Skip to main content
. 2018 Sep 25;10(8):1281–1290. doi: 10.1080/19420862.2018.1518887

Table 2.

Performance measures of the random forest classifier on the training dataset of 172 Met residues.

  Experimental ‘Liable’ Experimental ‘Non-liable’  
Predicted ‘Liable’ 15 (TP) 3 (FP) Precision = 0.83 TP/(TP+ FP)
Predicted ‘Non-liable’ 3 (FN) 151 (TN)  
  Recall/Sensitivity = 0.83
TP/(TP+ FN)
Specificity = 0.98
TN/(TN+ FP)
Accuracy = 0.96
(TP+ TN)/Total
Matthew’s Correlation Coefficient (MCC) = y0=Yλs+0.81

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

All predictions are ‘out-of-bag’ (OOB); that is predictions on each data point were made only using the trees not generated using that point.