures of erythropoietic suppres-
sion during severe malaria, we correlated expression of the 
reticulocyte-specific gene signature with parasite density, HRP2 
levels, hematological indices, or expression of each of 346 BTMs. 
As expected, reticulocyte-specific expression positively cor-
related with variables related to erythropoiesis (Supplementary 
Figure 8). Reticulocyte-specific expression demonstrated mod-
erate to strong negative correlations with viral sensing and 
immunity/interferon-regulatory factor 2 (IRF2) targets net-
works (M111.0 and M111.1); chemokines and receptors (M38); 
CCR1,7 and cell signaling (M59); and T-cell surface activation 
(M36) modules (Supplementary Figure 8).

Proinflammatory cytokines elicited during acute malaria 
can contribute to ineffective erythropoiesis [24] and disease 
severity in CM [25]. We measured inflammatory cytokines 
and chemokines in plasma and correlated these levels with the 
expression of Nrf2-regulated genes and the reticulocyte-spe-
cific gene signature. Reticulocyte-specific gene expression 
negatively correlated with IP-10 levels, a chemokine known 
to inhibit hematopoiesis [26] (Supplementary Figure 9A). The 
Nrf2-regulated gene expression did not correlate with any of 
the cytokines/chemokines measured but highly correlated with 
reticulocyte-specific gene expression, suggesting that these 2 
pathways may be coregulated despite minimal geneset overlap 
(Supplementary Figure 9B).

To determine whether plasma IP-10 or M111.1, which 
includes CXCL10 (encodes for IP-10), independently contrib-
uted to ineffective erythropoiesis, we performed multiple lin-
ear regression using reticulocyte-specific gene expression as 
the response variable and hemoglobin, leukocyte count, HRP2, 
clinical group, M111.0 expression, and IP-10 as predictor vari-
ables (Table  2). Inclusion of HRP2 was based on its role in 
formation of hemozoin [27], which, in turn, can inhibit eryth-
ropoiesis [28]. Both M111.0 expression and leukocyte count, 
but not IP-10, negatively predicted reticulocyte-specific expres-
sion. Consistent with chronic, compensated hemolysis seen in 
sickle cell anemia [29], HbSS status predicted higher reticulo-
cyte-gene expression relative to CM after controlling for other 
factors.

DISCUSSION

The current study expands on prior studies that have examined 
the blood transcriptome during human P falciparum infections 
[7, 11, 12, 30–36]. Consistent with previous studies, we found 
that parasite load influenced blood transcriptional variation 
during severe malaria [7, 12, 30]. We also detected enrichment 
of neurodegenerative disease signatures in blood of children 
with CM, similar to a previous report [35]. Also of note, our 
current study provides further insight into malaria pathogene-
sis by comparing whole-blood transcriptional profiles between 
the 2 major severe malaria syndromes: retinopathy-positive CM 
and SMA. We found that both the Nrf2-pathway and erythro-
poiesis are significantly inhibited in CM relative to SMA, with 
differential hemolysis and inflammation between these the 2 
syndromes being likely contributors to these findings.

The transcription factor Nrf2 regulates the expression of anti-
oxidant and anti-inflammatory proteins in response to an oxi-
dative stress such as infection, hemolysis, or neurodegeneration 
[37]. During ECM, Nrf2 induces HO-1, an enzyme that catab-
olizes heme, leading to protection from neurological disease 

Table 2.  Multiple Linear Regression to Determine the Effect of M111.0 Expression and Plasma IP-10 Levels on Reticulocyte-Specific Gene Expressiona

Variable Estimate Standard Error t Value P Value

(Intercept) 0.88 1.4 0.62 .54

M111.0: viral sensing and immunity; IRF2 targets network (I) −0.68 0.21 −3.2 .0029

Log IP-10 levels (pg/mL) −0.097 0.11 −0.86 .40

Absolute white blood cell count (K/mcL) −0.028 0.0095 −2.98 .0055

Log hemoglobin (g/dL) −0.057 0.41 −0.14 .89

HRP2 (ng/mL) 6.1E-05 3.6E-05 1.7 .10

Clinical Group

  CM Reference

  CC 0.25 0.31 0.80 .43

  SMA non-HbSS 0.57 0.36 1.6 .13

  SMA HbSS 1.47 0.39 3.8 .00071

Abbreviations: CC, community children; CM, cerebral malaria; HbSS, sickle cell disease; HRP2, histidine-rich protein 2; IP-10, interferon-inducible protein-10; IRF2, interferon regulatory factor 
2; SMA, severe malarial anemia. 
aAnalysis was performed on 41 children for whom data were available for all variables.
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in mice via carbon monoxide production [18, 38]. In humans, 
HO-1 induced by hemolysis, either from malaria [39] or sickle 
cell disease [40], can impair neutrophil function, leading to 
increased host susceptibility to bacterial infection. However, a 
direct role for HO-1 in malaria pathogenesis is less clear. Similar 
to a study in Gambia [19], we showed increased plasma HO-1 
levels during severe malaria, implicating HO-1 as a marker of 
malaria pathology. However, we also demonstrated differen-
tial expression of Nrf2-regulated genes between CM and SMA, 
which was found to be influenced by HbSS. Increased Nrf2 
pathway activation corresponded with increased plasma HO-1 
and the heme catabolite bilirubin in a manner specific to chil-
dren with both SMA and HbSS—findings that are consistent 
with increased oxidative stress due to acute or chronic hemo-
lysis. We speculate that, rather than being a predictor of dis-
ease severity, elevated HO-1 may specifically protect children 
with HbSS from CM, a hypothesis supported by mechanistic 
evidence demonstrating that sickle human hemoglobin induces 
HO-1 via Nrf2 in mice, leading to protection from ECM [41]. 
Although the current study excluded children with CM and 
Hb <5 g/dL, children with HbSS in the parent study were sig-
nificantly less likely to present with CM than nonsickle cell chil-
dren [20]. Studies examining the relationship between HO-1 
levels and the prospective risk of CM in sickle cell children may 
help clarify the potential malaria-protective role of HO-1.

Malaria causes bone marrow dyserythropoiesis leading to 
reduced erythropoiesis [8]. Suggested mechanisms include 
direct suppression of erythropoiesis by the malaria pigment 
hemozoin, which is phagocytosed by bone marrow macro-
phages [42], or by tumor necrosis factor (TNF) produced in 
abundance during severe malaria [43]. Several studies suggest 
that the balance of inflammatory cytokines, in particular low 
plasma interleukin (IL)-10 [44] or low plasma IL-10/TNF ratios 
[6, 45, 46], contribute to the severity of malarial anemia. We 
observed significantly suppressed erythropoiesis in CM ver-
sus SMA using both transcriptomic and hematological data. 
Consistent with a study in Ghanaian children [21], we found 
that the erythropoiesis-surrogate marker RDW did not increase 
with increasing EPO levels in both CM and SMA on admis-
sion, providing further evidence that acute malaria, irrespective 
of syndrome, inhibits erythropoiesis independently of EPO. 
However, in contrast to the smaller Ghanaian study (n = 18), 
which did not find differences in RDW between SMA and CM, 
we observed significantly greater erythropoiesis in SMA than 
CM as measured by RDW (n = 196) and reticulocyte-specific 
gene signatures (n  =  37). Implicit in this finding is that ane-
mia during SMA may be driven more by erythrocyte destruc-
tion rather than by reduced erythropoiesis, a view supported by 
other studies [47, 48].

Enhanced proinflammatory responses may provide a 
convenient explanation for the increased erythropoietic 
suppression observed in CM. We and others have reliably 

demonstrated greater plasma levels of proinflammatory cyto-
kines during CM relative to non-CM malaria syndromes  
[5, 6, 49]. However, we did not detect robust transcriptional 
differences in inflammatory genes between CM and SMA. 
One explanation may be that highly variable or increased lym-
phocyte counts in SMA masked potential transcriptional dif-
ferences between groups. Differences between CM and SMA 
may also be influenced by HbSS status, which we adjusted 
for in our analysis. HbSS not only exacerbates anemia, and 
thus is disproportionately represented among SMA cases, but 
also results in diminished proinflammatory responses during 
malaria [50]. Nevertheless, we observed that expression of 
the viral-sensing M111.1 module and IP-10/CXCL10 levels 
negatively correlated with reticulocyte-gene expression, with 
M111.1, but not IP-10, remaining an independent negative pre-
dictor after controlling for relevant confounders. It is notable 
that M111.1 contains several other interferon-induced genes 
such as IFIT2, BST2, and DDX58 in addition to CXCL10 [14].  
Thus, our data provide in vivo evidence that an interferon-me-
diated response is an independent predictor of ineffective 
erythropoiesis during severe malaria.

The current study has several limitations. The cross-sectional 
design limits causal inference of molecular measures and dis-
ease phenotype. In addition, expression differences between 
CM and SMA ideally should be validated in an independent 
cohort. Profound differences in blood composition between 
disease states undoubtedly confound transcriptome profiles of 
whole blood more so than peripheral blood mononuclear cells 
(PBMCs). However, this is both a limitation and an asset for this 
study, because gene signatures related to erythroid and granulo-
cytic lineages would not have been detected in PBMCs. Despite 
these limitations, our study provides a first assessment of blood 
transcriptomic differences between CM and SMA.

CONCLUSIONS

In summary, we provide evidence suggesting that oxidative 
stress and erythropoietic responses differ between CM and 
SMA. We show that Nrf2-regulated genes, HO-1, and bilirubin 
are increased in children with SMA and HbSS versus CM. We 
also demonstrate that erythropoietic suppression during severe 
malaria may be more prominent during CM than SMA and is 
independently associated with interferon-response signatures 
in blood. Future studies are needed to validate these findings 
and determine their functional and clinical significance.
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