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Abstract

The lungs of extremely low gestational age neonates (ELGANs) are deficient in pulmonary 

surfactant and are incapable of efficient gas exchange necessary for successful transition from a 

hypoxic intrauterine environment to ambient air. To improve gas exchange and survival, ELGANs 

often receive supplemental oxygen with mechanical ventilation which disrupts normal lung 

developmental processes, including microvascular maturation and alveolarization. Factors that 

regulate these developmental processes include vascular endothelial growth factor and matrix 

metalloproteinases, both of which are influenced by generation of oxygen byproducts, or reactive 

oxygen species (ROS). ELGANs are also deficient in antioxidants necessary to scavenge excessive 

ROS. Thus, the accumulation of ROS in the preterm lungs exposed to prolonged hyperoxia, results 

in inflammation and development of bronchopulmonary dysplasia (BPD), a form of chronic lung 

disease (CLD). Despite advances in neonatal care, BPD/CLD remains a major cause of neonatal 

morbidity and mortality. The underlying mechanisms are not completely understood, and the 

benefits of current therapeutic interventions are limited. The association between ROS and 

biomarkers of microvascular maturation and alveolarization, as well as antioxidant therapies in the 

setting of hyperoxia-induced neonatal lung injury are reviewed in this article.
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1. INTRODUCTION

Extremely low gestational age neonates (ELGANs, < 28 weeks gestation and/or birth weight 

< 1250 grams) are usually intubated at birth and mechanically ventilated for respiratory 

support and treatment of respiratory distress syndrome (RDS) [1]. Although advances in 

respiratory care and management have led to the increased survival of ELGANs, 

approximately one-third of them will develop bronchopulmonary dysplasia (BPD), the most 

common form of chronic lung disease (CLD) that occurs in 45–68% of infants < 29 weeks 

gestation [2]. BPD/CLD is characterized by prolonged need for oxygen therapy, increased 

partial pressure of carbon dioxide (PCO2), and abnormal lung compliance and the known 

risk factors include preterm birth, respiratory failure, oxygen toxicity, and barotrauma [3], 

with devastating complications such as pulmonary hypertension occurring in as many as 17–

24% [4] and rising to 59% in periviable infants, < 25 weeks [5]. Pathological characteristics 

include disrupted microvascular maturation and poor alveolarization secondary to lung 

inflammation, mechanical injury, and oxygen toxicity, leading to alveolar oversimplification 

and inadequate blood-air interface [6–8]. Many factors regulate normal and pathological 

angiogenesis and alveolarization, including, but not limited to, vascular endothelial growth 

factor (VEGF) involved in microvascular maturation, matrix metalloproteinases responsible 

for alveolarization, extracellular matrix (ECM) and lung basement membrane proteolysis 

and remodeling, and antioxidants responsible for scavenging of reactive oxygen species 

(ROS), all of which are deficient in ELGANs. While several reviews on BPD have been 

published, this review focuses on, and highlights, the important role of ROS in the 

development of BPD, and examines the association between VEGF, ECM degrading 

enzymes or matrix metalloproteinases (MMPs), and ROS in its pathogenesis. It also 

discusses alternative treatments focusing mainly on antioxidant defenses for ROS 

scavenging and their likely therapeutic or preventive role in alleviating lung toxicities.

2. PERINATAL LUNG DEVELOPMENT

At about 22–25 days post conception, lung bud arises from the embryonic foregut. This is 

followed by subsequent branching of the bronchial tree [9]. Five major stages are identified 

that may overlap since lung structures develop simultaneously. These are embryonic, 

pseudo-glandular, canalicular, saccular, and alveolar stages [10, 11]. Between 16 and 28 

weeks, lung growth is dominated by bronchial development, particularly, formation of 

alveolar ducts and terminal sacs. By around 24 weeks, these terminal sacs become abundant. 

The epithelium thins and Type 1 and II pneumocytes form. During this canalicular period, 

the network of blood vessels come much closer to the terminal saccules or primitive alveoli 

allowing for efficient respiration and gas exchange, despite bulk alveolarization occurring in 

the postnatal period [12]. Lung septation and alveolarization begin around 32–36 weeks 

gestation and are tightly coupled with vascular growth and branching [11], a complex 

Valencia et al. Page 2

React Oxyg Species (Apex). Author manuscript; available in PMC 2018 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process of endothelial cell differentiation and proliferation (vasculogenesis), formation and 

branching of new blood vessels (angiogenesis), and smooth muscle cell migration 

(arteriogenesis). The final stages of vascular development are characterized by increasing 

surface areas with thinning of alveolar walls surrounded by pulmonary capillaries allowing 

postnatal gas exchange. Alveolar and vascular growth occur side by side involving delicately 

choreographed processes of cell proliferation, differentiation, migration, and apoptosis. 

Complex signaling pathways regulate these processes which are disrupted by preterm birth 

and exposure to supplemental oxygen.

The lungs of ELGANs born at < 28 weeks gestation are in the canalicular and saccular or 

early alveolar stages of development and are deficient of pulmonary surfactant, which 

normally matures in utero at much lower oxygen levels of 20–30 mm Hg necessary to 

promote branching morphogenesis, angiogenesis, and ECM deposition. They are incapable 

of efficient gas exchange, as the rate of transfer of gas across the lung is directly 

proportional to the surface area and inversely proportional to the diffusion distance between 

blood and air, according to Fick’s Law of diffusion [4]. To improve gas exchange, ELGANs 

often receive supplemental oxygen with mechanical ventilation. Hyperoxia results in the 

production of harmful oxygen byproducts or ROS, and disrupts normal lung developmental 

processes including microvascular maturation and alveolarization [13]. Due to immature 

antioxidant systems to scavenge ROS, their accumulation in the lungs causes inflammation, 

lung tissue damage, and CLD/BPD [14]. While the etiology of CLD/BPD is multifactorial, 

overwhelming evidence suggests that oxidative stress and excessive ROS with inadequate 

antioxidant systems play a key role in its development and severity [15–17].

3. OVERVIEW OF ROS

ROS are abundant in nature because they may be formed endogenously or exogenously 

between cells. The unique molecular configuration of oxygen allows it to accept free 

electrons from normal oxidative metabolism [18] leading to the production of superoxide 

anion (O2˙−), hydroxyl radical (OH˙), and hydrogen peroxide (H2O2), of which the 

mitochondria and peroxisomes are major sources. About 90% of cellular oxygen uptake is 

due to mitochondrial respiration and 1–2% of the oxygen consumed is transformed into ROS 

[19, 20]. Uncoupling of the electron transport chain found in the mitochondria generates 

ROS and is the major producer [21, 22]. A good amount of ROS may also come from 

cytoplasmic and endoplasmic reticulum-bound enzyme systems and the plasma membrane 

[23, 24]. Generation of ROS is affected by the availability of oxygen, the redox state of the 

mitochondrial complexes, and mitochondrial membrane potential [25]. Multi-enzyme 

systems can also account for the production of ROS. These systems include flavoproteins 

that produce H2O2, cytochrome P450 monooxygenase system that produces superoxide, 

xanthine oxidoreductase that produces both superoxide and H2O2, and nitric oxide synthase 

that produces superoxide and nitric oxide (NO) [26–29]. NADPH oxidases (NOX 1–3), dual 

oxidases 1 and 2, and NOX 4 produce O2˙− endogenously [30, 31]. Other systems mainly, 

involved in inflammatory process, cyclooxygenase and lipoxygenase pathways in 

arachidonic acid metabolism can also generate ROS that contribute to the evolution of lung 

disease [32]. Superoxide anion reacts rapidly with nitric oxide producing peroxynitrite 

(ONOO−) [33, 34]. Lipid peroxidation is initiated once peroxynitrite or hydroxyl radical 
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reacts with membrane lipids forming more complex radicals [35]. ROS are also important 

regulators of nitric oxide bioavailability, affecting airway and vascular reactivity [30]. ROS 

directly damage cellular proteins, lipids, and nucleic acids via protein oxidation and 

nitrosylation, lipid peroxidation, and oxidation of nucleic acids [36, 37]. These injuries can 

lead to impairment in enzymatic functions adversely affecting growth factors [38]. Lipid 

peroxidation results in the activation of sphingomyelinase releasing ceramide from cellular 

phospholipids, triggering apoptosis [39]. Breakage in DNA strands after oxidation of nucleic 

acids leads to necrosis and maladaptive apoptosis [40]. H2O2, a ubiquitous ROS [41, 42] 

permeates cell membranes through water channels [43–45], may act as a secondary 

messenger modulating cellular signaling [46]. H2O2 activates multiple signal transduction 

pathways, facilitating the actions of growth factors, cytokines, chemokines, and calcium 

signaling [47, 48]. During blood transfusion for anemia of prematurity, iron will react with 

H2O2forming hydroxyl radical that can injure cellular components [49, 50] leading to 

defective signaling pathways [51].

4. ROS AND PRETERM LUNGS

The premature lungs are highly susceptible to oxidative lung injury. Although necessary and 

essential for their survival, exposure of the immature lungs to oxygen leads to accumulation 

of ROS, including superoxide anion, the first ROS responder. Superoxide is very unstable 

and is rapidly converted to the more stable H2O2, and O2 by mitochondrial superoxide 

dismutase (MnSOD) in the mitochondrial matrix and copper, zinc SOD (CuZnSOD) in the 

cytosol. SOD is the primary ROS-detoxifying enzyme in the cell [52]. Complete disposal of 

H2O2requires the action of catalase, predominantly located in peroxisomes, and glutathione 

peroxidase in the mitochondria and cytosol [53]. Accumulation of H2O2 can lead to the 

formation of the highly reactive hydroxyl radical in the presence of ferrous iron via the 

Fenton reaction [54]. The hydroxyl radical oxidizes mitochondrial components such as 

lipids, proteins, and DNA via the self-propagating lipid peroxidation. Since mitochondrion 

lacks catalase, it relies on the reduced form of glutathione (GSH, about 10–20% of which is 

present in the mitochondria, the remainder is in the cytosol) to effectively scavenge H2O2. 

We and others have shown deficient antioxidant status in preterm infants [55, 56] and 

neonatal animal exposed to hyperoxia [57], suggesting an ROS/antioxidant imbalance that 

may lead to oxidative distress. Furthermore, ELGANs are often supplemented with iron for 

anemia. However, their low levels of plasma transferrin, the major iron-binding protein, 

predispose them to a higher risk for lipid peroxidation [58–62]. In the immature lungs, 

supraphysiological levels of oxygen and ROS result in a complex inflammatory reaction that 

is associated with accumulation of various cells (neutrophils and alveolar macrophages), and 

inflammatory mediators which result in increased microvascular permeability and lung 

damage [57]. Furthermore, exposure to high concentrations of oxygen during lung 

development results in alterations in capillary density [63], endothelial cell destruction [64], 

pulmonary inflammation [65], and inhibition of the process of alveolarization [66]. The 

immaturity of the lungs and inability of respiratory control result in apnea of prematurity 

and intermittent hypoxia (IH) events triggered by cessation of respiratory neural output [9, 

67]. An IH event is usually defined as a decline in SaO2 by 5% lasting < 3 minutes in 

duration [67]. Re-oxygenation which occurs in hyperoxia or normoxia (IHR) reestablishes 
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blood flow through damaged vessels, resulting in reperfusion injury. ROS are induced in 

both IH and IHR and may contribute to inflammation and cell death. Fluctuations in SaO2 

together with the underdeveloped antioxidant-scavenging mechanisms add to the complexity 

of CLD/BPD.

5. ROS AND VEGF

At any stage in pulmonary development, ROS may interfere with the well-coordinated 

processes influencing signaling pathways that regulate pulmonary vascular development 

which involves angiogenesis (sprouting of new vessels from existing ones required for 

central vessels) and vasculogenesis (formation of capillaries from endothelial cells). Using 

the baboon BPD model, Coalson et al. [68–70] demonstrated that the premature lungs 

exposed to hyperoxia and mechanical ventilation developed bronchial and bronchiolar 

epithelial lesions, decreased alveolarization, and interstitial and peribronchiolar fibrosis. 

Poor alveolarization and disrupted microvascular maturation involve altered angiogenic 

factors such as VEGF, ECM and lung basement membrane proteolysis by MMPs, and 

mitochondrial dysfunction [71–76]. VEGF is a potent mitogen and inducer of endothelial 

cell growth and proliferation [77]. Its expression is high in distal airway epithelial cells 

during differentiation of human fetal lungs [78]. VEGF is highly induced by hypoxia via the 

highly conserved transcription factor, hypoxia-inducible factor (HIF)-1α, which regulates 

over 100 genes involved in proliferation and angiogenesis. Studies have shown that 

hyperoxia decreases neonatal lung VEGF protein and mRNAs [79]. Reduced lung VEGF 

mRNA and protein expression as well as decreased receptor Flt-1 were associated with 

characteristic patterns of alveolar simplification and dysmorphic microvasculature in the 

lungs of infants dying with BPD [80]. Premature infants who died with severe RDS had 

lower lung VEGF than survivors, and infants with BPD had lower tracheal VEGF [81–83]. 

We have shown similar findings in lungs from premature baboons delivered at 125 or 140 

days gestation who received 100% oxygen with mechanical ventilation [84], and in preterm 

infants with BPD [85]. During recovery from hyperoxia, VEGF expression is increased in 

alveolar epithelial cells suggesting a role for VEGF in microvascular repair process [86]. 

Elevations in VEGF during hyperoxia reperfusion injury may involve mitochondrial ROS 

activation of HIF [50, 87].

6. ROS AND MATRIX METALLOPROTEINASES

Lung alveolarization, or the increase in gas-exchange surface area is characterized by the 

formation of alveoli and subdivision of sacculi [88]. During this stage, secondary septa are 

formed in the saccule to create alveoli [12, 89]. Secondary septation occurs in parallel with 

microvascular maturation, the transition from a double-layered to single-layered capillary 

network [90]. This process involves MMPs, which regulate the structural changes associated 

with alveolarization and microvascular maturation [91].

MMPs are enzymes that degrade type IV collagen, the major constituent of ECM and lung 

basement membranes necessary for mechanical and functional properties of lung tissue. 

MMPs belong to a family of zinc endopeptidases that are collectively capable of degrading 

essentially all ECM components, and as such, play a major role in inflammation, tissue 
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remodeling, angiogenesis, migration, and invasion [92–94]. MMPs are regulated by 

cytokines, chemokines, growth factors, and tissue inhibitors of metalloproteinases (TIMPs 

1–4) which form a high affinity complex in a 1:1 ratio [95]. A balance between MMPs and 

TIMPs is responsible for maintenance of normal ECM architecture, whereas an imbalance is 

believed to result in parenchymal destruction in lung diseases such as CLD complicating 

pulmonary fibrosis and asthma [96, 97]. MMPs are classified into: (1) collagenases 

(MMP-1, MMP-8, MMP-13); (2) gelatinases A (MMP-2) and B (MMP-9); (3) stromelysins 

(MMP-3, MMP-10, MMP-11, MMP-12); and (4) membrane-type MMPs [98, 99]. MMPs 

and TIMPs are produced ubiquitously in the body. However, in the lungs MMPs are 

produced by structural cells such as fibroblasts, endothelial, and epithelial cells, as well as 

alveolar macrophages [97, 100]. Overproduction of MMPs during alveolar remodeling can 

contribute to inflammatory lung disease. There is evidence that MMPs are involved in 

neonatal lung injury secondary to hyperoxia and mechanical ventilation in infants [101–107] 

and animal models [108–110], including studies in our laboratory [111]. From those studies, 

MMPs are highly involved in arrested alveolarization and abnormal arterial remodeling, 

which are the hallmarks of BPD. These previous reports also demonstrate a strong 

association between MMPs, ROS, and oxidative lung injury.

7. ROS AND ANTIOXIDANT DEFENSES

A balanced redox state determines the vulnerability of an organism to oxidative stress. 

Exposure to oxidative stress has potential deleterious side effects, and in some cases, can be 

lethal. The lungs are particularly susceptible because, of all the organs in the body, it is the 

most exposed to a higher partial oxygen pressure [112]. However, homeostasis is maintained 

by efficient antioxidant defense systems that keep oxygen toxicity in check. Mitochondrion 

is not only the main generator of ROS, but also the main organelle for antioxidant ROS 

scavenging. Similar systems are found in the cytosol and peroxisomes. Antioxidants can be 

intracellular and extracellular or enzymatic and non-enzymatic [113]. They may also be 

categorized as primary (preventing ROS formation), secondary (scavenging ROS), and 

tertiary (removing or repairing oxidatively modified molecules) [114]. The major 

detoxifying antioxidant is SOD enzymes [115]. Copper and zinc-containing SOD 

(CuZnSOD or SOD-1) is found in the cytoplasm [116]. Manganese-containing SOD 

(MnSOD or SOD-2) is found in the mitochondria [117, 118], and extracellular SOD 

(ECSOD or SOD-3), as the name indicates, is present extracellularly [119]. These three 

forms allow the dismutation of superoxide into oxygen (O2) and H2O2 [120]. Cytoplasmic 

and peroxisomal catalase breaks H2O2 into water and O2 and peroxiredoxins reduce it [121]. 

Catalase works best with high concentrations of H2O2 [122, 123]. Reductases and 

peroxidases that detoxify ROS and lipid peroxides belong to the thioredoxin and glutathione 

systems [124]. Two forms of glutathione peroxidase (GPx) have been identified in 

mitochondria [125, 126]. Peroxidases clear up to 90% of H2O2 produced in the 

mitochondria [127, 128]. Together these enzymes have been shown to have protective roles 

in lung diseases [129]. Multiple cell culture models suggested that overexpression of 

antioxidants prevents ROS-induced injury [130]. Other forms of free radical scavengers are 

small molecular weight compounds of the non-enzymatic type present endogenously or 

obtained through diet. GSH, cysteinyl tripeptide, uric acid, ascorbic acid, and tocopherols/
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tocotrienols are some of these compounds involved in protection from pulmonary diseases in 

neonatal and adult populations [131–135]. Recent literature highlights the importance of 

maintaining a delicate balance between ROS production in oxidative stress and scavenging. 

Too much or faulty scavenging may lead to overexpression of SOD that could lead to 

excessive H2O2production and may have adverse rather than beneficial effects [136]. Studies 

in our laboratory have shown that the use of MnTBAP, an SOD mimetic that scavenges 

superoxide and peroxynitrite, can suppress oxygen-induced inflammatory MMP-9 levels in 

lungs of neonatal rats exposed to IH [137], while the use of anti-VEGF drugs causes 

pulmonary hemorrhage concurrent with elevations in MMP-2 and MMP-9 [138].

8. THERAPEUTIC CONSIDERATIONS

Despite the promising role of antioxidant therapy in CLD in ELGANs, clinical trials have 

only yielded limited success in treatment [139]. It is postulated that once the disease process 

has progressed to a critical point, antioxidant therapy may already be ineffective. In early 

stages, however, it may still have potential roles in prevention. Low doses of dexamethasone, 

which has anti-inflammatory and antioxidant properties, were beneficial in infants who 

remain ventilator dependent after 1–2 weeks [140]. However, studies done in our laboratory 

showed that a low-dose dexamethasone alters the imbalance in lung MMPs and TIMPs 

which may lead to further lung injury [141]. In lamb models of persistent pulmonary 

hypertension (PPHN), intratracheal antioxidant administration combined with NO inhalation 

is shown to be more effective than NO inhaled alone [142, 143]. Recombinant human SOD 

also reduces peroxynitrite-mediated protein nitration mitigating cell injuries [144]. 

Nosocomial infection is a predictor of BPD [145]. Exposure of lung epithelial cells to 

hyperoxia impairs phagocytosis and bacterial clearance with increased IL-8 production, and 

overexpression of SOD has beneficial effects [146, 147]. Data analysis has pointed to the 

critical role of SOD in preventing hyperoxia-induced lung injury and the preservation of the 

alveolar architecture which suggests a potential role for antioxidant therapy in CLD. 

Scavenging of ROS may also interfere with normal signaling pathways in early lung 

development and oxidative stress may be localized only in some areas, limiting the efficacy 

of some antioxidants [148]. Administration of early high doses of antioxidant vitamins had 

no beneficial effects to curtail pulmonary responses to hypoxia in the baboon BPD model 

[149]. Multicenter trials using high-dose vitamin A in premature infants showed a 7% 

significant reduction of BPD, but long-term follow-up of treated subjects did not show long-

term benefits [150, 151]. Vitamin C is thought to contribute to the regeneration of membrane 

bound alpha-tocopherol in preterm infants [152]. Vitamin E is relatively deficient in preterm 

infants, but clinical trials failed to demonstrate significant benefits [153, 154], and instead it 

may increase the risk of necrotizing enterocolitis (NEC) and sepsis [155]. Because iron is 

important in the production of ROS [54], studies showed that iron chelators effectively 

prevented ROS-induced lung injury [156]. N-Acetylcysteine (NAC) is a precursor of GSH. 

However, clinical trials comparing NAC against placebo in ventilated extremely low birth 

weight infants did not improve survival or decrease BPD at 36 weeks corrected age or 

improved pulmonary function at term [157, 158]. More recently, the use of omega-3 

polyunsaturated fatty acids (ω-3 PUFAs) has been proposed for the prevention of ROS-

induced lung injury. Maternal ω-3 PUFA supplementation appears to protect newborn rats 
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from hyperoxia-induced lung injury [159, 160]. However, clinical trials show conflicting 

results. Preterm infants who received parenteral ω-3 PUFAs had a lower incidence of BPD 

[161, 162], but a large, randomized multicenter trial showed no benefit for reducing BPD 

[163]. Further longitudinal outcome studies need to be undertaken to determine the efficacy 

of ROS scavenging and its use in treating BPD. For example, studies implementing 

synergistic pharmacological strategies to prevent ROS production, scavenge, and decrease 

ROS that have already been produced due to oxygen therapy, and at the same time, excrete 

and metabolize other toxic oxidative products such as H2O2, should be conducted in 

appropriate animal models.

9. CONCLUSION

Injuries to cells by oxidative stress is brought about by the arrest in the normal process of 

proliferation and differentiation. Damage to DNA, protein, and lipids in cell membranes, and 

disruption of regulatory pathways further amplify the initial injury. The balance between 

ROS generation and scavenging is crucial for maintaining homeostasis and to the survival of 

the organism (Figure 1). The inadequate antioxidant system, the early stage of lung 

development in ELGANs, and their exposure to a hyperoxic environment after birth leads to 

the ontogeny of their lung disease. BPD/CLD is characterized by alveolar hypoplasia, and in 

some cases, with accompanying increased in pulmonary vascular resistance making it more 

challenging to maintain adequate ventilation and oxygenation. Prolonged exposure to 

oxygen and mechanical ventilation exacerbates oxidative stress and inflammatory injury to 

the premature lungs, leading to later fibrosis. Studies are underway to exploit the potential of 

antioxidant therapy to enhance the natural ROS-scavenging mechanisms in this population, 

in order to decrease morbidities and improve their outcomes. Preliminary data, however, 

have yielded inconclusive reports. This may suggest that the timing for therapeutic 

intervention and the specificity of the antioxidant to its target may be key to the success of 

this novel approach.
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ABBREVIATIONS ∣

BPD bronchopulmonary dysplasia

CLD chronic lung disease

ECM extracellular matrix

ELGAN extremely low gestational age neonate

GPx glutathione peroxidase

GSH reduced form of glutathione

IH intermittent hypoxia
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MMP matrix metalloproteinase

NAC N-acetylcysteine

NOX NADPH oxidase

PUFA polyunsaturated fatty acid

RDS respiratory distress syndrome

ROS reactive oxygen species

SOD superoxide dismutase

TIMP inhibitor of metalloproteinase

VEGF vascular endothelial growth factor
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FIGURE 1. Graphic representation showing only the relationship between reactive oxygen 
species, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and 
bronchopulmonary dysplasia (BPD).
Preterm infants who are at the highest risk for development of BPD are born in the late 

canalicular/early saccular stage of lung development. At this stage, the incidence of BPD is 

as high as 68%, and is characterized by alveolar oversimplification, disrupted 

alveolarization, reduced secondary septation, and aberrant microvascular maturation, all of 

which are associated with oxidative distress, inflammation, and MMPs and TIMPs. Preterm 

infants also have immature antioxidant systems. Superoxide anion (O2˙−) produced from 

exposure to high levels of oxygen, undergoes dismutation to hydrogen peroxide (H2O2) and 

O2. Deficiency of antioxidants such as catalase and glutathione peroxidase (GPx), 

scavengers of H2O2, will lead to accumulation of H2O2. Preterm infants are often 

supplemented with iron, and excess free iron due to deficient iron-binding capacity leads to 

its reaction with H2O2 via the Fenton reaction resulting in the formation of the hydroxyl 

radical, the highly reactive, self-propagating, and extremely powerful oxidant, that reacts 

with most organic molecules causing lipid peroxidation and DNA damage.
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