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ABSTRACT
The development and progression of numerous complex human diseases have been confirmed to be
associated with microRNAs (miRNAs) by various experimental and clinical studies. Predicting potential
miRNA-disease associations can help us understand the underlying molecular and cellular mechanisms
of diseases and promote the development of disease treatment and diagnosis. Due to the high cost of
conventional experimental verification, proposing a new computational method for miRNA-disease
association prediction is an efficient and economical way. Since previous computational models ignored
the hubness phenomenon, we presented a novel computational model of Bipartite Local models and
Hubness-Aware Regression for MiRNA-Disease Association prediction (BLHARMDA). In this method, we
first used known miRNA-disease associations to calculate the Jaccard similarity between miRNAs and
between diseases, then utilized a modified kNNs model in the bipartite local model method. As a result,
we effectively alleviated the detriments from ‘bad’ hubs. BLHARMDA obtained AUCs of 0.9141 and
0.8390 in the global and local leave-one-out cross validation, respectively, which outperformed most of
the previous models and proved high prediction performance of BLHARMDA. Besides, the standard
deviation of 0.0006 in 5-fold cross validation confirmed our model’s prediction stability and the
averaged prediction accuracy of 0.9120 showed the high precision of our model. In addition, to further
evaluate our model’s accuracy, we implemented BLHARMDA on three typical human diseases in three
different types of case studies. As a result, 49 (Esophageal Neoplasms), 50 (Lung Neoplasms) and 50
(Carcinoma Hepatocellular) out of the top 50 related miRNAs were validated by recent experimental
discoveries.
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Introduction

MicroRNAs (miRNAs) are one kind of short endogenous
non-coding RNAs (ncRNAs) with the length of 20 ~ 25
nucleotides [1]. They can bind to the 3′ untranslated regions
(UTRs) of the target messenger RNAs (mRNAs) and suppress
the expression of their target mRNAs at post-transcriptional
level through sequence-specific base pairing [1–4]. By this
way, miRNAs can influence various biological processes
including cell proliferation [5], development [6], differentia-
tion [7], and apoptosis [8], metabolism [9,10], aging [9,10],
signal transduction [11], viral infection [7] and so on. In the
recent several years, thousands of miRNAs have been detected
based on various experimental methods and computational
models since the first two miRNAs (Caenorhabditis elegans
lin-4 and let-7) were discovered more than twenty years ago
[12–15]. There are 26,845 entries in the latest version of
miRBase, including more than 1000 human miRNAs [16].
As accumulating experiments on miRNAs had been con-
ducted, it was observed that miRNAs with similar sequences
or secondary structures tend to play roles in similar biological
processes [15]. Furthermore, the dysregulations of the

miRNAs have been confirmed to be associated with the devel-
opment and progression of various complex human diseases
[17–19]. Recently, plenty of studies have found that miRNAs
are associated with various cancers or cancer related processes
[20]. For example, Chandramouli et al. [21] illustrated that
there was an inverse correlation between the levels of miR-101
and EP4 receptor protein in colon cancer. The co-transfection
of EP4 receptor could rescue colon cancer cells from the
tumor suppressive effects of miR-101. However, EP4 receptor
is negatively regulated by miR-101. Thus, the ectopic expres-
sion of miR-101 could markedly reduce the proliferation and
motility of colon cancer cells. Otsubo et al. [22] demonstrated
that miR-126 inhibited SRY (sex-determining region Y)-box 2
(SOX2) expression by targeting two binding sites in the 3′-
UTR of SOX2 mRNA in multiple cell lines. SOX2 plays
important roles in growth inhibition through cell cycle arrest
and apoptosis. However, the SOX2 expression is frequently
down-regulated in gastric cancers. One reason is that the
highly expression of miR-126 in some cultured and primary
gastric cancer cells leads to the low levels of SOX2 protein in
gastric cancer cells. Besides, Nathans et al. [23] found that
highly abundant miR-29a was identified in HIV-1-infected

CONTACT Xing Chen xingchen@amss.ac.cn School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116,
China
#The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Supplemental data for this article can be accessed here.

RNA BIOLOGY
2018, VOL. 15, NO. 9, 1192–1205
https://doi.org/10.1080/15476286.2018.1517010

© 2018 Informa UK Limited, trading as Taylor & Francis Group

https://doi.org/10.1080/15476286.2018.1517010
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/15476286.2018.1517010&domain=pdf


human T lymphocytes. The miR-29a specifically targets the
HIV-1 3ʹ-UTR region. Specific interactions between miR-29a
and HIV-1 mRNA enhance viral mRNA association with
RNA-induced silencing complexes and P-body Proteins.
Thus, inhibiting miR-29a enhanced HIV-1 viral production
and infectivity, whereas expressing a miR-29a suppressed viral
replication.

Therefore, the identifying of disease-related miRNAs could
help us better understand the mechanism of complex human
diseases, thus promoting the development of the diagnosis,
treatment, and prevention of diseases [24–26]. However, iden-
tifying the associations between miRNAs and diseases by
traditional experimental methods is demanding and costly.
Therefore, finding a more economical and efficient way to
predict the potential disease-related miRNAs is necessary.
Today, with more and more reliable biological datasets, devel-
oping a high-efficiency computational method to uncover the
potential associations between miRNAs and diseases has
become a good way to overcome the drawbacks of traditional
experimental methods [27–34].

In the past few years, remarkable progresses have been
made in the development of prediction models for identifying
potential miRNA-disease associations. Moreover, numerous
computational methods have been developed based on differ-
ent biological networks, systems and perspectives. Those
methods could be further divided into the four categories,
score function-based, machine learning-based, complex net-
work algorithm based and multiple biological information
based models [35]. Furthermore, most models were con-
structed based on the assumption that functionally similar
miRNAs usually have connection with phenotypically similar
diseases [36–38].

Lots of previous models were constructed based on net-
work analysis algorithms. Chen et al. [30] proposed the
RWRMDA model by implementing random walk with restart
on the miRNA functional similarity network to make predic-
tion for the associations. However, this model can’t make
prediction for new diseases without known related miRNAs.
Then, Xuan et al. [39] proposed the method named Human
Disease-related MiRNA Prediction (HDMP) by integrating
the known miRNA-disease associations, the miRNA func-
tional similarity, the disease semantic similarity and the dis-
ease phenotype similarity. Furthermore, miRNAs in the same
miRNA family or cluster were assigned higher weight. Then
the prediction for potential miRNA-disease association was
made based on the information of each miRNA’s k most
similar neighbors. However, HDMP still fails to overcome
the problem of making prediction for new diseases, but none-
theless it is a global method which can be used to predict all
miRNA-disease associations simultaneously. Mørk et al. [40]
proposed miRPD in which miRNA-Protein-Disease associa-
tions were explicitly inferred. A scoring scheme which
involved the scores of miRNA-disease associations was con-
structed by combining the text-mining scores of miRNA-
protein associations and the protein-disease associations.
Xuan et al. [41] further proposed the MIRNAs associated
with Diseases Prediction (MIDP) model based on random
walk on the network by exploiting the more useful informa-
tion from the miRNA functional similarity network, the

disease semantic similarity network, and the edges between
the two networks to predict reliable disease miRNA candi-
dates. This model overcame the limitation of previous models
which were unable to make association predictions for dis-
eases without known related miRNAs by an extended walk on
the network. Moreover, the negative effect of noisy data was
relieved by controlling the distance the walkers go away from
the labeled nodes via restarting the walking.

In order to obtain a better prediction accuracy, Chen et al.
[42] proposed the Within and Between Score for MiRNA–
Disease Association prediction (WBSMDA) model by inte-
grating the known miRNA-disease associations, the miRNA
functional similarity, the disease semantic similarity and the
Gaussian interaction profile kernel similarity for diseases and
miRNAs into a composite network. According to the network
analysis, they calculated and combined the within-score and
between-score to obtain the final score for potential miRNA-
disease association prediction. Chen el al [43]. further pre-
sented the Heterogeneous graph inference for miRNA-disease
association prediction (HGIMDA) model based on a hetero-
geneous graph which was constructed by the same informa-
tion as WBSMDA. Then an iteration equation was
constructed on the heterogeneous graph to further infer the
potential miRNA-disease associations. HGIMDA could be
effectively applied to new diseases and new miRNAs without
any known associations. Later, Li et al. [44] proposed the
Matrix Completion for MiRNA-Disease Association predic-
tion (MCMDA) model by utilizing the matrix completion
algorithm to update the adjacency matrix of known miRNA-
disease associations. Through iteratively calculating the pre-
dictive scores for the candidate miRNA-disease associations,
they obtained a highly reliable outcome. Then, Pasquier et al.
[45] proposed the MiRAI model by representing distribu-
tional information on miRNAs and diseases in a high-dimen-
sional vector space and defining associations between
miRNAs and diseases in terms of their vector similarity in
order to reveal the information attached to miRNAs and
diseases by distributional semantics. Yu et al. [46] proposed
the MaxFlow model based on the network information of flow
model. In this method, they constructed a miRNAome-phe-
nome network built by combining the miRNA functional
similarity network, the disease semantic and phenotypic simi-
larity network and the miRNA-disease associations network,
thus uncovering the accurate miRNA-disease associations.

Additionally, there are also some computational models
based on machine learning. Chen et al. [34] proposed the
Regularized Least Squares for MiRNA-Disease Association
(RLSMDA) method to make prediction for miRNA-disease
associations. RLSMDA, a semi-supervised model, could suf-
fice the model-training without negative samples. Then, Chen
et al. [32] further proposed the Restricted Boltzmann Machine
for Multiple types of MiRNA-Disease Association prediction
(RBMMMDA) model which is the first model that can obtain
not only new miRNA-disease associations, but also corre-
sponding association types. This model used Restricted
Boltzmann machine to predict four different types of
miRNA-disease associations from a two-layered undirected
miRNA-disease graph with visible and hidden units. Finally,
Chen et al. [47] proposed the Ranking-based kNN for
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MiRNA-Disease Association prediction (RKNNMDA) model
which integrated numerous information to search for k-near-
est-neighbors both for miRNAs and diseases by using
k-Nearest Neighbors (kNN) algorithm. In RKNNMDA, the
nearest neighbors were obtained based on a descending order
from the similarity scores between other miRNAs or diseases
and the central miRNA or disease. Then they reranked these
k-nearest-neighbors according to SVM Ranking model and
implemented weighted voting to reduce the prediction bias.

The above models have their own strengths and unique-
ness, but nonetheless some of them have obvious weaknesses.
Moreover, although most models exhibited a sound predic-
tion accuracy, there are still some ways to further improve
those methods. To be specific, machine learning in high
dimensional data spaces is particularly challenging and one
of the challenges is the bad hubs. Hubness is an aspect of the
curse of dimensionality. As dimensionality increases, the dis-
tribution of the number of times a point occurs among the k
nearest neighbors of all other points in the dataset becomes
considerably skewed to the right according to some distance
measure, resulting in the emergence of hubs, that is, points
which appear in many more kNN lists than other points,
effectively making them ‘popular’ nearest neighbors. To be
more specific, high-dimensional points that are closer to the
data mean have increased the probability appearing in kNN
lists of other points, even for small values of k [48].
Unfortunately, some of the hubs are bad in the sort of sense
that they may mislead classification algorithms. The kNN
classifier is negatively affected by the presence of ‘bad’ hubs.
Although ‘bad hubs’ tend to carry more information about the
location of class boundaries than other points, the ‘model’
created by the kNN classifier places the emphasis on describ-
ing non-borderline regions of the space occupied by each
class. For this reason, it can be said that ‘bad’ hubs are truly
bad for kNN classification, creating the need to penalize their
influence on the classification decision [48]. However, the
previous models failed to realize the fact that the bad hubs
phenomenon which may negatively influence the prediction
performance might occur under the circumstances of complex
data. Furthermore, the association data between miRNAs and
diseases will be widely expanded to improve the prediction
accuracy in the future. Thus, there are still some challenges
about how to excavate more useful information from the
association data and how to overcome those undesirable pro-
blems in the complex dataset. Therefore, in this study we
presented a novel model named Bipartite Local models and
Hubness-Aware Regression for MiRNA-Disease Association
prediction (BLHARMDA) to meet those challenges. In our
model, we firstly used Jaccard-similarity to represent the
similarity between the investigated miRNA (disease) and the
other miRNAs (diseases) in the dataset. Then we combined it
with the integrated similarity in order to describe the
enhanced similarity for miRNAs and disease. In addition, it
is noteworthy that combining two models to compute the
semantic similarity between diseases provides a more accurate
way to express the similarity between disease pairs. After that,
we utilized the similarity data and miRNA-disease association
data to train the Bipartite Local Model (BLM) which used an
hubness-aware regression of Error Corrected k-Nearest

Neighbors (ECkNN) as its local model. Consequently, we
made the final prediction by utilizing this model combined
with a data dimension reducing method. To evaluate our
model’s effectiveness of prediction, global and local leave-
one-out cross validation (LOOCV) as well as 5-fold cross
validation were implemented. BLHARMDA obtained an
AUC of 0.9136 and 0.8390 in global and local LOOCV respec-
tively, which proved the high prediction accuracy of our
model. Besides, the average AUC of 0.9120 ± 0.0006 in 5-
fold cross validation indicated BLHARMDA’s stability in pre-
diction. In addition, we carried out three different types of
case studies on three important human diseases to further
evaluate the prediction ability of BLHARMDA. We first
used HMDD v2.0 database to train our model and predict
for Esophageal Neoplasms. The result showed that 49 out of
the top 50 potential miRNAs were validated by dbDEMC and
miR2Disease [16,49]. Then we made prediction for Lung
Neoplasms without any known miRNAs for this disease and
50 out of the top 50 predicted miRNAs were verified by
dbDEMC, miR2Disease and HMDD v2.0. Finally, we used
the known miRNA-disease associations in the HMDD v1.0
as training data and made prediction for Carcinoma
Hepatocellular. As a result, 50 out of the top 50 associations
were confirmed by databases and experimental literatures.

Results

Performance evaluation

We first tested the hubness in our dataset. In Figure 1, we
could see that the distribution of Nk (the number of times a
point occurs among the k nearest neighbors of all other
points) skewed to right. In other words, few points appeared
in many more kNN lists than other points. Then, to evaluate
the prediction accuracy of BLHARMDA, we took advantage
of the HMDD v2.0 database which offered 5430 miRNA-
disease associations between 383 diseases and 495 miRNAs.
We implemented global LOOCV, local LOOCV and 5-fold
cross validation methods based on the known miRNA-disease
associations in the HMDD v2.0. In LOOCV, we picked out
one known association without repetition as the test sample at
each time and considered the other known associations as
training examples until all known associations were evaluated.
The difference between global LOOCV and local LOOCV was
that all unknown miRNA-disease pairs were considered as the
candidate samples in the global LOOCV while only those
miRNA-disease pairs in which the miRNAs without any
known associations with the investigated disease were consid-
ered as the candidate samples in the local LOOCV. As for 5-
fold cross validation, we randomly split our data set, the
known miRNA-disease associations, into 5 disjoint subsets
with equal size. Then we took out one subset without repeti-
tion as the test sample at each time and the rest four subsets
were regarded as training samples. Besides, in 5-fold cross
validation, all unknown miRNA-disease pairs were considered
as candidate samples in the same way as global LOOCV.
Subsequently, we implemented BLHARMDA to obtain a pre-
dicted association score matrix, and ranked the score of each
test sample against the score of the candidate samples. The
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whole process was repeated 100 times to obtain an evaluation
of BLHARMDA’s prediction accuracy. As a result, for both
LOOCV and 5-fold cross validation, we obtained the ranking
for each sample. Based on the rankings obtained from cross
validation, the model we proposed would be considered to
successfully predict an association if the ranking of a test
sample was above a given threshold. Then we drew the recei-
ver operating characteristics (ROC) curves through plotting
the true positive rate (TRR sensitivity) versus the false positive
rate (FRR 1-specificity) at different thresholds, and calculated
the area under the ROC curves (AUC) which was an evalua-
tion metric widely used in the description of the prediction
accuracy of a computational model. Specifically, sensitivity
refers to the percentage of the true positive samples whose
rankings are higher than the given threshold in the whole
positive samples. Meanwhile, specificity denotes the percen-
tage of negative samples with rankings lower than the thresh-
old in the whole negative samples. The AUC of 1 indicated

that all test samples were correctly predicted, and the AUC of
0.5 indicated that the model randomly predicted the test
samples. The Figure 2 illustrated that, BLHARMDA achieved
an AUC of 0.9141 in Global LOOCV whose performance was
superior to RLSMDA (0.8426), WBSMDA (0.8030), MCMDA
(0.8749), MaxFlow (0.8624) and RKNNMDA (0.7159). In
Local LOOCV, BLHARMDA achieved an AUC of 0.8390
while RLSMDA, WBSMDA, MCMDA, MaxFlow,
RKNNMDA, RWRMDA, MiRAI and MIDP obtained AUCs
of 0.6953, 0.8031, 0.7718, 0.7774, 0.8221, 0.7891, 0.6299 and
0.8196, respectively. RWRMDA, MiRAI and MIDP were not
applicable to global LOOCV since they were based on the
local method which could only be used to make prediction for
one disease at a time. In our evaluation, MiRAI did not
achieve the performance as in literature [45] since this
method was based on collaborative filtering which did not
perform well in sparse data set. Our data set was sparse in
which the average associations for one disease were only 14

Figure 1. The distribution of the number of kNN lists a point showed for the miRNAs and diseases in our dataset. Nk means the number of kNN lists a point showed,
P(Nk) means the number of points showed in Nk kNN lists.

Figure 2. Performance comparison between BLHARMDA and seven classical disease-miRNA association prediction models (MCMDA, HGIMDA, WBSMDA, HDMP,
RLSMDA, MaxFlow and RKNNMDA) in terms of ROC curves and AUCs based on global LOOCV and comparison of AUCs based on the local LOOCV between
BLHARMDA and above seven models and three local models (RLSMDA, MiRAI, MIDP). As a result, BLHARMDA outperformed other models by achieving an AUC of
0.9141 in global LOOCV and an AUC of 0.8390 in local LOOCV.
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while the MiRAI was tested on the dataset in which one
disease was associated with at least 20 miRNAs in literature
[45]. Thus, we could consider that our model achieved more
reliability in the prediction of miRNA-disease associations.

In the case of 5-fold cross evaluation, BLHARMDA
obtained an averaged AUC of 0.9120+/-0.0006 which was
superior to RLSMDA (0.8569+/-0.0020), WBSMDA (0.8185
+/-0.0009), MCMDA (0.8767+/-0.0011), MaxFlow (0.8579
+/-0.0010) and RKNNMDA (0.6723+/-0.0027). RWRMDA,
MiRAI and MIDP were still not included in this evaluation
since this evaluation was only applicable to global models. It
was noticeable that both the average AUC and the standard
deviation of AUC of BLHARMDA performed better than
other models, which indicated that BLHARMDA had good
stability and low predication variance.

Since the performance of our model in local LOOCV is
marginally higher than those compared methods, we did a
Kolmogorov-Smirnov test between our algorithm and the
other ten algorithms compared in local LOOCV (see
Table 1). The p-value in all test are quite low and lower
than 0.01 which means there are significant difference
between the results of BLHARMDA and other ten models in
local LOOCV.

Case studies

In order to evaluate the predictive ability of BLHARMDA and
verify the correctness and reasonableness of the predicting
outcome obtained by our model in realistic cases, we imple-
mented 3 different types of case studies on three important
human complex diseases.

In the first case study, we used the known miRNA-diseases
associations in the HMDD v2.0 database as the training set of
our model, then we ranked the candidate miRNAs for each
disease respectively according to their predicted scores. In
order to further promote experimental validation, we pro-
duced a complete prediction list for all the 383 diseases in
HMDD v2.0 predicted by BLHARMDA (See Supplementary
Table 1). Consequently, we verified the top 50 candidate
miRNAs in two databases, dbDEMC and miR2Disease. After
comparing the entries between HMDD v2.0 and dbDEMC/
miR2Disease, we found that 546 of the 5430 known associa-
tions in HMDD v2.0 also existed in dbDEMC and 232 asso-
ciations in HMDD v2.0 also existed in miR2Disease.
However, there was no overlap between the training samples
and the predicted results because in case studies only candi-
date miRNAs which have no known associations with the
investigated disease according to HMDD v2.0 were ranked
and confirmed. Thus, the detriment from the overlap could be
eliminated and it avoided the situation that the miRNAs

associated with the investigated disease were easier to be
evaluated if there existed overlap between the training data-
base and the validation databases. Therefore, it guaranteed
that a believable validation could be obtained when we eval-
uated our outcome by dbDEMC/miR2Disease. Esophageal
Neoplasms (EN) was investigated in our first case study.
Esophageal cancer is the eighth most common incident cancer
in the world and sixth in cancer mortality [50]. In the United
States, 4–10 in 100,000 persons succumb to the disease per
year [51]. We used BLHARMDA to predict the potential
related miRNAs for EN and 49 out of the top 50 (see
Table 2) and 9 out of the top 10 potential miRNAs were
confirmed by dbDEMC or miR2Disease. For example, miR-
21 (1st in the prediction list) targets PDCD4 at the posttran-
scriptional level and regulates cell proliferation and invasion
in esophageal squamous cell carcinoma (ESCC) [52]; miR-17
(2nd in the prediction list) can serve as potential prognostic
biomarkers in ESCC which are associated with some clinico-
pathologic factors [53]; Downregulated expressions of miR-
155 (3rd in the prediction list) in plasma were significantly
associated with increasing risks of esophageal cancer [54].
Further, since miR-155 displayed significantly lower expres-
sion in plasma of patient with esophageal cancer and serum
miR-155 is associated with lymphocyte-mediated immune
responses, the expression of circulating miR-155 may reflect
compromised immunoreactivity in patients with esophageal
cancer [55].

In our second case study, we hid all known related
miRNAs of each investigated disease. Then we trained the
model and ranked all candidate miRNAs for each investigated
disease. After that, we especially investigated the Lung
Neoplasms (LN) in this case study. Lung cancer is the most
common cause of cancer deaths worldwide in both man and
woman [56]. According to the American Cancer Society, LN

Table 1. Kolmogorov-Smirnov test based on the local LOOCV results between
BLHARMDA and other ten algorithms compared in local LOOCV.

Algorithms HDMP HGIMDA MaxFlow MCMDA MIDP

p-value 1.0117e-82 2.3893e-08 3.5906e-87 5.0042e-
120

5.1596e-
11

Algorithms MiRAI RKNNMDA RLSMDA RWRMDA WBSMDA
p-value 2.2998e-

317
2.7878e-17 6.9061e-

173
2.1338e-28 1.5126e-

29

Table 2. Prediction of the top 50 potential Esophageal Neoplasms-related
miRNAs based on known associations in HMDD v2.0 database. The first column
records top 1–25 related miRNAs. The third column records the top 26–50
related miRNAs. The evidences for the associations were either dbDEMC and
miR2Disease.

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC;miR2Disease hsa-mir-222 dbDEMC
hsa-mir-17 dbDEMC hsa-mir-181b dbDEMC
hsa-mir-155 dbDEMC hsa-mir-200b dbDEMC
hsa-mir-20a dbDEMC hsa-mir-31 dbDEMC
hsa-mir-146a dbDEMC hsa-mir-15a dbDEMC
hsa-mir-145 dbDEMC hsa-let-7c dbDEMC
hsa-mir-34a dbDEMC hsa-mir-29c dbDEMC
hsa-mir-125b dbDEMC hsa-mir-146b dbDEMC
hsa-mir-92a unconfirmed hsa-mir-34c dbDEMC
hsa-mir-126 dbDEMC hsa-let-7e dbDEMC
hsa-mir-221 dbDEMC hsa-mir-200a dbDEMC
hsa-mir-18a dbDEMC hsa-mir-142 dbDEMC
hsa-let-7a dbDEMC hsa-mir-30a dbDEMC
hsa-mir-16 dbDEMC hsa-mir-9 dbDEMC
hsa-mir-19b dbDEMC hsa-let-7d dbDEMC
hsa-mir-143 dbDEMC hsa-mir-182 dbDEMC
hsa-mir-200c dbDEMC hsa-mir-199a dbDEMC
hsa-mir-1 dbDEMC hsa-mir-203 dbDEMC;miR2Disease
hsa-mir-223 dbDEMC;miR2Disease hsa-mir-7 dbDEMC
hsa-mir-210 dbDEMC hsa-mir-106b dbDEMC
hsa-mir-19a dbDEMC hsa-mir-10b dbDEMC
hsa-let-7b dbDEMC hsa-mir-24 dbDEMC
hsa-mir-29a dbDEMC hsa-mir-205 dbDEMC;miR2Disease
hsa-mir-181a dbDEMC hsa-let-7g dbDEMC
hsa-mir-29b dbDEMC hsa-mir-150 dbDEMC
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account for about 13% of all new cancers and 27% of all
cancer deaths [56]. There are estimated 1.4 million deaths of
lung cancer each year [56–59]. Especially, lung cancer has
become the first cause of death among people with malignant
tumors in China and the registered lung cancer mortality rate
in China has increased by 464.84% in the past three decades
[60]. The five-year survival rate of lung cancer is much lower
than many other leading cancers [56,59,61–63]. We used
BLHARMDA to uncover the potential related miRNAs for
LN. As a result, 50 out of the top 50 (see Table 3) and 10 out
of the top 10 potential related miRNAs were confirmed by
dbDEMC or miR2Disease or HMDD v2.0. For example, in a
study performed on 48 pairs of non-small cell lung cancer
(NSCLC) specimens, the overexpression of miR-21 (1st in the
prediction list) was inversely correlated with overall survival
of the patients, suggesting that a high level of miR-21 is an
independent negative prognostic factor for survival in NSCLC
patients [64]. High expression of miR-155 (2nd in the predic-
tion list) was correlated with poor survival of lung cancer by
univariate analysis as well as multivariate analysis for miR-
155. The miRNA expression signature on the outcome of a
study indicated that miRNA expression profiles were diagnos-
tic and prognostic markers of lung cancer [65]. MiR-17-5p
(3rd in the prediction list) have been found to be continuously
expressed in small-cell lung cancer (SCLC) cells. The over-
expression of miR-17-5p may serve as a fine-tuning influence
to counterbalance the generation of DNA damage in RB-
inactivated SCLC cells, thus reducing excessive DNA damage
to a tolerable level and consequently leading to genetic
instability [66].

Lastly, in the third case study, we trained our model based
on the known miRNA-disease associations in the HMDD v1.0
and then used the model to predict the scores of the miRNAs
related with each investigated disease to examine the applic-
ability of BLHARMDA to different datasets other than in
HMDD v2.0. After that we evaluated the top 50 related
miRNAs for each investigated disease by HMDD v2.0,
dbDEMC and miR2Disease. In particular, we investigated
Hepatocellular carcinoma (HCC) in this case study. HCC is
one of the most common malignancies worldwide, and is the
fourth most common cause of mortality [67]. In addition, its
incidence is increasing in many countries [68,69]. HCC is
difficult to manage, as compared with other common malig-
nant diseases due to the high percentage of co-existing liver
cirrhosis. The impaired liver function caused by liver cirrhosis
often restricts treatment options, even for early HCC. We
implemented BLHARMDA to find the potential related
miRNAs for HCC. As a result, all out of the top 50 (see
Table 4) potential miRNAs were confirmed by dbDEMC or
miR2Disease or HMDD. Among the top 10 potential
miRNAs, most of them were confirmed by experiments. For
example, a study [70] showed that the miR-21 (1st in the
prediction list), the miR-17–92 polycistron which mainly
includes miR-17-5p (2nd in the prediction list) and miR-20a
(3rd in the prediction list) exhibited increased expression in
HCC cell lines than those observed in normal liver.

Moreover, since the HMDD v2.0 database used in our
research was released in August 2013, we added a Table for

Table 3. Prediction of the top 50 potential Lung Neoplasms-related miRNAs
based on known associations in HMDD v2.0 database. In this case study, we
hided all known related miRNAs for each investigated disease before the pre-
diction process. The first column records top 1–25 related miRNAs. The third
column records the top 26–50 related miRNAs. The evidences for the associa-
tions were either HMDD v2.0, dbDEMC and miR2Disease.

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-31 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-155 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-181b dbDEMC;HMDD2

hsa-mir-17 miR2Disease;
HMDD2

hsa-mir-200b dbDEMC;
miR2Disease;
HMDD2

hsa-mir-146a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-222 dbDEMC;HMDD2

hsa-mir-20a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-15a dbDEMC

hsa-mir-145 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-146b miR2Disease;
HMDD2

hsa-mir-34a dbDEMC;HMDD2 hsa-let-7c dbDEMC;
miR2Disease;
HMDD2

hsa-mir-125b miR2Disease;
HMDD2

hsa-mir-29c dbDEMC;
miR2Disease;
HMDD2

hsa-mir-126 dbDEMC;
miR2Disease;
HMDD2

hsa-let-7e miR2Disease;
HMDD2

hsa-mir-92a HMDD2 hsa-mir-142 HMDD2
hsa-mir-221 dbDEMC;HMDD2 hsa-mir-30a miR2Disease;

HMDD2
hsa-mir-18a dbDEMC;

miR2Disease;
HMDD2

hsa-mir-34c dbDEMC;HMDD2

hsa-let-7a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-200a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-16 dbDEMC;
miR2Disease

hsa-mir-199a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-19b dbDEMC;HMDD2 hsa-mir-9 miR2Disease;
HMDD2

hsa-mir-143 dbDEMC;
miR2Disease;
HMDD2

hsa-let-7d dbDEMC;
miR2Disease;
HMDD2

hsa-mir-1 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-7 miR2Disease;
HMDD2

hsa-mir-200c dbDEMC;
miR2Disease;
HMDD2

hsa-mir-106b dbDEMC

hsa-mir-29a dbDEMC;
miR2Disease;
HMDD2

hsa-mir-203 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-223 HMDD2 hsa-mir-182 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-29b dbDEMC;
miR2Disease;
HMDD2

hsa-mir-24 miR2Disease;
HMDD2

hsa-mir-210 dbDEMC;
miR2Disease;
HMDD2

hsa-mir-150 dbDEMC;
miR2Disease;
HMDD2

hsa-let-7b miR2Disease;
HMDD2

hsa-mir-10b dbDEMC;HMDD2

hsa-mir-19a dbDEMC;
miR2Disease;
HMDD2

hsa-let-7g dbDEMC;
miR2Disease;
HMDD2

hsa-mir-181a dbDEMC;HMDD2 hsa-mir-205 dbDEMC;
miR2Disease;
HMDD2
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the case study 1 by using the studies published after 2014 in
PubMed to further evaluate the top 50 potential Esophageal
Neoplasms-related miRNAs. Here, we only collected the lit-
eratures after 2014 in order to provide a fairer evaluation. The
result showed that 46 out of the top 50 predictions were
confirmed by the experimental literatures published after
2014 in PubMed (see Table 5).

Discussion

The investigating of the miRNA-disease associations has pro-
duced plenty of potential diagnostic methods since an increas-
ing number of models have been proposed to uncover the
relationship between miRNAs and diseases. In this paper, we
proposed a novel computational model based on bipartite
local models with error corrected k-nearest neighbors as the

local model to predict the potential miRNA-disease associa-
tions. BLHARMDA firstly processed the data by integrating
the miRNA functional similarity or disease semantic similarity
with the miRNA or disease Gaussian interaction profile kernel
similarity to obtain the integrated miRNA or disease similar-
ity. Then we calculated the Jaccard-similarity for miRNAs and
diseases and combined the integrated similarity and the
Jaccard-similarity to construct the enhanced similarity-based
representation. After that, we used the BLM to predict the
associations to obtain our final prediction. Moreover, we
carried out cross validation for BLHARMDA, and obtained
an AUC of 0.9141 in Global LOOCV which outperformed
some previous models such as RLSMDA, WBSMDA,
MCMDA, MaxFlow and RKNNMDA. In Local LOOCV,
BLHARMDA obtained an AUC of 0.8390 which still outper-
forms the above models as well as the RWRMDA, MiRAI and
MIDP. Then we used the 5-fold cross validation to evaluate
the prediction stability of BLHARMDA. The low standard
derivation as well as the high mean value in the result showed
high stability and the high accuracy of BLHARMDA.
Furthermore, we carried out three types of case study to
demonstrate the prediction accuracy of BLHARMDA. As a
result, a majority of the top 50 potential related miRNAs for
each disease were confirmed by the databases or experimental
literatures.

The high precision and stability of BLHARMDA are based
on three factors. Firstly, we made use of both the intrinsic
similarity of miRNAs and diseases and the association infor-
mation between miRNAs and diseases by combining the
integrated similarity and the Jaccard similarity. Secondly, we
used an hubness-aware regression as the local model in BLM
which enables the model to effectively alleviate the negative
influence from the presence of the bad-hubs. Since bad hubs
are expected in the complex data such as the miRNA-disease
association database we used in this study, overcoming the
bad-hubs problem can help us improve the prediction accu-
racy of the model. Last, we used the experimentally confirmed
miRNA-disease associations from the highly reliable HMDD
v2.0 database to train our model to predict potential associa-
tions between miRNAs and diseases. Furthermore, plenty of
biological information database such as the functional simi-
larity between miRNAs and the Directed Acyclic Graph of the
diseases were utilized to improve the prediction accuracy. By
combining biological knowledge, the model could obtain a
better accuracy since the biological information could help us
make use of some intrinsic differences and connections
involved in dataset which are helpful in solving some biolo-
gical problems. Moreover, nowadays biologists have produced
massive research results and brought about a lot of biological
information datasets which are convenient to be used in the
models.

However, there are still some limitations in BLHARMDA
which need to be improved in the future. Firstly, the
miRNA and disease enhanced similarity representation in
this study may not be the perfect similarity calculation
method. The Jaccard similarity we used to represent the
interaction information between miRNAs and diseases can
still excavate the connection between them at a basic level.
Developing a better similarity calculation method to make

Table 4. Prediction of the top 50 potential Carcinoma Neoplasms-related
miRNAs based on known associations in the HMDD v1.0 database. The first
column records top 1–25 related miRNAs. The third column records the top
26–50 related miRNAs. The evidences for the associations were either HMDD
v2.0, dbDEMC and miR2Disease.

miRNA Evidence miRNA Evidence

hsa-mir-21 miR2Disease;HMDD hsa-let-7i dbDEMC;HMDD
hsa-mir-17 miR2Disease;HMDD hsa-mir-

126
dbDEMC;
miR2Disease;HMDD

hsa-mir-20a dbDEMC;miR2Disease;
HMDD

hsa-mir-
29b

dbDEMC;HMDD

hsa-mir-155 dbDEMC;miR2Disease;
HMDD

hsa-mir-
106b

dbDEMC;
miR2Disease;HMDD

hsa-mir-146a dbDEMC;miR2Disease;
HMDD

hsa-mir-
143

dbDEMC;miR2Disease

hsa-mir-18a dbDEMC;miR2Disease;
HMDD

hsa-let-7f miR2Disease;HMDD

hsa-mir-19b miR2Disease;HMDD hsa-let-7g miR2Disease;HMDD
hsa-let-7a dbDEMC;miR2Disease;

HMDD
hsa-mir-
181b

dbDEMC;
miR2Disease;HMDD

hsa-mir-221 dbDEMC;miR2Disease;
HMDD

hsa-mir-
146b

HMDD

hsa-mir-19a dbDEMC;miR2Disease;
HMDD

hsa-mir-
29a

dbDEMC;HMDD

hsa-mir-16 dbDEMC;miR2Disease;
HMDD

hsa-mir-
214

dbDEMC;
miR2Disease;HMDD

hsa-mir-1 miR2Disease;HMDD hsa-mir-
141

miR2Disease;HMDD

hsa-mir-222 dbDEMC;miR2Disease;
HMDD

hsa-mir-
127

miR2Disease;HMDD

hsa-mir-92a miR2Disease;HMDD hsa-mir-9 miR2Disease
hsa-let-7e dbDEMC;miR2Disease;

HMDD
hsa-mir-
132

miR2Disease

hsa-mir-145 dbDEMC;miR2Disease;
HMDD

hsa-mir-
200a

dbDEMC;
miR2Disease;HMDD

hsa-mir-223 miR2Disease;HMDD hsa-mir-
106a

dbDEMC;
miR2Disease;HMDD

hsa-let-7b miR2Disease;HMDD hsa-mir-
133a

miR2Disease

hsa-mir-15a dbDEMC;miR2Disease;
HMDD

hsa-mir-
29c

dbDEMC;HMDD

hsa-mir-125b miR2Disease;HMDD hsa-mir-
150

dbDEMC;
miR2Disease;HMDD

hsa-mir-200b miR2Disease;HMDD hsa-mir-
125a

dbDEMC;
miR2Disease;HMDD

hsa-let-7d miR2Disease;HMDD hsa-mir-
24

miR2Disease;HMDD

hsa-mir-34a dbDEMC;miR2Disease;
HMDD

hsa-mir-
30d

dbDEMC;HMDD

hsa-let-7c dbDEMC;miR2Disease;
HMDD

hsa-mir-
34c

HMDD

hsa-mir-199a dbDEMC;miR2Disease;
HMDD

hsa-mir-
20b

dbDEMC;HMDD
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use of the association information in a more efficient way
may produce a better outcome from this model. Secondly,
the local model in BLM in this study is based on k-nearest
neighbors regression. The performance of the algorithm
might be further improved by using other hubness-aware
regression models based on support vector machines, neural
network, etc. Thirdly, integrating more information about
the miRNAs and diseases to the input data could also
facilitate the prediction since we only used the miRNA’s
functional similarity and disease’s semantic similarity in this
study. Therefore, BLHARMDA could still be developed
better in the future.

Materials and methods

Human miRNA-disease associations

Recently, more and more miRNA-disease associations have
been discovered by biological experiments. In this paper, the
known miRNA-disease associations dataset was acquired from
HMDD v2.0 which contained 5430 associations between 495
miRNAs and 383 diseases [71]. We further constructed an
adjacency matrix A to store the information of known
miRNAs-disease associations from HMDD v2.0. In the adja-
cency matrix, A(i, j) equal to 1 means the i-th miRNA mi is
related to the j-th diseasedj, otherwise A(i, j) equal to 0.
Furthermore, we used nm to denote the number of miRNAs
and nd denote the number of diseases.

MiRNA functional similarity

We attained the miRNA functional similarity scores from
http://www.cuilab.cn/files/images/cuilab/misim.zip. Wang
et al. [72] proposed the calculation method of miRNA

functional similarity based on the assumption that the
miRNAs with a high functional similarity are more likely to
correlate with diseases with a high phenotypical similarity.
Thus, we could construct the nm� nm functional similarity
matrix FS. The FS(i, j) entry ranging from zero to one denotes
the functional similarity score between mi andmj.

Disease MeSH descriptors and directed acyclic graph

According to the U.S. National Library of Medicine (MeSH)
at https://www.nlm.nih.gov/mesh/[39], we constructed a
Directed Acyclic Graph (DAG) to describe the semantic infor-
mation of a diseasedi. The DAG obtained from MeSH pro-
vided a strict system for disease classification for the research
of the relationship among various diseases [73]. MeSH
descriptors included 16 categories: Category A for anatomic
terms, Category B for organisms, Category C for diseases,
Category D for drugs and chemicals and so on. We used
MeSH descriptor of Category C for each disease in this paper.

The nodes in DAG represent disease MeSH descriptors
and all the MeSH descriptors in the DAG are connected by
a direct edge from a more general term (parent node) to a
more specific term (child node). Each MeSH descriptor has
one or more tree numbers to numerically define its location in
the DAG. The tree numbers of a child node are defined as the
codes of its parent nodes appended by the child’s information.
For the diseasedi, its DAG was defined as DAG(di) = (di;D
(di),E(di)), where D(di) denotes the node set include the di
and its ancestor diseases and E(di) is the set of corresponding
direct edges from a parent node to a child node which repre-
sent the relationship between these two nodes.

Then, we used DAG to construct the disease semantic
similarity matrix. Since there are two models to calculate the
semantic similarity between disease pairs, we used both the

Table 5. Here, we used the studies published after 2014 in PubMed to further evaluate the top 50 potential Esophageal Neoplasms-related miRNAs. We provided the
PMID and published year of these studies in the table. The result showed that 46 out of the top 50 predictions were confirmed by the experimental literatures
published after 2014 in PubMed.

miRNA Evidence (PMID) Publication time miRNA Evidence (PMID) Publication time

hsa-mir-21 29,568,234 2018 Mar hsa-mir-222 unconfirmed
hsa-mir-17 28,002,789 2017 Feb hsa-mir-181b 27,189,061 2016 May
hsa-mir-155 29,660,336 2018 Jun hsa-mir-200b 27,496,804 2016 Sep
hsa-mir-20a 27,508,097 2016 Jul hsa-mir-31 25,568,668 2014 Nov
hsa-mir-146a 27,832,663 2016 Dec hsa-mir-15a 27,802,201 2016 Sep
hsa-mir-145 29,852,786 2018 May hsa-let-7c unconfirmed
hsa-mir-34a 29,094,237 2018 Jun hsa-mir-29c 25,928,282 2015 Apr
hsa-mir-125b 29,749,531 2018 Jul hsa-mir-146b 24,589,738 2014 Mar
hsa-mir-92a 25,826,212 2015 Mar hsa-mir-34c 28,852,310 2017 Aug
hsa-mir-126 28,536,606 2016 Jul hsa-let-7e 28,408,353 2017 Jul
hsa-mir-221 27,501,171 2016 Nov hsa-mir-200a 28,025,999 2016 Nov
hsa-mir-18a 27,291,152 2016 Aug hsa-mir-142 unconfirmed
hsa-let-7a 29,393,461 2018 Apr hsa-mir-30a 29,259,372 2017 Dec
hsa-mir-16 24,852,767 2014 May hsa-mir-9 25,375,090 2014 Nov
hsa-mir-19b 25,117,812 2014 Oct hsa-let-7d unconfirmed
hsa-mir-143 26,427,659 2016 Mar hsa-mir-182 26,498,375 2015 Oct
hsa-mir-200c 29,113,666 2017 Dec hsa-mir-199a 26,717,044 2016 Feb
hsa-mir-1 26,414,725 2016 Feb hsa-mir-203 25,216,463 2015 Apr
hsa-mir-223 24,390,317 2014 Mar hsa-mir-7 29,906,417 2018 Jun
hsa-mir-210 28,968,550 2017 Nov hsa-mir-106b 27,619,676 2016 Nov
hsa-mir-19a 28,621,611 2017 May hsa-mir-10b 26,554,762 2015 Nov
hsa-let-7b 24,576,011 2014 May hsa-mir-24 25,591,590 2015 Jan
hsa-mir-29a 25,435,940 2015 Jan hsa-mir-205 27,974,696 2017 Jan
hsa-mir-181a 25,230,784 2014 Nov hsa-let-7g 26,655,271 2016 Feb
hsa-mir-29b 25,866,219 2015 Apr hsa-mir-150 29,081,413 2017 Dec
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two models and average them as the semantic similarity
matrix in this study.

Disease semantic similarity 1

In the first disease semantic similarity model, as described in
the former algorithm [72], the contribution of disease t in
DAGðdiÞ to the semantic value of di and the semantic value of
di could be computed by the following equations respectively.

D1di tð Þ ¼ 1 if t ¼ di
max Δ � D1di d0ð Þjd0 2 children of tf g if t�di

�
(1)

DV1 dið Þ ¼
X

d2D dið Þ
D1di dð Þ (2)

Here, Δis the semantic contribution delay factor, and this
factor was set to 0.5 according to the previous literatures
[74–77] in our experiment. For diseasedi, the contribution to
itself is 1 and the contribution from its children decreased as
the distance between them increased. Since disease di lies in
the most inner layer of its DAG, it is the most specific disease
term whose contribution to semantic value of itself is defined
as 1. Disease located on the outer layer is considered to be a
more general disease, so its contribution is multiplied by the
semantic contribution decay factor.

Then, through summing up all contributions fromdi’s
ancestors, we got the semantic value ofdi. It is obvious that
two diseases will get a greater similarity score when they have
a larger shared part of their DAGs. Thus, we could define the
nd � nd disease semantic similarity matrix 1 between disease
di and dj as follows:

SS1 di; dj
� � ¼

P
t2D dið Þ\D djð Þ D1di tð Þ þ D1dj tð Þ

� �
DV1 dið Þ þ DV1 dj

� � (3)

Here, the (i, j) entry of SS1 denotes the semantic similarity
score between di and dj.

Disease semantic similarity 2

According to the existing computational model [39], we cal-
culated the diseases semantic similarity in the second seman-
tic similarity model.

However, it is obvious that different disease terms in the
same layer of DAG(di) may also appear in some other dis-
eases’ DAG. For example, if two diseases appear in the same
layer of DAG(di) and the first disease appears in less disease
DAGs than the second disease, we could conclude that the
first disease is more specific than the second disease. Thus,
according to the above consideration, assigning the same
contribution value to these two diseases may not completely
accurate since a more specific disease should have a greater
contribution to the semantic value of diseasedi. Therefore, the
contribution of semantic value to disease di from the first
disease should be higher than the second disease. The con-
tribution of disease t to the semantic value of disease di in
DAG(di) was calculated as:

D2di tð Þ ¼ � log
the number of DAGs including t

the number of diseases

� �
(4)

Then, we used the semantic value of disease di anddj,
DV2 dið ÞandDV2 dj

� �
, to compute the semantic similarity

SS2 di; dj
� �

between disease di and dj based on the second
model. And the semantic value DV2 was calculated by the
same way as the first disease semantic similarity model by
Equation (2). Further, the corresponding disease semantic
similarity matrix SS2 was constructed as follows:

SS2 di; dj
� � ¼

P
t2D dið Þ\D djð Þ D2di tð Þ þ D2dj tð Þ

� �
DV2 dið Þ þ DV2 dj

� � (5)

Finally, we combined the two semantic similarity matrixes SS1
and SS2 by averaging them to obtain the disease sematic
similarity matrix SS in this study.

SS di; dj
� � ¼ SS1 di; dj

� �þ SS2 di; dj
� �

2
(6)

Gaussian interaction profile kernel similarity for miRNAs

As explained in the previous literature [78], the Gaussian
interaction profile kernel similarity between miRNA mi and
miRNA mj is constructed as follows based on the assumption
that similar diseases tend to be associated with functionally
similar miRNAs. The binary interaction profile vectors IP(mi)
and IP(mj) are respectively defined as the i-th row vector and
the j-th row vector of the matrix A which means whether two
miRNAs are related to each disease or not. Then, we con-
structed the Gaussian interaction profile kernel similarity
Matrix KM as follows:

KM mi;mj
� � ¼ e�γmIP mið Þ�IP mjð Þ2 (7)

Here, the γm is used to control the kernel bandwidth which is
defined by normalizing a bandwidth parameter γm

0
divided by

the average number of diseases associated with each miRNA.
To simplify our calculation, we set the value of γm

0
to 1 in our

study as in the former literatures [33,78].

γm ¼ γ
0
m

1
nm

Pnm
i¼1IP mið Þ2 (8)

Gaussian interaction profile kernel similarity for diseases

Based on the assumption that functionally similar miRNAs
tend to be associated with similar diseases, we could use the
similar method as above to calculate the disease’s Gaussian
interaction profile kernel similarity matrix KD as:

KD di; dj
� � ¼ e�γdIP dið Þ�IP djð Þ2 (9)

where binary interaction profile vectors IP(di) and IP(dj) are
defined as the i-th column vector and the j-th column vector of
the matrix A. The γd in the equation is defined by normalizing a

bandwidth parameter γd
0
divided by the average number of
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miRNAs associated with each disease. Likewise, we still set the
value of γd

0
to 1 in our study as in the literatures [33,78].

γd ¼
γ0d

1
nd

Pnd
i¼1IP dið Þ2

(10)

Integrated similarity for miRNAs and diseases

Based on the consideration that the miRNA functional simi-
larity scores do not cover all miRNAs, we integrated the
miRNA functional similarity matrix FS and the miRNA
Gaussian interaction profile kernel similarity matrix KM to
form a more comprehensive similarity repression. In detail, if
a miRNA pair has miRNA functional similarity score, we
directly considered the score as integrated similarity. On the
contrary, if a miRNA pair has no miRNA functional similarity
score, we utilized the Gaussian interaction profile kernel
similarity score as integrated similarity. Thus, we calculated
an integrated similarity matrix SM for miRNAs as:

SM mi;mj
� � ¼ FS mi;mj

� �
if mi and mj have functional

similarityKM mi;mj
� �

otherwise

�
(11)

In the same way, we integrated the disease semantic similarity
matrix SS and the disease Gaussian interaction profile kernel
similarity matrix KD. If disease di and dj have their own
DAGs (i.e. these two diseases have semantic similarity), then
the final integrated similarity is the average between two
semantic similarity matrixes SS1 and SS2. Otherwise, the
integrated disease similarity equals to the value of Gaussian
interaction profile kernel similarity between them. Therefore,
the integrated similarity matrix SD for disease was calcu-
lated as:

SD di; dj
� � ¼ SS di; dj

� �
if di and dj have semantic similarity

KD di; dj
� �

otherwise

�
(12)

Jaccard-similarity for miRNAs

The previous research [79] showed that, for recommender
systems, the interaction data about customers and products
could be more informative than the metadata about consu-
mers and products. As mentioned above, the Gaussian inter-
action profile kernel similarity was calculated based on the
known miRNA-disease association data in our study. Here we
further introduced another way to represent the information
of known association data.

We additionally constructed a miRNA Jaccard-similarity
JM to present the similarity between two miRNAs based on
their association information to diseases. The Jaccard-similar-
ity between mi and mj is computed by the number of inter-
section divided by the number of union between sets of their
associated diseases.

JM mi;mj
� � ¼ DA mið Þ\DA mj

� �		 		
DA mið Þ[DA mj

� �		 		 (13)

where DA mið Þ denotes the set of associated diseases for
miRNAmi.

Jaccard-similarity for diseases

Similar to the miRNAs, in order to present the similarity
between diseases based on their association to miRNAs, we
computed the Jaccard-similarity between di and dj by the
number of intersection divided by the number of union
between the sets of their associated miRNAs. Thus, the disease
Jaccard-similarity JD can be constructed as:

JD di; dj
� � ¼ MA dið Þ\MA dj

� �		 		
MA dið Þ[MA dj

� �		 		 (14)

where MA dið Þ denotes the set of associated miRNAs for
diseasedi.

Enhanced similarity-based representation for miRNAs
and diseases

In order to represent both the integrated miRNA similarity
and the miRNA Jaccard-similarity, we combined these two
similarities together by expanding our integrated similarity
matrix with the dimensionality of nmxnm to a bigger
matrix ofnmx2nm. The left nmxnm square matrix was the
integrated similarity matrix while the right nmxnm square
matrix was the Jaccard similarity matrix. Thus, we con-
structed a new similarity representation – miRNA enhanced
similarity-based representation matrix M.

Then, similar to the miRNAs, we combined the integrated
disease similarity SD and disease Jaccard-similarity JD
together to obtain disease enhanced similarity-based repre-
sentation matrix D. The enhanced similarity-based represen-
tation matrix M and D will be used as the feature matrices for
our model.

Bipartite local models (BLMs)

BLMs [80] consider the miRNA-disease prediction pro-
blem as a link prediction problem in bipartite graphs.
There are two vertex classes in the graph: one corre-
sponds to miRNAs while the other corresponds to dis-
eases. An edge eij in the graph corresponds to the known
association between miRNA mi and diseasedj. Thus, we
trained two independent local models respectively based
on the miRNA perspective and disease perspective to
predict the likelihood score for an unknown miRNA-dis-
ease paireij. Subsequently, we further aggregated these two
predictions.

To be specific, we first predicted the potential association
from the miRNA perspective. The prediction is based on a
specific miRNA mi and the diseases in the graph. Each disease
except dj which was being predicted was labeled as 1 or 0
depending on whether or not the mi already had a known
association with it. Then we used these labeled data to train
our model to classify diseases into 1-labeled or 0-labeled
classes. Subsequently, we used this model to predict the like-
lihood score of the investigated miRNA-disease paireij. The
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predicted outcome for the potential association between the
miRNA mi and the disease dj from this first model was

denoted byy1 mi; dj
� �

.
Similar to the first prediction, we then predicted the poten-

tial association from the disease perspective based on a spe-
cific disease dj and the miRNAs in the graph. However, we
instead used the labeled miRNAs except mi which are
obtained according to their known association with dj to
train the model. Consequently, we used this model to predict
the likelihood score of the unknown association between mi

anddj. The predicted outcome from this second model is
denoted byy2 mi; dj

� �
.

Finally, we needed an aggregation function such as
maximum or minimum and so on to obtain the final
outcome. In this study, we chose to average the outcome
from the above two models to obtain our final prediction
score of the BLM for the potential association between the
mi anddj.

y mi; dj
� � ¼ y1 mi; dj

� �þ y2 mi; dj
� �

2
(15)

Prediction based on weighted profiles

The BLM method has a shortcoming that it can’t handle
the new diseases or miRNAs which have no known associa-
tions with miRNAs or diseases in the training data. Thus,
for a new miRNA, all diseases except the predicted disease
will be labeled as 0, and the local model will fail to make a
prediction in this case. Similar to the new miRNA, a new
disease will face the same problem that the local model
can’t work with the all-0-labeled training data.

To solve this problem, when we predicted for a new
miRNAmi, we used the assumption that similar miRNAs
are likely to be associated with same diseases. Thus, we
used the similarity between mi and other miRNAs which
have known associations with dj to calculate the likelihood
score between miRNA mi and diseasedj. Therefore, the
prediction score y1 mi; dj

� �
from miRNA perspective can

be computed by the weighted average of the known asso-
ciation between each miRNA except mi and the disease dj
which is weighted by the similarity between mi and other
miRNAs.

y1 mi; dj
� � ¼

P
m02Mn mif gsim mi;m0ð Þi m0; dj

� �
P

m02Mn mif gsim mi;m0ð Þ (16)

where M denotes the set of all miRNAs in the training set,
m0means one of all other miRNAs exceptmi,
sim mi;m0ð Þmeans the similarity between miRNA mi and
m0 which could be obtained by the matrix M, and
i m0; dj
� �

means whether or not the miRNA m0 has a
known association with the disease dj which is presented
in the adjacency matrix A.

i mi; dj
� � ¼ 1 if mi and dj has a known association

0 otherwise

�

Similar to the case of the new miRNA, we predicted for a
new disease dj by the weighted average of the known
association between each disease except dj and the
miRNA mi which is weighted by the similarity between dj
and other diseases.

y2 mi; dj
� � ¼

P
d02Dn djf gsim dj; d0

� �
i mi; d0ð ÞP

d02Dn djf gsim dj; d0
� � (17)

whereD denotes the set of all diseases in the training set, d0means
one of all other diseases exceptdi, sim dj; d0

� �
means the similarity

betweendiseasedj andd0 which could be obtainedby thematrixD,
and i mi; d0ð Þ means whether or not the miRNA mi has a known
association with the disease d0 which is presented in the adjacency
matrix A.

k-nearest neighbor regression with error correction
(ECkNN)

BLM is a generic framework in which various regressors or
classifiers can be used as local models. Bleakley et al. and
Yamanishi et al. [80] used support vector machines with a
domain-specific kernel in their study. In our study, we
chose a hubness-aware regression model, ECkNN [81], as
our local model. The algorithm of k-nearest neighbors is
one of the most popular regression techniques. When using
kNN to predict potential association between a miRNA and
a disease from the miRNA perspective, we first determined
the k-nearest neighbors of this miRNA by the ‘distance’
between them, and then use the k-nearest miRNAs to
compute the predicted score of this association.

However, although the k-nearest neighbor regression has
numerous advantages as described above, the algorithm has
recently been found to have a drawback. The presence of ‘bad
hubs’will have negative influence on the performance of the kNN.
Therefore, we used an error correction technique to alleviate the
negative influence of bad hubs. Firstly, we defined the corrected
label yc xð Þ of a training instance x as:

yc xð Þ ¼
1
Rxj j

P
xi2Rx

y xið Þ if Rxj j � 1

y xð Þ otherwise

(
(18)

where y xð Þ denotes the original label of x which is uncor-
rected. The uncorrected original labels are directly obtained
from the known miRNA-disease associations in the data-
base. For the known miRNA-disease associations, the values
of the labels were set to 1.0, and the values of the labels of
other miRNA-disease associations were set to 0. Rxis the set
of the ‘reversed neighbors’ of x which means the set of
instances whose k-nearest neighbors include x.

Then, we used the corrected labels to make prediction by
the ECkNN. The predicted label ŷ x0ð Þ for an unlabeled
instance x0 could be computed using the formula below:

ŷ x0ð Þ ¼ 1
k

X
xi2kNN x0ð Þ

yc xið Þ (19)

where kNN x0ð Þ means the set of the k-nearest neighbors ofx0.
And the k was set to 100 in our experiment according to the
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literature [81] that the mean absolute error gradually
decreased and eventually converged as the k increased in
their experiment.

Blharmda

In this study, we developed BLHARMDA to predict potential
miRNA-disease associations. Our model could be divided into
three steps. The whole process was illustrated in Figure 3. The
first step of this model is preparing the data for the following
prediction. Then, the second step of our model is using the
data we obtained in the first step to predict the potential
associations by BLM or weighted profile method. We only
used weighted profile method on the new miRNAs or diseases
without any known related diseases or miRNAs. For other
miRNAs or diseases with known related diseases or miRNAs,
we made predictions based on the BLM method with a hub-
ness-aware regression, ECkNN regression, as its local model.

In the BLM method, we predicted the associations by two
models based on the miRNA perspective and disease perspec-
tive respectively. Subsequently, through using the aggregating
function of arithmetical average on the two prediction out-
comes above, we obtained our final prediction score ŷk mi; dj

� �
of an association by BLM with ECkNN as the local model.

In the weighted profile method for new miRNAs and
diseases, we also predicted the associations by two models
from the miRNA perspective and disease perspective respec-
tively. Still, we only used the selected features of matrix M and
D to obtain our two prediction outcomes. Then, our final
prediction score ŷw mi; dj

� �
of this association can be obtained

by averaging these two outcomes.
Thereafter, by integrating the prediction scores from the

BLM and the prediction scores of new miRNAs and diseases
obtained by the weighted profile method, we could get a
global prediction of the associations between all miRNAs
and diseases. Thus, the prediction outcome ŷ mi; dj

� �
can be

computed as follows:

Figure 3. Flowchart of potential miRNA-disease association prediction based on the computational model of BLHARMDA: 1) data preparation, where enhanced
similarity representation for miRNAs and diseases were constructed in this step; 2) Training the BLM with ECkNN as the local model and making predictions for the
miRNAs or diseases with known associations by the BLM we trained. Then, using the weighted profile method to make prediction for new miRNAs and diseases.
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ŷ mi; dj
� � ¼ ŷw mi; dj

� �
if mi or dj is new miRNA or disease

ŷk mi; dj
� �

if mi or dj isn0tnew miRNA or disease

�
(20)

In order to promote further research of biologists, we pub-
lished our source code in https://github.com/BLHARMDA/
Bipartite-Local-Models-and-hubness-aware-regression.
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