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enhanced anti-tumor properties
Zvezdan Pavlovica, Jarrett J. Adams a, Levi L. Blazer a, Amandeep K. Gakhal a, Nick Jarvika, Zachary Steinhartb,
Mélanie Robitaille b, Keith Mascallb, James Pan*a, Stephane Angersb,c#, Jason Moffat a,d,e#, and Sachdev S. Sidhua,d#

aTerrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; bDepartment of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada; cDepartment of Biochemistry, University of Toronto, Toronto, Canada;
dDepartment of Molecular Genetics, University of Toronto, Toronto, Canada; eCanadian Institute for Advanced Research, Toronto, Canada

ABSTRACT
Secreted Wnt ligands play a major role in the development and progression of many cancers by
modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect
on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10
human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching
that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7,
FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to
develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A
blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly,
F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of
multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.
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Introduction

The Wnt family of secreted glycoproteins plays important
roles in embryonic development and adult tissue homeostasis
of multicellular animals. In humans, 19 Wnt proteins initiate
signal transduction through 10 cell-surface Frizzled receptors
(FZDs).1,2 The signaling output of the pathway is also regu-
lated through engagement of various Wnt co-receptors,
including LRP5, LRP6, RYK, ROR1 and ROR2,3 which are
thought to enable the specific and context-dependent engage-
ment of different intracellular signaling pathways. The Wnt-
β-catenin pathway revolves around the post-translational con-
trol of β-catenin levels. Wnt engaging a FZD receptor and an
LRP5 or LRP6 co-receptor leads to inhibition of the destruc-
tion complex, a group of proteins that includes the scaffolding
proteins APC and Axin, as well as the kinases GSK3α/β and
CK1α, and that is responsible for promoting the ubiquitin-
mediated degradation of β-catenin. Upon pathway activation,
accumulation of β-catenin leads to its translocation to the
nucleus, where it interacts with the LEF/TCF family transcrip-
tion factors to regulate context-specific transcriptional pro-
grams that govern modulation of cell proliferation, cell
differentiation or stem cell self-renewal.3-7

Hyperactivation of Wnt-β-catenin signaling has been
linked to the initiation and progression of many cancers,
including colorectal, ovarian, gastric and endometrial cancers,
as well as pancreatic ductal adenocarcinoma (PDAC).8,9

Hyperactivation of this pathway most commonly occurs as a
result of mutations within intracellular negative regulators
such as APC,8,9 and AXIN2.10,11However, recent studies have
identified mutations within RNF4312 and ZNFR3,13 which are
also tumor suppressors but function to negatively regulate cell
surface expression of FZD receptors.14,15 Similarly, gene
fusions with R-spondins, ligands that amplify Wnt signaling,
have been identified recently in cancers that are thought to
depend on Wnt ligands for growth.16 These new findings have
rejuvenated efforts to target the Wnt pathway at the receptor
complex level and have revealed opportunities to focus on
different components of the pathway.8,9,17

A potential approach to target cancers that depend on
Wnt-β-catenin signaling is through anti-FZD antibodies
(Abs) that antagonize signaling, either directly by blocking
the interaction with Wnt ligands or indirectly through allos-
teric effects.18 An anti-FZD antagonistic Ab, known as OMP-
18R5 or vantictumab, entered clinical trials after showing
efficacy and safety in the treatment of multiple cancer types
in mouse xenograft models.18 OMP-18R5 was derived from a
phage-displayed Ab library screened against the Wnt-binding
ectodomain of FZD7, but it also binds to FZD1, FZD2, FZD5
and FZD8. OMP-18R5 has been evaluated in clinical trials as a
single-agent therapeutic for the treatment of solid tumors, as
well as in combination with standard-of-care therapeutics for
metastatic breast cancer, non-small cell lung cancer and
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pancreatic cancer. Clinical data in patients with solid tumors
demonstrated efficacy and safety for OMP-18R5, with man-
ageable side effects on bone turnover.19 These results indicate
that targeting multiple FZDs is a promising therapeutic strat-
egy for cancer treatment.

OMP-18R5 only targets five of the 10 FZD receptors
encoded by the human genome, and this could be limiting
depending on tumor context. For example, FZD4 is not
inhibited by OMP-18R5, and its aberrant over-expression is
associated with aggressive traits in multiple cancers, including
acute and chronic myeloid leukemia,20,21 glioblastoma,22

breast,23 prostate,24 and pancreatic cancers.25 Moreover, in
endothelial cells the transcription factor ERG promotes junc-
tional integrity by inducing expression of VE-Cadherin and
Wnt-β-catenin signaling through regulation of FZD4 expres-
sion, suggesting a role for FZD4 in angiogenesis and vascular
stability.26 Similarly, FZD4 is known to regulate retinal vas-
cular development27,28 when it is activated by Norrin, a
cystine-knot like growth factor that selectively binds to
FZD4 despite its lack of homology with Wnt proteins.29

Thus, it may be beneficial to engineer an Ab with specificity
for FZD family members broadened beyond that of OMP-
18R5.

We hypothesized that broadening the specificity profile of
a pan-FZD Ab to also target FZD4 would provide added anti-
tumor properties, perhaps in part by inhibiting tumor angio-
genesis. Here, we present the development and characteriza-
tion of a Wnt-blocking anti-FZD Ab with the broadest
specificity and highest efficacy reported to date. We employed
a two-step phage display strategy in which selections for
binding to the FZD7 ectodomain first yielded an Ab (F2)
with a specificity profile matching that of OMP-18R5, and
subsequent engineering yielded a variant (F2.A) with specifi-
city expanded to include FZD4. Compared with F2 and OMP-
18R5, F2.A further affects endothelial cell growth and displays
enhanced anti-tumor properties.

Results

Selection and characterization of ABs binding to FZD4
and FZD7

Using a highly functional naïve synthetic antigen-binding
fragment (Fab) library,30 we performed separate phage display
binding selections with the extracellular cysteine-rich domains
(CRDs) of FZD4 and FZD7. Sequencing of individual binding
clones from enriched phage pools identified 44 and 61 unique
Fabs from the FZD4 and FZD7 selections, respectively, and a
subset of these were purified as Fab proteins for further
characterization (Figure 1). Due to the high sequence identity
between FZD CRDs,31,32 we anticipated that the Fabs may
display various patterns of binding specificity across the
family, and thus we used enzyme-linked immunosorbent
assays (ELISAs) to assess binding of each Fab to all human
FZD CRDs (Figure 1), except for FZD3 CRD, which could not
be purified. Similar to OMP-18R5, the nine Fabs selected with
FZD7 bound to FZD1, 2, 5, 7, and 8, and one (F7) also bound
to FZD4 (Figure1 and Fig. S1A). Amongst the Fabs selected
with FZD4, we observed predominantly exclusive specificity

for FZD4, although some did exhibit broader specificity
(Figure 1). Thus, the selections yielded a series of Fabs with
varying binding profiles for FZD receptors, the most inclusive
of which bound to 6 of the 10 human FZD receptors.

We assessed the ability of the Fabs to block signaling
mediated by exogenous WNT3A in HEK293 cells using the
pBAR luciferase reporter that faithfully reports on β-catenin-
mediated transcriptional activity (Figure 2).33 None of the
Fabs selected with FZD4 exhibited significant inhibition of
signaling. In contrast, most of the Fabs selected with FZD7
exhibited strong inhibition of signaling that was comparable
to the effect of IgG OMP-18R5, suggesting that these Fabs
block WNT3A binding. Based on these data, we chose a
subset of the Fabs selected with FZD7 as starting points for
the design of second-generation phage-displayed libraries to
further optimize specificity and efficacy.

Optimization of Fab specificity and efficacy. Based on
broad specificity for FZDs targeted by OMP-18R5, the
absence of cross-reactivity with other FZDs except FZD4 in
the case of F7 (Figure 1), and high efficacy (Figure 2), we
chose six inhibitory Fabs (F1, F2, F3, F6, F7, F9) for further
optimization to include FZD4 recognition. For each lead Fab,
we constructed a second-generation phage-displayed library
in which the three heavy chain complementarity-determining
regions were diversified using a “soft randomization” strategy
whereby each codon was designed to encode ~ 50% of the
wild-type sequence and ~ 50% mutations.34-38 Following
selection for binding to the FZD4 CRD, DNA sequencing
and phage ELISAs revealed multiple unique clones with
diverse binding specificities (data not shown). Fabs derived
from F2 and F7 (Figure 3 and S1B) exhibited the desired
specificity for FZD4 and the five FZDs targeted by OMP-
18R5 (FZD1, 2, 5, 7 and 8). From the set of Fabs derived
from F2, we identified seven that bound especially tightly to
these six FZD receptors (Figure 3). Notably, these Fabs inhib-
ited WNT3A-mediated signaling more efficaciously than IgG
OMP-18R5, the first-generation Fabs or Fabs derived from F7
(Figure 2). Based on these data, we chose F2.A for further
characterization.

F2.A and F2 were produced in the human IgG1 format and
the size exclusion chromatography (SEC) profile of IgG F2.A
was similar to that of OMP-18R5, as both eluted predomi-
nantly as single peaks with similar retention times (Fig. S1C).
As expected, analysis of binding kinetics for FZD CRDs by
surface plasmon resonance (SPR) showed that IgGs F2.A, F2
and OMP-18R5 bound to FZDs 1, 2, 5, 7 and 8, but did not
bind to FZDs 6, 9 or 10 (data not shown), and only F2.A
bound to FZD4 (Table 1). Notably, IgG F2.A bound to each of
the six receptors with sub-nanomolar affinities, and thus
exhibited enhanced affinity for five of six receptors compared
with IgG F2 and all receptors compared with OMP-18R5,
which generally exhibited only low nanomolar affinities.
Specific binding of IgG F2.A to FZDs 1, 2, 4, 5, 7 and 8 was
also confirmed by BioLayer interferometry (BLI, Fig. S1D).
Moreover, we characterized the binding specificities on cells
by flow cytometry, using a panel of ten Chinese hamster ovary
cell lines,32 with each expressing a different myc-tagged FZD
CRD anchored on the outside of the plasma membrane with a
GPI anchor, and found the same specificity patterns for IgGs
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F2 and F2.A (Fig. S2A) as observed by ELISA (Figure 3) and
SPR (Table 1).

Competition ELISAs were then performed to assess the
binding of OMP-18R5, F2 and F2.A in the presence of various
Abs or FZD ligands. Binding of the FZD5 CRD to immobi-
lized WNT3A or WNT5A was blocked by IgG OMP-18R5
and by Fabs F2 and F2.A, but none of the Abs were able to
block binding of the FZD4 CRD to immobilized Norrin
(Figure 4A). In fact, Fab F2.A actually enhanced binding of
FZD4 CRD to Norrin, suggesting that F2.A stabilizes a con-
formation of FZD4 CRD that is better able to bind Norrin.
We also tested the ability of IgGs F2.A and OMP-18R5 to
simultaneously bind to FZDs by BLI (Figure 4B). An immo-
bilized IgG was first allowed to bind to solution-phase FZD

CRD, and then the ability of a second IgG to bind to the
captured FZD CRD was assessed. As expected, neither IgG F2.
A nor OMP-18R5 could bind to FZD CRD captured by itself,
but, in addition, neither IgG could bind to FZD CRD cap-
tured by the other. Taken together, these results suggest that
IgGs F2.A and OMP-18R5 bind to overlapping epitopes on
FZD CRDs, and they block Wnt, but not Norrin, binding.
Given that Wnt proteins contact two non-contiguous regions
of FZDs,40 we speculate that the IgGs bind to a FZD region
that interacts with Wnt but not with Norrin (Figure 4C).

Effects of anti-FZD IgGs on the proliferation of
RNF43mutant human PDAC cells

Previous reports have shown that RNF43 mutations are pre-
dictive of sensitivity to inhibition of upstream Wnt/FZD sig-
naling in PDAC and other cancer types.41 We confirmed
binding of Fab F2.A to PDAC cell lines by flow cytometry
(Fig. S2B) and immunofluorescence staining (Fig. S2C-J).
Treatment of the Wnt-dependent RNF43-mutant PDAC cell
line HPAF-II with IgG F2.A robustly inhibited the expression
of the Wnt-β-catenin target genes AXIN2 and NKD1
(Figure 5A). Moreover, consistent with our previous findings
that the anti-proliferative properties of anti-FZD5 Abs in
RNF43-mutant PDAC cells were due to cell cycle arrest and
cytostasis,32 IgG F2.A induced G0/G1 cell cycle arrest in
HPAF-II cells, but not in RNF43-wildtype YAPC cells
(Figure 5B). We conclude that IgG F2.A is an efficacious
inhibitor of Wnt-β-catenin signaling that induces cell cycle
arrest in RNF43-mutant PDAC cells.

We previously used genome-wide CRISPR-Cas9 genetic
screens to identify FZD5 as the top context-dependent fitness
gene in RNF43-mutant PDAC cells, and we showed that an
antagonistic Ab targeting FZD5 and FZD8 (IgG 2919) inhib-
ited growth of these cancers in vitro and in vivo.32 We there-
fore tested various anti-FZD IgGs for their effects on the
growth of RNF43-mutant PDAC cells. IgG F2.A inhibited
the proliferation of HPAF-II cells more effectively than IgGs
2919, F2 and OMP-18R5 (Figure 5C). IgG F2.A was also more
effective than IgG OMP-18R5 for inhibiting proliferation of
other RNF43-mutant PDAC cell lines, including AsPC-1,
Capan-2 and PaTu8988s (Figure 5D), and neither Ab affected
the growth of the RNF43-wildtype PDAC cell lines PANC-1
and BxPC-3 (Figure 5E). Similarly, IgG F2.A inhibited growth
of patient-derived PDAC GP2A cells that harbour an RNF43
mutation, but did not affect RNF43-wildtype GP3A cells
(Figure 5F), despite strong binding of IgG F2.A to the surfaces
of both cell types (Fig. S2I-J). Together, these results indicate
that IgG F2.A can effectively inhibit the proliferation of
RNF43-mutant PDAC cells.

Effects of anti-FZD IgGs on angiogenesis

Tumor angiogenesis represents a cancer hallmark, and is
targeted by cancer therapies such as anti- vascular endothelial
growth factor (VEGF) bevacizumab.42,43 The endothelial tran-
scription factor ERG promotes growth and vascular stability
by regulating the Wnt-β-catenin pathway through FZD4
expression.26 Therefore, expanding the specificity of anti-
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bilized FZD CRD, and the signals are shown in a purple gradient.
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FZD Abs to target FZD4 may provide added anti-tumor
properties by inhibiting angiogenesis. We first demonstrated
that Wnt ligands and FZD4 were required for endothelial tube
formation using a human umbilical vein endothelial cells
(HUVEC)-coated fibrin gel bead assay. Knockdown of FZD4
and the Porcupine inhibitor LGK974, which inhibits all Wnt
protein production, each inhibited HUVEC tube elongation
to a similar extent as knockdown of ERG or the VEGF kinase
inhibitor suramin (Figure 6A).44 We compared the ability of
different anti-FZD Abs to inhibit HUVEC tube elongation
and showed that IgG F2.A could robustly inhibit tube elonga-
tion, whereas IgGs F2 and OMP-18R5 were ineffective
(Figure 6B and Fig. S3). Thus, we conclude that expanding
the specificity of anti-FZD Abs to target FZD4 confers the
ability to interfere with endothelial cell tubule formation,
which could translate into beneficial anti-angiogenic proper-
ties for cancer treatment.

Discussion

The dysregulation of Wnt-β-catenin signaling in cancer and
other diseases has generated strong interest in developing
therapeutic inhibitors of this pathway. Given that most

mutations leading to activation of the Wnt-β-catenin path-
way in cancers occur within intracellular components of the
pathway, the rationale for targeting FZD or other cell sur-
face receptors for these indications has been questioned.
However, considering the cancer stem cell hypothesis45

and the pervasive role of Wnt-β-catenin signaling in stem
cell self-renewal, one intriguing possibility is that anti-FZD
Abs could broadly target the cells that fuel tumor growth
and are usually resistant to conventional therapy. Similarly,
the realization that activation of Wnt-β-catenin signaling in
tumor cells is associated with the absence of T cell
infiltration46,47 suggests important roles for this pathway
in tumor immune evasion and the attractive possibility
that targeting Wnt-FZD circuits within tumor cells could
represent an immune potentiation strategy that restores
sensitivity to immune checkpoint inhibitors. Consequently,
anti-FZD Abs could be effective against various tumor
types independent of their genotypes. Additionally, the
recent identification of mutations within the E3 ubiquitin
ligases RNF43 and ZNFR3, which regulate FZD receptor
levels, and the finding of R-spondin fusions in other can-
cers, serve as examples of biomarkers that could enable
selection of patients, based on their tumor genotypes, who
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would benefit from agents interfering with the constitutive
activation of cell surface receptors involved in Wnt-β-cate-
nin signaling.12,13,16,48

In addition to being overactivated in multiple cancers,
the Wnt-β-catenin signaling axis is involved in embryonic
development and adult tissue homeostasis.1,2 Hence, the

question of toxicity associated with targeting the Wnt path-
way has been raised, and the importance of Wnt signaling
for stem cell development in the intestine and skin,49 has
prompted caution for the development of inhibitors of
global Wnt signaling.19 One strategy to target the Wnt
pathway has been the development of inhibitors for the
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acyltransferase Porcupine, which catalyzes the palmitoyla-
tion of Wnt ligands, a modification required for their secre-
tion and activity.50,51 One such inhibitor (LGK974) caused
intestinal toxicity in mice at high concentrations, but was
safe and efficacious for tumor growth inhibition at lower
concentrations, suggesting that a therapeutic window exists
for safely targeting WNT-dependent cancers.50 Clinical
trials have been performed and are underway to evaluate
the efficacy of these agents for cancer treatment (e.g.,
NCT02278133, NCT03447470).

Abs targeting specific FZDs or other cell surface recep-
tors of the pathway implicated in specific diseases could
represent a safer strategy. However, in vivo studies are
needed for evaluation of potential toxicity and for fine-
tuning the safety and the efficacy of Abs targeting FZD
receptors. Pre-clinical and clinical studies of OMP-18R5
revealed anti-tumor efficacy against various tumor types
and manageable toxicity.18 Here, we developed a novel
anti-FZD Ab that recognized FZD4 in addition to the
five FZDs targeted by OMP-18R5, illustrating that rational
engineering37,38,52 can be applied to develop anti-FZD Abs
with broadened specificities and improved therapeutic
properties. Indeed, although FZD4 has not been shown
to be involved directly in tumor angiogenesis, evidence
suggests that it is important in regulating endothelial cell
growth in various contexts, a property that could result in
added therapeutic benefits beyond those gained by target-
ing FZD4 in the tumor itself. Importantly, severe disease
phenotypes resulting from impaired Norrin-
FZD4 signaling, such as in Norrie disease53 or familial
exudative vitreoretinopathy,54 are prompting caution for
development of drugs targeting FZD4. Consistent with
different modes for Wnt and Norrin binding to FZD4,29

F2.A blocked Wnt binding to FZD5 but did not compete
with Norrin for binding to the FZD4 CRD (Figure 4A and
C), suggesting that F2.A may inhibit only Wnt-FZD4-
dependent processes.

IgG F2.A displayed greater efficacy for inhibition of
FZD5-dependent growth of RNF43-mutant pancreatic can-
cer cells than did either OMP-18R5 or IgG 2919, which
targets only FZD5 and FZD8.32 In part, this could be
explained by the higher affinity of IgG F2.A for FZD5
compared to OMP-18R5 (Table 1), but, considering that

the affinities of IgGs F2.A and 2919 for FZD5 are similar,
the increased efficacy likely derives from different proper-
ties of F2.A, such as variations within the epitopes tar-
geted by the different Abs. In summary, with broad
binding preference to six of the 10 human FZD receptors,
F2.A is the most efficacious anti-FZD Ab developed to
date as a potential cancer therapeutic.

Materials and methods

Materials and methods are described in detail in
Supplemental Information (SI), Materials and methods.
In brief, combinatorial mutagenesis was applied for phage-
displayed Fab library construction36-38 and selections for
FZD-binding Fab-phage were performed with naïve library
F55 or libraries designed for Fab optimization. Fabs were
produced as previously described,38,56 with modifications
detailed in the SI, and IgGs were expressed in HEK293F
cells.

Biophysical characterizations of the Abs were performed
using ELISAs, SPR, BLI and SEC. ELISAs were used to asses
direct binding of Abs to immobilized FZD CRDs and to asses
the competition between FZD and Abs for binding to immo-
bilized WNT3A, WNT5A or Norrin. Binding kinetics were
measured by SPR and the ability of Abs to simultaneously
bind to FZD CRDs was assessed by BLI. SEC was used to
assess the aggregation status of Abs. TopFlash reporter assays
in HEK293T cells were used to assess inhibition of β-catenin-
mediated transcriptional activity induced by exogenous
WNT3A. Binding of Abs to cells was tested by immunofluor-
escence microscopy (Opera QEHS, PerkinElmer) and flow
cytometry (FACSCanto II, BD Biosciences), and data were
analysed using Columbus software (Donnelly Centre,
University of Toronto) or FlowJo Software (FlowJo, LLC),
respectively. Reverse transcription and quantitative real-time
PCR (Applied Biosystems) were performed to measure rela-
tive gene expression with quantification relative to untreated
control as described.57 Cell proliferation assays included
Alamar Blue assays (Invitrogen) and automated cell counting
(Beckman Coulter). siRNA cell transfections were used to
asses the role of FZD4 in HUVEC tube elongation and the
in vitro fibrin gel bead assay for angiogenesis was performed
as described,58 with minor modifications detailed in the SI.
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