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Abstract

Rapid detection and identification of process faults in industrial applications is crucial to sustain a 

safe and profitable operation. Today, the advances in sensor technologies have facilitated large 

amounts of chemical process data collection in real time which subsequently broadened the use of 

data-driven process monitoring techniques via machine learning and multivariate statistical 

analysis. One of the well-known machine learning techniques is Support Vector Machines (SVM) 

which allows the use of high dimensional feature sets for learning problems such as classification 

and regression. In this paper, we present the application of a novel nonlinear (kernel-dependent) 

SVM-based feature selection algorithm to process monitoring and fault detection of continuous 

processes. The developed methodology is derived from sensitivity analysis of the dual SVM 

objective and utilizes existing and novel greedy algorithms to rank features that also guides fault 

diagnosis. Specifically, we train fault-specific two-class SVM models to detect faulty operations, 

while using the feature selection algorithm to improve the accuracy of the fault detection models 

and perform fault diagnosis. We present results for the Tennessee Eastman process as a case study 

and compare our approach to existing approaches for fault detection, diagnosis and identification.
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1. Introduction

Maintaining a safe operation while minimizing the losses in productivity is one of the major 

goals in chemical processing. Timely detection, diagnosis and identification of faults 

occurring during the operation is critical and necessary, and this is continuously encouraging 

researchers to develop novel process monitoring techniques. Today, with the advances in 

automation and sensor technologies as well as novel smart manufacturing frameworks, real 

time process data acquisition has become effortless and created an immense opportunity for 

manufacturing and process industries by enabling data-driven real time decision making 

through it.

A fault is defined as an abnormal process behaviour where controllers lack the capability of 

reversing it. Faults can occur due to mechanical reasons such as equipment failure and/or 

wear as a result of equipment aging or process-based reasons stemming from severe process 

disturbances (Chiang et al., 2001). Once a fault is detected during an operation, revealing the 

root-cause by identifying the key process variables is of utmost importance for rapid 

counteraction to avoid abnormal event progression (Venkatasubramanian et al., 2003). The 

most prevalent data-driven process monitoring techniques include Principal Component 

Analysis (PCA), Dynamic PCA (DPCA), Partial Least Squares (PLS), Independent 

Component Analysis (ICA), and Fischer Discriminant Analysis (FDA) as dimensionality 

reduction step followed by Q and T2 statistics, contribution plots, and discriminant analysis 

(Qin, 2012). The aim of dimensionality reduction is to ensure robustness of the analysis. 

Dimensionality reduction methods are classified into (a) feature extraction, and (b) feature 

selection. The dimensionality reduction methods adopted within the listed techniques are 

based on feature extraction, which project input process data onto another space and alter the 

original representation of input data, thus may cause loss of information. On the other hand, 

feature selection is the process of selecting the most informative and relevant original 

features (e.g. process variables) characterizing the system. Therefore, there is a prominent 

need for novel data-driven process monitoring methods incorporating feature selection 

techniques for dimensionality reduction.

In this work, we modify a well-known, powerful machine learning algorithm formulation, 

Support Vector Machines (SVM) (Cortes and Vapnik, 1995), for simultaneous modelling 

and feature selection. Then, we present the application of the nonlinear (Kernel-dependent) 

SVM-based feature selection algorithm to process monitoring of continuous processes. 

Previous studies have used SVM for fault detection in chemical processes (Mahadevan and 

Shah, 2009; Yin et al., 2014; Xiao et al., 2016). Here, fault detection is achieved through 

two-class SVM models, where the feature selection algorithm further improves the model 

accuracy and also reveals diagnosis of the detected fault. We test the performance of the 

proposed data-driven framework through the 21 faults introduced in the Tennessee Eastman 

process data and provide comparisons to existing approaches. The presented methodology 

can be implemented as an online decision support tool for continuous process monitoring 

purposes.
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2. Nonlinear Support Vector Machine-based Feature Selection Algorithm

Here, we define a supervised learning problem with l training instances, where xi ∈ Rn. 

Indices i, j = 1,2, …, l correspond to instances, whereas indices k, k′ = 1,2, …, n correspond 

to input data features. Accordingly, the input data has become xi = (xi1, xi2, …, xik, …, xin)T. 

From process monitoring perspective, instances represent distinct continuous operations 

while features are the collected process measurements from distinct variables. We formulate 

the fault detection problem in a classification setting with C –parameterized SVM (C –

SVM) with hinge loss, l2 –norm penalty, and linear Kernel as follows:

min
w, b, ξ

1
2 ∥ w ∥2

2 + C Σ
i = 1

l
ξi

s.t.
yi(w, xi + b) ≥ 1 − ξi i = 1, 2, …, l

ξi ≥ 0 i = 1, 2, …, l

(1)

where yi ∈ {−1,1} denotes the class label of instance i. Eq.(1) is a convex nonlinear problem 

satisfying a first-order qualification, hence strong duality holds. When Eq.(1) is solved to 

global optimality, resulted optimal solution (w*, b*, ξ*) is then used to determine the linear 

decision function f(x) = w*.x + b*, which yields the sign, thus class, of a new instance x.

One of the major advantages of exploiting Support Vector Machines in modelling is to be 

able to use Kernel functions, K(xi, xj). These functions implicitly map the input feature 

space, where data is nonlinearly separable, onto a different, possibly higher feature space, 

where the data become linearly separable. Since most of the chemical processes are 

nonlinear in nature, we adopt nonlinear (Kernel-dependent) C-SVM formulation, where 

Kernel functions are introduced in the Lagrange dual formulation of Eq.(1). Next, we 

introduce binary variables z ∈ {0,1}n in Eq.(2), which control elimination or selection of 

feature k, and aim to minimize the number of selected features while maximizing model 

accuracy via traditional C –SVM formulation:

min
z

max
α

Σ
i = 1

l
αi − 1

2 Σ
i = 1

l
Σ

j = 1

l
αiα jyiy jK(xi ∘ z, x j ∘ z)

s.t.

Σ
i = 1

l
αiyi = 0

αi ∈ 0, C i = 1, 2, …, l

Σ
k

zk = m

zk ∈ 0, 1 k = 1, 2, …, n

(2)

where αi are dual variables. In Eq.(2), ∘ is the Hadamard product operator for 

componentwise multiplication, and m is the number of optimal subset of features, where the 
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aim is to attain highest C –SVM model accuracy with minimum number of input features. 

Since Eq.(2) is a challenging and impractical problem to solve to global optimality, we 

propose an algorithmic solution procedure, which utilizes the Lagrangian sensitivity of the 

objective function value of Eq.(2) with respect to zk at (α*; z), where zk is treated as a fixed 

parameter. The procedure is iterative where in each step, the features are eliminated 

individually according to the following criterion:

critk = − 1
2 Σ

i = 1

l
Σ

j = 1

l
αi

∗α j
∗yiy j

∂K(xi ∘ z, x j ∘ z)
∂zk z = 1

kworst = argkmaxcritk

(3)

Eq.(3) delineates the nonlinear SVM-based feature selection algorithm adopted in this study. 

In particular, the algorithm is equivalent to well-known recursive feature elimination (RFE)-

SVM classification algorithm when performing a linear classification that is using a linear 

Kernel. The presented algorithm (Kieslich et al., 2016) has been implemented in C++/

Python environment using LibSVM library (Chang and Lin, 2011), and has been 

successfully utilized in our previous studies in bioinformatics setting.

3. Tennessee Eastman Process

The Tennessee Eastman process simulation, an extensively used benchmark study to 

evaluate and further develop process monitoring algorithms, was designed by the Eastman 

Chemical Company (Downs and Vogel, 1993). It is based on a real industrial process, in 

which the components, kinetics, and operating conditions have been modified for proprietary 

reasons (Chiang et al., 2001). The process includes five primary units: a reactor, condenser, 

compressor, separator, and a stripper. It describes the production of chemicals G and H from 

feedstocks A, C, D and E with byproduct F and inert compound B. The simulated process 

data used in this study is adopted from Chiang and Braatz, 2001, where the process contains 

41 measured and 11 manipulated variables. The variables are sampled every 3 minutes and 

the dataset includes measurement samples from normal and 21 distinct faulty operations. For 

further information on the process and simulation, the interested reader can refer to Downs 

and Vogel, 1993 and Chiang et al., 2001.

4. Proposed Framework

In this study, we are building 21 fault-specific C –SVM binary classifiers for 21 different 

faults introduced in the process data. Thus, for each of the 21 model building, we combine 

data from normal and faulty operation from each of the 21 faults. The initial step in data-

driven modelling is normalization of the input data. Normalization is performed on each of 

the 21 faulty-normal process data by subtracting the mean of measurements across the 

operations from each measurement and then dividing into the standard deviation of them.
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4.1. Offline Phase Model Building

The initial step in the offline phase is to create balanced train and test sets. Imbalanced data 

sets may significantly increase risk of overfitting problem. Therefore we create train and test 

sets from each 21 datasets with 100 runs of 5-fold cross-validation. Next, we build binary 

classifier models iteratively for each feature subset. In each iteration we (i) tune C –SVM 

parameters using train and test data sets with the active set of features (whole feature set in 

the first iteration), (ii) train C –SVM classifiers with Gaussian Radial Basis Function, where 

the class probabilities are smoothened via taking median of probabilities with a window size 

of 3, (iii) calculate Lagrangian sensitivity of dual C –SVM objective function with respect to 

the parameter zk to obtain a rank list of features, (iv) eliminate the most redundant, “worst” 

feature satisfying Eq.(3) from data. This procedure is repeated until we are left with 1 

feature in the train and test sets. The result of this framework yields 1092 C –SVM 

classifiers, which includes 21 fault-specific C –SVM classifiers for each of 52 feature 

subsets.

Particularly, in the first step, we tune C –SVM hyperparameters C and γ. Tuning is done via 

grid search for all combinations between 2−10 and 210. Hyperparameter combination 

yielding the highest average testing accuracy and recall is chosen in each iteration of the 

framework described above. The final stage in the offline phase is the selection of the fault-

specific end-models for fault detection. Among the all feature subsets, the C –SVM classifier 

yielding the highest fault detection rate and accuracy is chosen to be the fault-specific end-

model.

4.2. Online Phase Model Building

21 fault-specific end models that are built in offline phase are implemented in industrial 

setting to monitor the incoming online process data. When online process data is fed, models 

generate a binary answer for detection of each fault. If a fault is detected, alarm rises and the 

optimal set of features of the corresponding end-model yield the root-cause analysis of the 

detected fault instantaneously.

5. Results

We present the results of the proposed data-driven process monitoring framework on the 

Tennessee Eastman process below (Table 1), where we have adopted a five consecutive fault 

alarm policy to report a fault. The performance of the end-models is evaluated via (i) fault 

detection rate, (ii) accuracy, and (iii) latency.

Table 2 compares the performance of this study to the other existing data-driven process 

monitoring techniques (Mahadevan and Shah, 2009; Yin et al., 2014; Xiao et al., 2016) in 

terms of fault detection rate. This comparison demonstrates the power of the proposed data-

driven process monitoring framework. Additionally, the average latency among the reported 

faults has been provided as 306.19, 145.58, 263.12, 151.00, and 98.50 min for PCA-T2, 

PCA-Q, DPCA-T2, DPCA-Q, and 1-class SVM respectively in Mahadevan and Shah, 2009; 

whereas it is significantly lower for the proposed framework (15.67 min for the Table 2 

reported faults, and 13.86 min among all 21 faults).
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6. Conclusions

In this study, we have presented a nonlinear SVM-based feature selection algorithm 

procedure and implemented it for data-driven process monitoring of continuous processes. 

The proposed framework establishes a promising decision support tool for online fault 

detection and identification. This research was funded by U.S. National Institute of Health 

(NIH) grant P42 ES027704.
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Table 1.

Performance of the Fault Specific End Models.

Fault Optimal Feature Subset Size Fault Detection Rate Accuracy Latency (min)

1 2 99.88 99.90 6

2 8 98.13 98.44 48

3 4 100.00 83.33 3

4 1 100.00 100.00 3

5 25 100.00 100.00 3

6 1 100.00 100.00 3

7 1 100.00 100.00 3

8 6 99.38 96.88 3

9 6 99.50 83.33 3

10 9 98.25 83.85 3

11 29 96.63 86.46 3

12 9 100.00 96.15 3

13 2 95.00 89.48 3

14 3 100.00 100.00 3

15 7 98.25 82.81 3

16 26 100.00 87.92 3

17 7 97.63 84.69 3

18 24 90.38 91.56 183

19 3 100.00 83.33 3

20 4 100.00 83.75 3

21 1 100.00 99.90 3
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Table 2.

Comparison through Fault Detection Rate. Best results of Xiao et al., 2016 is adopted.

Ref. Mahadevan and Shah, 2009 Xiao et al, 2016 Yin et al, 2014 This Study

Fault PCA-T2 PCA-Q DPCA-T2 DPCA-Q 1-class SVM 1-class SVM 2-class SVM 2-class SVM

1 99.20 99.80 99.40 99.50 99.80 99.50 99.50 99.90

2 98.00 98.60 98.10 98.50 98.60 98.30 98.12 98.10

4 4.40 96.20 6.10 100.00 99.60 47.40 99.88 100.00

5 22.50 25.40 24.20 25.20 100.00 45.20 90.75 100.00

6 98.90 100.00 98.70 100.00 100.00 99.20 60.13 100.00

7 91.50 100.00 84.10 100.00 100.00 70.10 98.91 100.00

8 96.60 97.60 97.20 97.50 97.90 97.40 96.00 99.38

10 33.40 34.10 42.00 33.50 87.60 68.00 81.00 98.25

11 20.60 64.40 19.90 80.70 69.80 65.80 80.25 96.62

12 97.10 97.50 99.00 97.60 99.90 98.80 97.75 100.00

13 94.00 95.50 95.10 95.10 95.50 95.00 92.50 95.00

14 84.20 100.00 93.90 100.00 100.00 93.90 91.00 100.00

16 16.60 24.50 21.70 29.20 89.80 73.10 89.38 100.00

17 74.10 89.20 76.00 94.70 95.30 75.20 81.63 97.62

18 88.70 89.90 88.90 90.00 90.00 89.30 89.50 90.38

19 0.40 12.70 0.70 24.70 83.90 43.60 85.88 100.00

20 29.90 45.00 35.60 51.00 90.00 69.00 80.50 100.00

21 26.40 43.00 35.60 44.20 52.80 59.40 - 100.00
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