Skip to main content
. 2018 Sep 23;15(9):1215–1227. doi: 10.1080/15476286.2018.1521210
Algorithm 1: GLNMDA
Input: Matrices MRmm,DRnn,RRmn, parameter α and β.
Output: Predicted association matrix F.
1. Obtain the k value for miRNAs and diseases by ClusterONE algorithm.
2. Repeat:
  Update U˜andUˆby the following rules:
   U˜ijU˜ij×(2RTRU˜)ij(U˜U˜TRTRU˜+RTRU˜U˜TU˜)ij
   UˆijUˆij×(2RRTUˆ)ij(UˆUˆTRRTUˆ+RRTUˆUˆTUˆ)ij
 Until convergence
3. Obtain the reconstructed similarity matrix M˜and D˜:
  M˜=M˜P1/2(U˜U˜T)M˜P1/2
  D˜=DˆP1/2(UˆUˆT)DˆP1/24. Integrate similarity information to get SD and SM according to Equation (12) and Equation (13).
5. Predict from miRNA space and disease space:
  Repeat:
   FDt+1=α×SD×FDt+(1α)×R
   FMt+1=α×SM×FMt+(1α)×RT
  Until convergence
6. Integrate the results
  F=β(FD)+(1β)×(FM)T
7. Return F