
BRIEF COMMUNICATION

DDX39B promotes translation through regulation of pre-ribosomal RNA levels
Sharad Awasthia, Baskar Chakrapania, Arun Mahesha, Pavithra L. Chavali b, Sreenivas Chavali b,
and Arunkumar Dhayalana

aDepartment of Biotechnology, Pondicherry University, Puducherry, India; bStructural Studies Division, MRC Laboratory of Molecular Biology,
Cambridge, UK

ABSTRACT
DDX39B, a DExD RNA helicase, is known to be involved in various cellular processes such as mRNA
export, splicing and translation. Previous studies showed that the overexpression of DDX39B promotes
the global translation but inhibits the mRNA export in a dominant negative manner. This presents a
conundrum as to how DDX39B overexpression would increase the global translation if it inhibits the
nuclear export of mRNAs. We resolve this by showing that DDX39B affects the levels of pre-ribosomal
RNA by regulating its stability as well as synthesis. Furthermore, DDX39B promotes proliferation and
colony forming potential of cells and its levels are significantly elevated in diverse cancer types. Thus,
increase in DDX39B enhances global translation and cell proliferation through upregulation of pre-
ribosomal RNA. This highlights a possible mechanism by which dysregulation of DDX39B expression
could lead to oncogenesis.
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Introduction

The DExD RNA helicases are known to regulate different
steps of RNA metabolism and various cellular processes
[1,2]. DDX39B is one of the well-studied members of DExD
RNA helicases and plays an important role in pre-mRNA
splicing and nuclear export of mRNAs [3]. Specifically,
DDX39B affects splicing by facilitating the unwinding of
U4/U6 snRNA duplex and is required for the association of
U2 snRNP to the pre-mRNA [4,5]. DDX39B facilitates the
nuclear export of mRNAs by recruiting the mRNA export
factors, Aly and UIF to the mRNAs [3,6–8]. Both Aly and
DDX39B associate with THO complex and participates in the
export of bulk mRNAs [9,10]. DDX39B plays a central role in
the assembly of TREX mRNA export complex by mediating
the ATP-dependent interaction of CIP29, Aly, PDIP3 and
ZC11A with the THO complex [11–13]. The ATPase activity
of DDX39B is essential for its splicing functions [4] and the
export of mRNAs [14]. Aly and Chtop, a component of TREX
complex, stimulate the helicase activity of DDX39B, while
DDX39B recruits the Aly and Chtop to mRNAs [15].

Interestingly, both the knock-down and overexpression of
DDX39B leads to the nuclear retention of poly (A) containing
mRNAs indicating that the mRNA export activity of DDX39B
is dosage-sensitive [7]. Investigations in different cell types
such as HeLa and HEK293 cells by others [6] and us [16]
(Figure S1) yield similar results, implying this phenomenon
could be cell-type independent. On the contrary, overexpres-
sion of DDX39B has been shown to increase the global trans-
lation [17]. This presents a conundrum as to how would
overexpression of DDX39B increase global translation if it
inhibits mRNA export. In this study, we aimed to resolve

this contradiction by elucidating other functional role(s) of
DDX39B to mechanistically explain the molecular and phe-
notypic effects of DDX39B-level perturbation. We find that
DDX39B is involved in the regulation of pre-ribosomal RNA
levels and global translation. DDX39B promotes the prolifera-
tion and colony forming capacity of cells and is upregulated in
different cancer types indicating that it could have a potential
role in cancer manifestation.

Results

DDX39B regulates the pre-ribosomal RNA levels

To elucidate how overexpression of DDX39B can enhance
global translation, even though it inhibits mRNA export, we
mined the literature to find clues for other possible roles of
DDX39B in RNA metabolism. We found that DDX39B, along
with few other members of DExD family, has been implicated
in pre-ribosomal RNA synthesis in a lentiviral based high-
throughput RNAi screen [18]. This prompted us to study the
mechanistic roles of DDX39B in the maintenance of pre-
ribosomal RNA levels. To investigate this, we depleted or
overexpressed DDX39B in HEK293 cells by transfecting
siRNA (siDDX39B-1) or pEGFP-DDX39B construct respec-
tively and quantified the levels of pre-ribosomal 47S RNA by
using quantitative RT-PCR. We confirmed the knockdown of
DDX39B by qRT-PCR and immunoblotting (Figure 1(A–B)).
On the other hand, overexpression of GFP-DDX39B resulted
in a ~2.7 fold increase in protein abundance compared to the
endogenous levels (Figure 1(C)). The qRT-PCR analysis of
pre-ribosomal RNA revealed that siRNA mediated depletion
of DDX39B reduced the levels of pre-ribosomal 47S RNA by
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30% suggesting that DDX39B is required for maintaining the
steady-state levels of pre-ribosomal RNA (Upper panel of
Figure 1(D)). Importantly, we observed similar effects when
transfected with another unrelated siRNA (siDDX39B-2) tar-
geting a completely different region of DDX39B (Figure 1(A–
B) and (D)-upper panel), implying that our observations are
not confounded by siRNA-mediated off-target effects.
Consistent with our findings with gene-silencing, we observed
that the overexpression of DDX39B increased the pre-riboso-
mal 47S RNA levels by 3.4 folds (Lower panel of Figure 1(D)).
These findings suggest that DDX39B positively regulates the
pre-ribosomal RNA levels.

DDX39B regulates the stability and transcription of
pre-ribosomal RNA

DDX39B might regulate the steady-state levels of pre-riboso-
mal RNA in three possible ways. DDX39B can affect pre-
ribosomal RNA (i) stability, (ii) synthesis or (iii) both. We
investigated the stability of pre-ribosomal 47S RNA in the
DDX39B perturbed cells by using actinomycin D pulse chase
assay. We found that the knock down of DDX39B highly
reduced the stability of pre-ribosomal 47S RNA, while the
overexpression of DDX39B did not alter 47S rRNA stability
significantly (Figure 2(A)). This suggests that DDX39B is
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Figure 1. DDX39B regulates the levels of pre-ribosomal RNA.
(A) Efficiency of siRNA mediated knockdown of DDX39B by qRT-PCR. HEK293 cells were treated with control siRNA or DDX39B siRNA-1 (siDDX39B-1) or DDX39B
siRNA-2 (siDDX39B-2) and transcript levels of DDX39B were quantified using qRT-PCR. DDX39B transcripts levels were normalized to GAPDH expression and are
presented relative to the control sample. Data are represented as mean of three independent experiments, with error bars representing standard deviation. Statistical
significance was assessed by two tailed t-Test: paired two samples for means. ** represents P-value <0.01. (B) DDX39B protein levels in HEK293 cells treated with
control siRNA or siDDX39B-1 (Upper panel) or siDDX39B-2 (Lower panel) were analysed using western blotting. The immunoblotting was performed with whole cell
extracts using DDX39B antibody or beta actin antibody. (C) Comparison of over-expressed DDX39B with endogenous DDX39B. HEK293 cells were transfected with
pEGFP-C1 vector or pEGFP-DDX39B construct and the DDX39B levels were analysed using western blotting. The western blotting was performed with whole cell
extracts using DDX39B antibody or beta actin antibody. (D) DDX39B maintains the steady state levels of pre-ribosomal RNA. DDX39B levels were perturbed in HEK293
cells by transfecting with siDDX39B-1 or siDDX39B-2 or pEGFP-DDX39B and pre-ribosomal 47S rRNA levels were quantified by qRT-PCR. The 47S rRNA levels were
normalized to GAPDH expression and are presented relative to the control sample. Data are represented as mean of three independent experiments, with error bars
representing standard deviations. Statistical significance was assessed by two tailed t-Test: paired two samples for means. * represents P-value <0.05 and ** P-value
<0.01.
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necessary to stabilize 47S rRNA and that the endogenous
levels of DDX39B might be sufficient to saturate this effect.

To investigate a possible role of DDX39B on the tran-
scription of pre-ribosomal RNA, we performed 5-
Fluorouridine (FUrd) incorporation assay in DDX39B per-
turbed HEK293 cells. We observed a strong reduction of
FUrd staining in the DAPI excluded nucleolar regions of
DDX39B depleted cells while the control cells displayed a
prominent staining in these regions (Figure 2(B)). Since

pre-ribosomal RNA transcripts are the major fraction of
RNA in the nucleolar regions [19,20], this observation
suggests that DDX39B is required for the synthesis of pre-
ribosomal RNA. Interestingly, overexpression of DDX39B
increased the pre-ribosomal 47S RNA level by 3.4 folds
(Figure 1(D)), without any significant effects on the stabi-
lity of 47S rRNA (Figure 2(A)). This suggests that over-
expression of DDX39B might increase pre-ribosomal 47S
RNA levels, predominantly by affecting its synthesis.
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Figure 2. DDX39B regulates the stability and transcription of pre-ribosomal RNA.
(A) DDX39B perturbation affects the stability of pre-ribosomal RNA. HEK293 cells were transfected with control or siDDX39B-1 or pEGFP-C1 vector or pEGFP-DDX39B.
After 48 hours of transfection, the cells were harvested at the indicated time points after the addition of actinomycin D. The levels of 47S rRNA were then quantified
by qRT-PCR. The 47S rRNA levels were normalized to GAPDH expression and are presented relative to the 0 min time point sample. Data are represented as mean of
three independent experiments. The error bars represent standard deviations. (B) DDX39B is required for efficient synthesis of pre-ribosomal rRNA. The control or
DDX39B knock down HeLa cells were pulse labelled with 5-fluorouridine (5-FUrd) and immunostained with BrdU antibody (left panel). DNA was stained with DAPI
(middle panel). The right panel shows the merge of fluorescent images. The graph at the bottom of the panel represents the quantification of fluorescence signals in
55 cells of each group. The quantification of fluorescence signals was done by using ImageJ software. Statistical significance was assessed using nonparametric
Wilcoxon rank-sum test. P-Values are depicted. (C) DDX39B is recruited to the promoter and regulatory regions of rDNA. The chromatin was prepared from HEK293
cells and fragmented (upper panel gel image). Immunoprecipitation was performed using rabbit IgG antibody or DDX39B antibody. The immunoprecipitated DNA
was investigated for the enrichment of promoter and regulatory regions of rDNA and two random control regions (YY2 and CALML3) by using qRT-PCR. The primer
binding locations in the rDNA locus are indicated in the schema (above the graph). Data are shown relative to input and the values represent the mean of three
independent experiments, with the error bars depicting standard deviations.
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Since DDX39B is involved in the synthesis of pre-riboso-
mal 47S RNA, we investigated the binding of DDX39B to the
promoter (H0: −51 to +32 bp) and other regulatory regions of
rDNA locus (H42: −924 to −1042 bp; H13: +12,855 to +12,970
bp; H18: +18,155 to +18,280 bp) [21,22] by chromatin immu-
noprecipitation (ChIP). We observed that DDX39B was
recruited to all the tested regulatory regions of rDNA, with
the occupancy being highest at the promoter (H0; Figure 2
(C)). The lack of enrichment in DDX39B-binding compared
to the IgG control at two random control regions (within the
transcription factor YY2 and Calmodulin-like protein 3;
CALML3), indicates the specificity of DDX39B recruitment
to the rDNA locus (Figure 2(C)). This suggests that DDX39B
binds to the promoter and regulatory regions of rDNA either
directly or indirectly as a co-activator and regulates the tran-
scription of pre-ribosomal RNA. Taken together, these find-
ings establish that DDX39B regulates the stability and
synthesis of pre-ribosomal RNA.

DDX39B positively regulates the global translation

Since DDX39B regulates the stability and transcription of pre-
ribosomal RNA, we investigated the role of DDX39B on
global translation by using puromycin incorporation assay.
For this, we perturbed the DDX39B levels in HEK293 cells,
followed by a transient treatment with puromycin. We then
quantified the puromycin labelled nascent polypeptides by
using immunoblotting. The complete lack of puromycin sig-
nal in the cells pre-treated with cycloheximide confirmed the
specificity of the assay. We observed a strong reduction in the
global translation of DDX39B depleted cells while the over-
expression of DDX39B enhanced the translation (Figure 3
(A)). This corroborates with the previous reports that showed
that over-expression of DDX39B enhances translation in
HeLa cells and cardiomyocytes using tritiated leucine incor-
poration assay [17]. Collectively, these findings suggest that
the DDX39B-mediated positive regulation of global transla-
tion is cell-type independent.

DDX39B regulates cell proliferation and is elevated in
diverse cancers

Since DDX39B is involved in the regulation of pre-ribosomal
RNA levels and translation, we studied the role of DDX39B
on cell growth and proliferation. For this, we depleted or
overexpressed DDX39B in HeLa cells by transfecting
siDDX39B-1 or pEGFP-DDX39B construct respectively and
studied the cell proliferation by cell counting, MTT assay and
colony forming assay. We found that the knockdown of
DDX39B decreased the cell proliferation as reflected by the
increase in doubling time (Figure 3(B)). Strikingly, the over-
expression of DDX39B increased cell proliferation (Figure 3
(C)). We made similar observations using MTT assay upon
perturbation of DDX39B levels in HeLa cells (Figure 3(D–E)).
Based on the findings presented here, we posit that the
increase in cell proliferation, upon over-expression of
DDX39B is mediated by the concomitant increase in the
pre-ribosomal RNA levels and global translation (Figures 1
(D) and 3(A)).

Since DDX39B regulates cell proliferation, we next exam-
ined the effect of DDX39B perturbation on the colony form-
ing potential of the HeLa cells. We found that the
overexpression of DDX39B increased the colony forming
ability of HeLa cells (Figure 4(A)), with magnitude of increase
comparable to that reported previously [23]. However, the
effect of reduction in the levels of DDX39B on cell prolifera-
tion is not known. We observed a strong reduction in colony
forming capacity of HeLa cells upon knockdown of DDX39B
(Figure 4(B)). Based on these findings, we speculated that
elevated levels of DDX39B could contribute to oncogenesis.
To test this, we investigated the pan cancer differential gene-
expression data from BioXpress database [24]. We found that
DDX39B was upregulated in 75% (12 in 16) of cancers regard-
less of cancer types (Figure 4(C)). Taken together, these data
confirm that the DDX39B is required for the proper cell
growth and proliferation. Importantly, the dysregulation of
DDX39B increases the proliferation and tumorigenic capacity
of the cells.

Both DDX39B and DDX49 are required for efficient
regulation of pre-ribosomal RNA

Recently, we showed that DDX49 affects the pre-ribosomal
47S RNA levels [16] and here we find that DDX39B has a
similar function. Since both DDX39B and DDX49 displayed
overlapping roles in regulating pre-ribosomal RNA levels, we
investigated the functional relationship between these two
RNA helicases. To address this, we performed complementa-
tion assays by overexpressing DDX49 or DDX39B in the cells
depleted of DDX39B or DDX49 respectively. We then mea-
sured the levels of pre-ribosomal 47S RNA by using qRT-
PCR. As expected, depletion of DDX39B and DDX49 showed
a significant reduction in the pre-ribosomal 47S RNA levels
(Figure 5(A)). We found that the overexpression of DDX39B
in DDX49-depleted cells and that of DDX49 in DDX39B-
depleted cells partially rescued the levels of pre-ribosomal
47S RNA. However, this rescue was significantly lower com-
pared to that of siControl (Figure 5(A)). A partial rescue
could indicate that these two RNA helicases might not be
partners in the same functional complex. To test the possibi-
lity of DDX39B-DDX49 interaction, we performed a GST pull
down assay. We could not detect any interaction between
DDX39B and DDX49 in the conditions tested here (Figure 5
(B)). Therefore, (i) while DDX39B and DDX49 could partly
compensate for each other, they might be involved in different
steps/complexes of pre-ribosomal 47S RNA regulation and (ii)
both these proteins are necessary for effective regulation of
pre-ribosomal 47S RNA levels.

Discussion

Previous studies have documented that the overexpression of
DDX39B (i) inhibits DDX39B-mediated mRNA export, and
(ii) increases the translation [17,23]. These observations are
contradictory as mRNA export from nucleus to cytoplasm is
essential for the efficient translation. This raises a fundamen-
tal question, as to how do elevated levels of DDX39B enhance
translation, when it inhibits mRNA export. In this study, we
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show that DDX39B is involved in the maintenance of pre-
ribosomal RNA levels by regulating its stability and transcrip-
tion. Since, translational output is a function of ribosome
numbers, which in turn is regulated by the rRNA levels,
perturbation of DDX39B levels would be expected to have a

strong impact on translation. Indeed, overexpression of
DDX39B increases global translation and hence the cell pro-
liferation. Only a few members of DExD RNA helicases have
been studied extensively for their role in regulation of ribo-
somal RNA synthesis and processing (Table 1). Our findings
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Figure 3. DDX39B positively regulates translation and cell proliferation.
(A) Perturbation of DDX39B levels affects the translation. HEK293 cells were transfected with control siRNA or siDDX39B-1 or pEGFP-C1 vector or pEGFP-DDX39B
construct and treated with puromycin. Nascent polypeptides in these samples were analysed by immunoblotting using puromycin antibody or beta actin antibody.
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construct. Data are represented as mean of three independent experiments, with the error bars representing standard deviations. Statistical significance was assessed
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presented here on the regulation of pre-ribosomal levels, adds
DDX39B to this list.

Recently, we reported that DDX49 regulates the steady
state levels of pre-ribosomal 47S RNA [16]. Here, we show
that both DDX49 and DDX39B are essential for efficient
regulation of 47S rRNA in the cell. While both DDX49 and
DDX39B affect rDNA transcription, there is a considerable
difference in the magnitude of their effects. Depletion of
DDX49 has a more severe effect on the regulation of pre-
ribosomal RNA levels compared to that of DDX39B (~65%
versus 30% reduction). This is consistent with the chromatin

immunoprecipitation data as well, where we observe at least a
2-fold increased occupancy of DDX49 at the rDNA loci H0
and H13 compared to DDX39B. It is noteworthy that the
ChIPed factor may not directly bind to the DNA [25] but
‘piggy-back’ on other factor(s) that bind to a specific DNA
locus. Based on the occupancy profiles obtained through
ChIP, it is tempting to speculate that DDX49 might directly
bind to the rDNA locus and/or play a more prominent co-
activator role for RNA PolI driven rRNA transcription. On
the other hand, DDX39B might not directly bind to the rDNA
locus, but act as a weak coactivator for RNA PolI driven
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transcription. Further studies are required to unravel the
relationships between different DExD RNA helicases in reg-
ulating ribosomal RNA levels.

Interestingly, DDX39B shows a dosage-dependent effect on
its functions. While the elevation of DDX39B levels inhibits
the nuclear export of mRNAs by sequestering the mRNA
export factor Aly [7], it highly enhances the pre-ribosomal
RNA levels. Therefore, up-regulation of DDX39B leading to
two opposing functions simultaneously, could determine
which transcripts get selectively translated. DDX39B is
known to affect bulk mRNA export and therefore, up-regula-
tion under specific conditions might serve as a mechanism to
arrest mRNA export and facilitate rapid and increased trans-
lation of transcripts already present in the cytoplasm. Such a
yin-yang regulation of DDX39B functions might have impor-
tant implications, especially in host-pathogen interactions and
disease-contexts. For instance, DDX39B has been shown to
play an important role in the replication of Influenza virus by
interacting with nucleoprotein [26,27]. Similarly, DDX39B
levels are upregulated in diverse cancer types, suggesting
that dysregulation of DDX39B could have oncogenic poten-
tial, through their effect on rRNA synthesis and enhanced
translation and inhibition of mRNA export. In light of the
findings presented here, further extensive studies are required
to delineate mechanistically how such opposing regulatory
roles of DDX39B might be exploited for preferential transla-
tion of viral mRNAs or facilitate translation of genes involved
in oncogenesis.

Materials and methods

Cloning

The full length human DDX39B (NM_004640.6) was PCR ampli-
fied from cDNA prepared from HEK293 cells and cloned in
pEGFP-C1 vector (Clontech) using the restriction sites BamHI
and XhoI (DDX39B) to generate pEGFP-DDX39B construct. The
generation of pEGFP-DDX49 and pGEX-DDX39B constructs
was described previously [16].

Cell culture and transfection

HEK293 and HeLa cells were grown in DMEM media con-
taining 10% FBS at 37 °C in 5% CO2 condition. pEGFP-C1,
pEGFP-DDX39B and pEGFP-DDX49 constructs were trans-
fected by the standard calcium phosphate precipitation
method. The siControl (5ʹ AUC CGC GCG AUA GUA
CGU A 3ʹ), siDDX39B-1 (5ʹ GUG CUA CCU UGA GCA
AAG A 3ʹ), siDDX39B-2 (5ʹ GGA UCG CUU UGA GGU

CAA U 3ʹ) and siDDX49 (5ʹ GAG AGU GUG AGA UCA
AAC U 3ʹ) were transfected using Lipofectamine 2000
Transfection Reagent (Thermo Fisher Scientific) as per the
manufacturer’s instructions.

Quantitative real time PCR and immunoblotting to
investigate the knock-down efficiency

Quantitative real time PCR was performed as described
previously [16]. Briefly, HEK293 cells were transfected
with control siRNA or siDDX39B-1 or siDDX39B-2 or
siDDX49. After 48 hours of transfection, total RNA was
isolated and reverse transcribed using random hexamers.
qRT-PCR analysis of DDX39B or DDX49 transcripts was
performed using Fast start essential DNA green master mix
(Roche). Data were obtained from three independent biolo-
gical repeats and ΔΔCt method was used to assess for
differences in DDX39B or DDX49 in control siRNA vs
corresponding siRNA treatment. DDX39B and DDX49
expression was normalized to the expression of the house-
keeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and presented relative to the control siRNA
sample (Figure 1 and Figure S2). The primers used for
these investigations are presented in Table S1. Anti-
DDX39B antibody (Abcam, ab181061) was used for immu-
noblotting to detect DDX39B.

Quantitative RT-PCR analysis of pre-ribosomal 47S rRNA

The HEK293 cells were transfected with indicated siRNA or
plasmid construct or combination of siRNA and plasmid
construct. The qRT-PCR experiments were performed to
quantify 47S pre-ribosomal RNA levels after 48 h of transfec-
tion as described above. The primers used in these qRT-PCR
experiments are provided in Table S1.

Quantitative RT-PCR analysis of mRNA export

The HEK293 cells were transfected with pEGFP-C1 vector or
pEGFP-DDX39B construct. After 60 hours of transfection,
cytoplasmic and total RNAs were isolated and qRT-PCR
analysis of EGR1, GAPDH and YY2 transcripts was per-
formed as described previously [16]. The cytoplasmic extract,
which was used for RNA isolation, was also subjected to
western blotting using beta actin antibody (Sigma, A2228)
or histone 3 antibody (Abcam, ab1791) to investigate purity
of the prepared cytoplasmic extract (Figure S1).

Actinomycin D pulse chase assay to measure the stability
of 47S pre-ribosomal RNA

The actinomycin D pulse chase assay was performed as
described previously [16]. DDX39B levels were perturbed in
HEK293 cells by transfecting with control siRNA or
siDDX39B-1 or pEGFP-C1 vector or pEGFP-DDX39B con-
struct. Actinomycin D was added to the cells at the concen-
tration of 5 µg/ml after 48 h of transfection and the cells were
collected at different time points (0, 5, 15, 30, 45 and 60 min).

Table 1. DExD family members involved in the regulation of pre-ribosomal RNA.

DExD protein Regulatory role References

DDX5 Pre-rRNA processing [28]
DDX17 Pre-rRNA processing [28]
DDX21 Pre-ribosomal RNA synthesis and processing [29–31]
DHX33 Pre-ribosomal RNA synthesis [18]
DDX39B Pre-ribosomal RNA synthesis and stability This study
DDX47 Pre-rRNA processing [32]
DDX49 Pre-ribosomal RNA synthesis and stability [16]
DDX51 Pre-rRNA processing [33]
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The 47S pre-ribosomal RNA levels in these samples were
quantified by using qRT-PCR.

5-fluorouridine pulse chase assay

5-Fluorouridine pulse chase assay was performed to study the
effect of DDX39B perturbation on the transcription of pre-
ribosomal RNA. DDX39B levels were depleted in HeLa cells
by transfecting with control siRNA or siDDX39B-1. The cells
were treated with 2 mM of 5-fluorouridine (FUrd) for 20 min
after 48 hours of transfection and processed for fluorescence
microscopy as described previously [16]. The images were
captured using 63X oil immersion objective of fluorescence
microscope (Nikon Eclipse Ti). The fluorescence signals were
quantified by using ImageJ software.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) experiments were
performed to investigate the association of DDX39B with
promoter and regulatory regions of rDNA gene and two
random control regions (within the transcription factor YY2
and Calmodulin-like protein 3; CALML3). The chromatin was
prepared from the HEK293 cells and immunoprecipitation
was performed as described earlier [16]. For immunoprecipi-
tation, 15 µg of rabbit IgG (CST, #2729) or DDX39B antibody
(Abcam, ab181061) and 15 µg of chromatin was used. The
qRT-PCR analysis was performed using Fast start essential
DNA green master mix (Roche) as per the manufacturer’s
instructions. The primers used for this analysis are listed in
Table S1.

Puromycin incorporation assay to measure the
translation

DDX39B levels were perturbed in HEK293 cells by transfect-
ing with control siRNA or siDDX39B-1 or pEGFP-C1 vector
or pEGFP-DDX39B construct. The cells were treated with
puromycin at the concentration of 10 µg/ml for 15 min after
48 h of transfection. After the puromycin treatment, the cell
lysates were prepared and subjected to immunoblotting using
puromycin antibody (Merck, MABE343) or beta-actin anti-
body (Sigma, A2228) as described previously [16]. For the
negative control, cells were treated with cycloheximide
(100 µg/ml) prior to the addition of puromycin.

Cell proliferation assay, MTT assay and clonogenic assay

The HeLa cells were transfected with control siRNA or
siDDX39B-1 or pEGFP-C1 vector or pEGFP-DDX39B con-
struct. After 48 h of transfection, the cells were processed for
cell proliferation assay, MTT assay and clonogenic assay.
These assays were performed as described previously [16].

Gene-expression data in cancers

Differential gene-expression data, for DDX39B obtained by
RNA sequencing in different cancer types was retrieved from
BioXpress database [24]. BioXpress provides statistical

significance estimates corrected for multiple testing (False
Discovery Rates, FDR) using Benjamini-Hochberg method.
We disregarded cancer types with less than 3 patients.

GST pulldown assay

GST-tagged DDX39B recombinant protein was overexpressed
and affinity purified as described previously [16]. About 20 µg
of GST or the GST-tagged DDX39B recombinant proteins were
coupled with 25 µl of Glutathione Sepharose 4 Fast flow resin
(GE Healthcare) in the interaction buffer (20 mM HEPES, pH:
7.5, 150 mM KCl, 0.2 mM DTT, 1 mM EDTA and 10%
glycerol). The protein-coupled beads were blocked at 4°C for
2 hours with blocking buffer (Interaction buffer containing 5%
BSA). Subsequently, the beads were incubated with the cell
lysates prepared from the cells transfected with pEGFP-
DDX49. After the incubation, the beads were washed thrice
with wash buffer (10 mM Tris, pH: 7.5, 300 mM NaCl,
0.5 mM EDTA and 0.5% NP-40) and boiled with 2X LAP for
5 minutes for elution. The bound fraction was loaded in 12%
SDS-PAGE and the resolved proteins were transferred to PVDF
membrane and probed with anti-GFP antibody (Clontech).
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